

Mini-JLT Board

From Jackson Labs Technologies, acquired by VIAVI Solutions

Mini-JLT GNSS™ User Manual

Copyright © 2017 Jackson Labs Technologies, Inc.

1	Introduction	1
	1.1 Overview	1
	1.2 General Safety Precautions	
	1.2.1 Antenna Lightning Protector	
	1.2.2 Grounding	
	1.2.3 Power Connections	
	1.2.4 Environmental Conditions	
		_
2	Quick-Start Instructions	2
_	2.1 Powering Up the Unit	
	2.1.1 PCB Photos	
	2.1.2 Mechanical Drawings	
	2.1.3 Notes on Signal Interfacing	
	2.1.4 Coaxial Connectors	
	2.2 Power	
	2.3 Multi-GNSS Capabilities	
	2.4 Connecting the GNSS Antenna	3
	2.5 Remote serial control	3
	2.6 Loop parameter adjustment	3
3	SCPI-Control Quick Start Instructions	1
	3.1 Introduction	1
	3.2 General SCPI Commands	1
	3.2.1 Quick Start Commands	1
	3.2.2 *IDN?	
	3.2.3 HELP?	
	3.3 GPS Subsystem	
	3.3.1 GPS:SATellite	
	3.3.2 GPS:SATellite:TRAcking:COUNt?	
	3.3.3 GPS:SATellite:VISible:COUNt?	
	3.3.4 NMEA Support	
	3.3.5 GPS:GPGGA	
	3.3.6 GPS:GGASTat	
	3.3.7 GPS:GPRMC	
	3.3.8 GPS:GPGSV	
	3.3.9 GPS:XYZSPeed	
	3.3.10GPS:GPZDA	
	3.3.11GPS:PASHR	
	3.3.12GPS:GYRO	
	3.3.13GPS:GYRO:CAL	
	3.3.14GPS:DYNAMic:MODE	
	3.3.15GPS:DYNAMic:MODE 8 (Automatic Dynamic Mode)	
	3.3.16GPS:DYNAMic:STATe?	
	3.3.17GPS:REFerence:ADELay <float> <s ns="" =""> [-32767ns,32767ns]</s></float>	
	3.3.18GPS:REFerence:PULse:SAWtooth?	
	3.3.19GPS:RESET ONCE	
	3.3.20GPS:TMODe <on off rstsurv></on off rstsurv>	
	3.3.21GPS:SURVey ONCE	
	3.3.22GPS:SURVey:DURation <sec></sec>	
	3.3.22GP3.30KVey.DORation \sec\cdots	

	3.3.24GPS:HOLD:POSition <cm, cm="" cm,=""></cm,>	
	3.3.25GPS:SURVEY:STATus:DURation?	
	3.3.26GPS:SURVEY:STATUS?	
	3.3.27GPS:INITial:DATE <yyyy,mm,dd></yyyy,mm,dd>	. 23
	3.3.28GPS:INITial:TIME <hour,min,sec></hour,min,sec>	. 23
	3.3.29GPS:SYSTem:SELect [GPS SBAS QZSS GAL BD ^ GLO]	. 23
	3.3.30GPS:JAMlevel?	. 24
	3.3.31GPS:FWver?	
	3.3.32GPS?	
3 4	GYRO SUBSYSTEM	24
5.4	3.4.1 GYRO:MODE <on off="" =""></on>	
	3.4.2 GYRO:TRACE <int> [0,255]</int>	
	3.4.3 GYRO:CAL <float,float,float,float,float,float,float,< td=""><td></td></float,float,float,float,float,float,float,<>	
	3.4.4 GYRO:CAL:COMPUTE	. 25
	3.4.5 GYRO:SENS, GYRO:EFC, and GPS:CAL:RESET	
	3.4.6 GYRO:GLOAD?	
3.5	PTIME Subsystem	
	3.5.1 PTIMe:DATE?	
	3.5.2 PTIMe:TIME?	
	3.5.3 PTIMe:TIME:STRing?	. 26
	3.5.4 PTIMe:TINTerval?	. 26
	3.5.5 PTIMe:LEAPsecond?	
	3.5.6 PTIMe:LEAPsecond:PENDing?	
	3.5.7 PTIMe:LEAPsecond:ACCumulated?	
	3.5.8 PTIMe:LEAPsecond:DATE?	
	3.5.9 PTIMe:LEAPsecond:DURation?	
	3.5.10PTIME?	
3 6	SYNChronization Subsystem	
5.0	3.6.1 SYNChronization:HOLDover:DURation?	
	3.6.2 SYNChronization:HOLDover:INITiate	
	3.6.3 SYNChronization:HOLDover:RECovery:INITiate	
	3.6.4 SYNChronization:SOURce:MODE	
	3.6.5 SYNChronization:SOURce:STATE?	
	3.6.6 SYNChronization:TINTerval?	
	3.6.7 SYNChronization:TINTerval:THReshold [50,2000]	
	3.6.8 SYNChronization:IMMEdiate	
	3.6.9 SYNChronization:FEEstimate?	
	3.6.10SYNChronization:LOCKed?	
	3.6.11SYNChronization:OUTput:1PPS:RESET [ON OFF]	
	3.6.12SYNChronization:health?	. 29
	3.6.13SYNChronization?	. 30
3.7	DIAGnostic Subsystem	. 30
	3.7.1 DIAGnostic:ROSCillator:EFControl:RELative?	. 30
	3.7.2 DIAGnostic:ROSCillator:EFControl:ABSolute?	. 30
	3.7.3 DIAGnostic:LIFetime:COUNt?	
3.8	MEASURE Subsystem	
0.0	3.8.1 MEASure:VOLTage?	
	3.8.2 MEASure:CURRent?	
	3.8.3 MEASure?	
30	SYSTEM Subsystem	
5.3	3.9.1 SYSTem:COMMunicate	
	3.9.1.1 SYSTem:COMMunicate: SERial: ECHO	
	3.9.1.1 STSTEIII.COMMUNICALE.SEKIAI.ECHO	. 51

	3.9.1.2 SYSTem:COMMunicate:SERial									
	3.9.1.3 SYSTem:COMMunicate:SERial:									
	3.9.2 SYSTem:STATus?									
	3.9.3 SYSTem:FACToryReset ONCE									
	3.10SERVO Subsystem									
	3.10.1SERVo:FASTlock									
	3.10.2SERVo:FALEngth									
	3.10.3SERVo:COARSeDac									
	3.10.4SERVo:DACGain									
	3.10.5SERVo: EFCScale									
	3.10.6SERVo:EFCDamping									.34
	3.10.7SERVo:SLOPe									. 34
	3.10.8SERVo:TEMPCOmpensation									.34
	3.10.9SERVo:AGINGcompensation									.34
	3.10.10SERVo:PHASECOrrection									.34
	3.10.11SERVo:1PPSoffset									. 35
	3.10.12SERVo:TRACe									. 35
	3.10.13SERVo?									
	Firmer III and the formation of									
4	Firmware Upgrade Instructions									
	4.1 Introduction									
	4.2 ISP Flash Loader Utility installation									. 37
	4.2.1 Philips LPC2000 Flash Utility									.37
	4.2.2 Flash Magic Flash Programming Utility									.38
	4.3 Putting the PCB into In-Circuit Programming (I	SP)	mo	ode						.38
	4.4 Downloading the firmware									. 38
	4.4.1 Philips LPC2000 Flash Utility									
	4.4.2 Flash Magic Flash Programming Utility									.40
	4.5 Verifying Firmware Update									
	, -									
_	CDCCon Hillity									
5	GPSCon Utility									
	5.1 Description									
	5.2 Installation									
	5.3 Using GPSCon									
	5.3.1 Setting the options									
	5.3.1.1 Communication Parameters .									.46
	5.3.1.2 Auxiliary Parameters									.46
	5.3.1.3 Traces Parameters									.47
	5.3.2 Sending manual commands to the receive	ver								.49
	5.3.3 Using the Mouse in the Graph Window									.49
	5.3.4 Exporting the graphics									
	5.4 Interpreting the Data									
_										
6	Certification and Warranty									. 55
	6.1 Certification									. 55
	6.1.1 Warranty									.55
	6.1.2 Limitation of Warranty									. 55
	6.1.3 Exclusive Remedies									56

Introduction

1.1 Overview

The Mini-JLT GNSS board adds multi-GNSS support to the original Jackson Labs Mini-JLT GPSDO with the addition of a GPS/Glonass/Galileo/BeiDou/QZSS/SBAS fixed-position timing receiver. Jackson Labs Technologies, Inc. originally designed the Mini-JLTTM board to address a market demand for replacing the end-of-life Trimble Navigation Limited Mini-TTM GPSDO units used in existing customer projects. The board was designed to be form-fit-function compatible to the Trimble units, with the exception of adding various features such as a 1PPS external input, 3-axis on-board accelerometer, USB communication, internal antenna power supply, wide-range main power supply, extended temperature range, lower overall height (0.8 inches vs. 0.5 inches above the PCB), and a significantly improved thermal stability, Allan Deviation, and Phase Noise performance. The unit also adds support for NMEA and SCPI communication commands, and removes support for TSIP proprietary commands.

The Mini-JLT GNSSTM GPSDO uses a multi-GNSS receiver that can run in stationary (Position Hold mode) and mobile mode to discipline an OCXO local oscillator to better than 1ppb frequency accuracy. It supplies two 10MHz outputs. The board includes both TTL-level (RS-232 serial levels optional) and USB serial control ports for NMEA and SCPI communication. The board operates from a single +5V supply with 4.0V to 6.0V range, and has connectors to indicate GNSS and External-Reference lock/presence. The board includes a high-performance GNSS receiver that can acquire and track up to 72 GNSS signals down to a state of the art –167dBm (GPS and GLONASS), a 32bit processor that runs a Real Time OS, one10MHz +5dBm legacy output, one optional 10MHz +13dBm output, 1PPS UTC synchronized CMOS output, TTL/USB or optional RS-232 serial control interfaces, and precision voltage references and DACs.

Figure 1.1 Mini-JLT GNSS™ GPSDO

1.2 General Safety Precautions

The following general safety precautions must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design manufacture, and intended use of the instrument. Jackson Labs Technologies, Inc. assumes no liability for the customer's failure to comply with these requirements.

1.2.1 Antenna Lightning Protector

Always use a UL approved and properly installed GNSS Antenna Lightning protector on the coaxial GNSS antenna feed to prevent damage, injury, and/or death in case of a lightning strike.

1.2.2 Grounding

To avoid damaging the sensitive electronic components in the Mini-JLT GNSSTM GSPDO always make sure to discharge any built-up electrostatic charge to a good ground source, such as power supply ground. This should be done before handling the circuit board or anything connected to it, i.e. the GNSS antenna.

1.2.3 Power Connections

Make sure to connect the DC power to the device following the polarity indicated in Section 2.1. Do not reverse the power pins as this will cause serious damage to the circuit board.

1.2.4 Environmental Conditions

This instrument is intended for indoor use. It is designed to operate at a maximum relative non-condensing humidity of 95% and at altitudes of up to 50,000 meters. Refer to the specifications tables for the ac mains voltage requirements and ambient operating temperature range.

Quick-Start Instructions

2.1 Powering Up the Unit

To operate the unit, simply follow these two steps:

- 1) Connect a 3.3V or 5V-compatible GNSS antenna to SMA connector J4. The antenna can be passive or active. The Mini-JLT GNSSTM board will supply 3.3V to the antenna by default, and this can be increased to up to 5.5V through the external antenna power supply pin 5 of connector J1
- 2) Connect +5V (+/-1V) DC Power to J1 pin 6 on the unit, and ground to pin 4 of J1 [The unit will consume up to 8W of power during oscillator warmup]

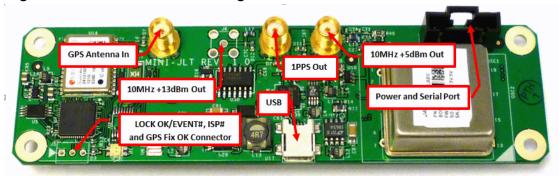
The unit will now lock to GNSS signals (Red LED D1 is blinking when satellites are being received) and will indicate proper lock and no events pending when the Green LED D1 goes on. Once the green LED D1 is on, the unit will output 10MHz with significantly better than 1ppb frequency accuracy.

By default the unit will be set to Position Hold mode, and an antenna position Auto Survey process is started after power-on that may take up to 3 hours to finish. The antenna should never be moved when the unit is set to run in Position Hold mode as this would result in loss of frequency and timing accuracy and incorrect GNSS fixes. The unit must be configured to mobile mode using the GPS:TMODE OFF command when used in an application where the antenna position can move during normal operation. Using the Auto Survey process and Position Hold mode allows the unit to over-determine the timing solution, and also allows TRAIM operation which will result in slightly higher timing stability and more robust GNSS reception in challenged environmental conditions such as under foliage, in urban canyons, etc.

Please note that the GNSS receiver establishes the internal antenna gain right after power-on, so for proper operation the GNSS antenna should always be connected prior to turning on the +5V power.

Connect a terminal program (TeraTerm is recommended) to the unit via the TTL serial connector pins on J1, or to the USB serial port, both with 115.2KB 8N1 and no flow-control.

WARNING: Do not connect RS-232 serial levels to connector J1, the unit may get damaged from RS-232 serial levels on connector J1 as the default configuration is TTL level.


Both the TTL serial port J1 and the USB port are internally "ored" together, so the user may send and receive commands to/from both ports as long as commands are not sent to both ports at the same time. Try some of these SCPI commands:

help? syst:stat? GPS? sync? meas?

2.1.1 PCB Photos

The Mini-JLT GNSS™ PCB is shown in Figure 2.1.

Figure 2.1 Mini-JLT GNSS™ Single Oven PCB

2.1.2 Mechanical Drawings

The following drawings show the mechanical dimensions and the pinout of the Mini-JLT GNSSTM PCB:

Figure 2.2 Mini-JLT GNSS™ Mechanical Dimensions

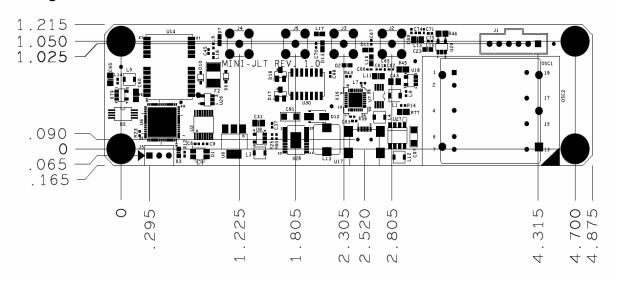


Table 2.1 shows the Mini-JLT GNSSTM revision 1.0 hardware pin descriptions

Table 2.1 Mini-JLT GNSS™ hardware connectors

Ref	Name	Function	Specification	Description
J1 Pin 1	1PPS In	Optional external 1PPS Input	0V to 5V, pulled-low by 4.7K resistor	Alternate 1PPS reference input
J1 Pin 2	Serial TX	Serial Transmit Output	3.3V LVCMOS (RS-232 serial optional)	Serial Transmit output for NMEA and SCPI sentences, internally connected to USB TX signal
J1 Pin 3	Serial RX	Serial Receive Input	3.3V LVCMOS (RS-232 serial optional), 5V compatible.	Serial Receive input for SCPI commands, internally wired-ored to USB RX signal
J1 Pin 4	Ground	Ground	Ground	Main Power Return
J1 Pin 5	VANT	External Antenna Voltage	3.0V to 5.5V up to 100mA	The unit provides a 3.3V antenna supply to the GNSS antenna by default. This can be over-driven by a voltage >3.3V supplied to the VANT pin. Both the internal 3.3V and the external VANT supply are diode-ored and protected against each other. The VANT current is fused by a 100mA self-resetting fuse on the PCB.
J1 Pin 6	+5V Power	Main Power Supply	4.0V to 6.0V range, 5V nominal	Supplies power to the unit and the OCXO. Up to 8W are required during warmup. Range is 5V +/-1.0V

J5 Pin 3	LOCK OK	Lock and Event# indicator	3.3V LVCMOS	3.3V: Unit Locked to GPS, and no events pending 0V: Event is pending (events can be queried via the sync:health? command). Not stuffed by default for legacy compatibility
J5 Pin 2	ISP# and GPS Detect	Enable ISP mode, indicate GPS signal detection	3.3V LVCMOS open collector, pulled to +3.3V via 4.7K resistor. Do not load this pin to ground, as this would enable ISP mode during power on. Use an LVCMOS input to query the state of this pin.	Enables In System Programming mode (ISP) when pulled-low during power-on (typically enabled by using a jumper to pin 1) 3.3V: GPS is receiving a sat fix OV: GPS is not receiving a sat fix Not stuffed by default for legacy compatibility.
J5 Pin 1	Ground	Ground	Ground	Ground Not stuffed by default for legacy compatibility.
J4	GNSS Antenna	Antenna Input	L1, +3.3V (default) to +5.5V	Supplies 3.3V by default, and up to +5.5V when using external antenna power feed on J1. Fused with 100mA self-resetting fuse
J6	10MHz output	10MHz Sine Wave Output	+13dBm, +/-3dBm	10MHz output from isolated distribution amplifier, driven by on-board OCXO. Not stuffed by default for legacy compatibility
J2	10MHz output	10MHz Sine Wave Output	+5dBm, +/-3dBm	10MHz output output from isolated distribution amplifier, driven by on-board OCXO
U17	USB	USB command and control	USB 2.0	USB interface for SCPI and NMEA sentences. Runs in paralell to TTL serial port. Auto-switchover between TTL and USB ports.
J3	1PPS output	1PPS output signal, aligned to UTC	3.3V LVCMOS, <5ns rise-time. 10 Ohms output impedance, can drive 50 Ohms end-terminated cables	1PPS output signal, rising-edge aligned to UTC when locked to GPS

2.1.3 Notes on Signal Interfacing

The optional LOCK_OK_OUT is a 3.3V LVCMOS signal, and thus require a series resistor of typically 390 to 470 Ohms when used to drive an external LED.

The serial port RX and TX lines cannot be directly connected to a DB9 connector as these are driven with TTL signal levels. Connecting these pins to an RS-232 serial interface may damage the board.

The SCPI and NMEA outputs are sent to both the TTL serial output and the USB output, and the SCPI control commands can be sent to either the TTL serial port, or the USB serial input, both signals are "ored" together on the board. Commands can thus be sent to the board via both ports, but should not be sent to the TTL serial port and the USB serial port simultaneously, as this will result in non-destructive garbling of the serial transmission.

Connect an active or passive GNSS antenna that is compatible to 3.3V or 5V antenna power, and connect this antenna prior to turning-on the board. Use a lightning arrestor on the antenna feed for safety and to prevent damage, injury, or death in case of a lightning strike.

2.1.4 Coaxial Connectors

The GNSS antenna connector, the 1PPS connector, and the 10MHz connectors on the Mini-JLTTM board are generic SMA types.

2.2 Power

The unit is powered from a +4.0V to +6V DC source, with +5.0V nominal voltage. The current is typically less than 0.6A at 5V. Connect a clean +5V power supply to pin 6 of J1, and ground to pin 4 of J1. Both USB power and external +5V power can be connected at the same time to the unit, but USB power will not be used to drive circuits on the PCB.

2.3 Multi-GNSS Capabilities

The Mini-JLT GNSSTM is capable of simultaneously receiving multiple GNSS systems at one time. Concurrent GNSS operation aids performance by allowing reception of up to 72 GNSS satellites in challenged reception areas such as in urban canyons, under foliage, indoors, or close to the earth's poles, etc. Using multiple GNSS systems also increases robustness by not relying on a single GNSS system. Several of the systems operate at different carrier frequencies, so using multiple can increase immunity against jamming which often occurs at only one frequency.

The multiple GNSS systems each have their own reference time and representation of UTC. For example, GPS uses the GPS time standard and provides a method to convert GPS time to UTC as defined by the US Naval Observatory (USNO). GLONASS, Galileo and BeiDou have similar reference times and UTC definitions. The Mini-JLT GNSSTM automatically adjusts for offsets between the different GNSS time reference standards and synchronizes the 1PPS output to UTC (USNO) when GPS is being received. If GPS is not being received, the 1PPS output is synchronized to the best representation of UTC (USNO) available.

The selection of GNSS systems is made with the GPS:SYST:SEL command as detailed in Section 3.3.29 . Because these systems operate at different carrier frequencies with different bandwidths, it is necessary to use a GNSS antenna that is designed to receive all the required GNSS systems.

Also, the internal GNSS receiver is restricted to operation at two different carrier frequencies. GPS, SBAS, QZSS and Galileo operate at the same L1/E1 carrier frequency. GLONASS operates at a separate G1 carrier frequency and BeiDou separately at the B1 carrier frequency. Based on this restriction below are several valid combinations of GNSS systems that can be selected:

GPS, SBAS, GLONASS

GPS, SBAS, BeiDou GPS, SBAS, Galileo, GLONASS BeiDou, GLONASS

However, the following is an example of a combination of GNSS systems that would require three different carriers and is not supported:

GPS, SBAS, BeiDou, GLONASS

Attempting to configure an invalid combination of GNSS systems with the GPS:SYST:SEL command will result in a Command Error response with no change to the configuration.

2.4 Connecting the GNSS Antenna

Connect the GNSS antenna to the SMA connector J4. Caution: use a Lightning Arrestor on your Antenna setup. Use an amplified GPS antenna that is 5V LNA compatible. The Mini-JLT GNSSTM GNSS receiver is a 72 channel high-sensitivity multi-GNSS receiver with very fast lock time.

The Mini-JLT GNSSTM unit is set at the factory to use Position Hold mode, and will initiate an Auto Survey process after power-on to establish its new position. The Auto Survey process may last up to 3 hours. The units' antenna should not be moved when set to Position Hold mode. Please set the unit to mobile mode using the GPS:TMODE OFF command when the unit is to be used in a mobile environment where the antenna position can change more than 1 foot during operation.

The Mini-JLT GNSS™ is capable of generating standard navigation messages (see GPS:GPGGA, GPS:GPZDA, GPS:PASHR, and GPS:GPRMC TTL serial commands) that are compatible with most GPS based navigation software.

The GNSS receiver generates a 1PPS time signal that is phase synchronized to UTC. This 1PPS signal is used to frequency-lock the 10MHz output of the Mini-JLT GNSSTM GPSDO to UTC, thus disciplining the unit's 10MHz frequency output to the US Naval master clock for very high frequency accuracy (typically better than 10 digits of frequency accuracy when locked to GNSS signals).

2.5 Remote serial control

The unit is controlled via the TTL or USB serial port at 115200 baud, 8N1. Other Baud Rates can be set via SCPI commands.

Attach the Mini-JLT GNSSTM unit to your PC's Hyperterminal, the Jackson Labs GPSCon software package (see Chapter 5 of this manual), or a third-party freeware Windows-based application program called Z38xx. The Z38xx program can be used to track the performance of the Mini-JLTTM. Z38xx is available on the Jackson Labs Technologies, Inc. website under the following URL:

http://www.jackson-labs.com/assets/uploads/main/Z38XX.zip

2.6 Loop parameter adjustment

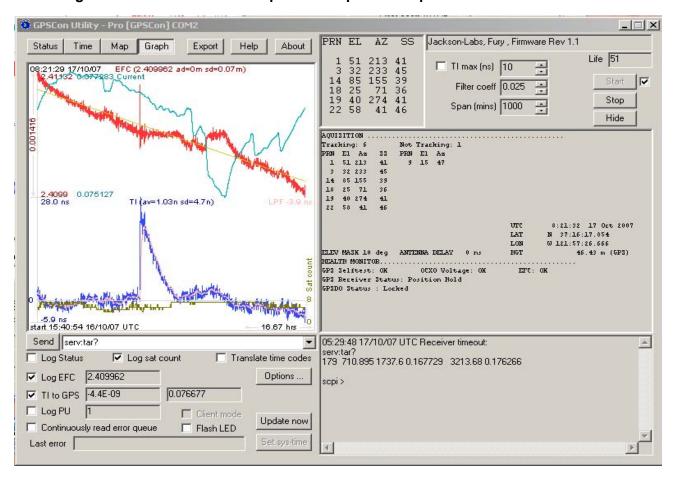
All loop parameters can be controlled via either of the two serial ports.

Loop parameters are optimized for the TCXO on the board, and changing the factory settings may result in the unit's performance to deteriorate.

The commands to control the loop parameters are part of the servo? command. See also the **SERVO Subsystem** section below.

The individual commands are:

EFC Scale: this is the proportional gain of the PID loop. Higher values will give quicker convergence, and faster locking of the GPS time (lower loop time constant), lower values give less noise. Values between 0.7 (good double oven OCXO) and 6.0 (simple single-oven OCXO) are typical.


EFC Damping: overall IIR filter time constant. higher values increase loop time constant. Jackson Labs Technologies, Inc. typically uses values between 10 to 50. Setting this value too high may cause loop instability.

Phase compensation: this is the Integral part of the PID loop. This corrects phase offsets between the Mini-JLT GNSSTM 1PPS signal and the UTC 1PPS signal as generated by the GNSS receiver. Set higher values for tighter phase-following at the expense of frequency stability. Typical values range from 4 - 30, 25 being the default. Setting this value too high may cause loop instability.

A well-compensated unit will show performance similar to the plot shown in Figure 2.3 when experiencing small perturbations:

Figure 2.3 Mini-JLT GNSS™ phase compensation plot

3 SCPI-Control Quick Start Instructions

3.1 Introduction

The SCPI (Standard Commands for Programmable Instrumentation) subsystem is accessed via the TTL or USB serial interfaces and a terminal program. By default the terminal settings are 115200, 8N1, no flow-control.

There are a number of commands that can be used as listed below. Most of these are identical or similar to Symmetricom 58503A commands. To get a listing of the available commands, send the HELP? query. This will return a list of all the available commands for the Mini-JLT GNSSTM GPSDO.

Additional information regarding the SCPI protocol syntax can be found on the following web site: http://www.ivifoundation.org/scpi/

A basic familiarity with the SCPI protocol is recommended when reading this chapter.

3.2 General SCPI Commands

3.2.1 Quick Start Commands

For a quick start, try the following SCPI serial port commands:

help?

syst:stat?

gps?

sync?

meas?

3.2.2 *IDN?

This query outputs an identifying string. The response will show the following information:

<company name>, <model number>, <serial number>, <firmware revision>

3.2.3 HELP?

This query returns a list of the commands available for the Mini-JLT GNSSTM GPSDO.

3.3 GPS Subsystem

Note: Please note that Mini-JLT GNSSTM displays antenna height in MSL Meters rather than in GPS Meters on all commands that return antenna height [the legacy Fury GPSDO uses GPS height]. The NMEA position fixes are in the WGS84 coordinate system, while the X,Y, and Z velocity vectors are given in the ECEF coordinate system.

The GPS subsystem regroups all the commands related to the control and status of the GNSS receiver. The list of the commands supported is the following:

GPS:SATellite:TRAcking:COUNt?

GPS:SATellite:VISible:COUNt?

GPS:GPGGA <int> [0,255]

GPS:GGASTat <int> [0,255]

GPS:GPRMC <int> [0,255]

GPS:GPGSV<int> [0,255]

GPS:GPZDA<int> [0,255]

GPS:PASHR<int> [0,255]

GPS:XYZSPeed

GPS:GYRO?

GPS:GYRO:CAL?

GPS:DYNAMic <int> [0,7]

GPS:DYNAMic 8 (Automatic Dynamic Mode)

GPS:DYNAMic?

GPS:REFerence:ADELay <float> <s | ns > [-32767ns,32767ns]

GPS:REFerence:PULse:SAWtooth?

GPS:RESET ONCE

GPS:TMODE <ON|OFF|RSTSURV>

GPS:SURVey ONCE

GPS:SURVey:DURation <sec>

GPS:SURVey:VARIANCE <mm²>

GPS:HOLD:POSition <cm, cm, cm>

GPS:SURVEY:STATus:DURation?

GPS:SURVEY:STATUS?

GPS:INITial:DATE <yyyy,mm,dd>

GPS:INITial:TIME <hour,min,sec>
GPS:SYSTem:SELect [GPS | SBAS | QZSS | GAL | BD ^ GLO]
GPS:JAMlevel?
GPS:FWver?
GPS?

3.3.1 GPS:SATellite

This group of commands describe the satellite constellation.

3.3.2 GPS:SATellite:TRAcking:COUNt?

This query returns the number of satellites being tracked.

3.3.3 GPS:SATellite:VISible:COUNt?

This query returns the number of satellites (PRN) that the almanac predicts should be visible, given date, time, and position.

3.3.4 NMEA Support

The following four commands allow the Mini-JLT GNSSTM GPSDO to be used as an industry standard navigation GNSS receiver. The GPGGA,GPRMC, GPGSV, PASHR and GPZDA NMEA commands comprise all necessary information about the antenna position, height, velocity, direction, satellite info, fix info, time, date and other information that can be used by standard navigation applications via the Mini-JLT GNSSTM serial interfaces.

Once enabled, Mini-JLT GNSSTM will send out information on the TTL and USB serial transmit pin automatically every N seconds. All incoming serial commands are still recognized by Mini-JLT GNSSTM since the serial interface transmit and receive lines are completely independent of one another.

For compatibility with existing GPS-only products, the Mini-JLT GNSSTM GPSDO's NMEA output only uses the GPS NMEA sentence headers (GPGGA, GPGSV, etc.) regardless of the GNSS systems enabled. Also, the GPGSV output uses a modified satellite numbering scheme as detailed in Section 3.3.8 to allow all different GNSS system satellites to be differentiated.

Please note that the position, direction, and speed data is delayed by one second from when the GPS receiver internally reported these to the Mini-JLT GNSSTM Microprocessor, so the position is valid for the 1PPS pulse previous to the last 1PPS pulse at the time the data is sent (one second delay). The time and date are properly output with correct UTC synchronization to the 1PPS pulse immediately prior to the data being sent.

Once set, the following two commands will be stored in NV memory, and generate output information even after power to the unit has been cycled.

3.3.5 GPS:GPGGA

This command instructs the Mini-JLT GNSS™ to send the NMEA standard string \$GPGGA every N seconds, with N in the interval [0,255]. The command is disabled until the GNSS receiver achieves a first fix.

This command has the following format:

GPS:GPGGA <int> [0,255]

GPGGA shows height in MSL Meters, this is different from traditional GPS receivers that display height in GPS Meters. The difference between MSL and GPS height can be significant, 35m or more are common.

3.3.6 GPS:GGASTat

This command instructs the Mini-JLT GNSS[™] to send a modified version of the NMEA standard string \$GPGGA every N seconds, with N in the interval [0,255]. The command is disabled until the GNSS receiver achieves a first fix.

This command has the following format:

GPS:GGASTat <int> [0,255]

This command replaces the regular NMEA GGA validity flag with a decimal number indicating the lock-state of the unit. Please see section SERVo:TRACe for a detailed description of the lock state variable. The command allows capture of the position and other information available in the GGA command, as well as tracking the lock state and health of the unit's OCXO performance.

GGASTat shows height in MSL Meters, this is different from traditional GPS receivers that display height in GPS Meters. The difference between MSL and GPS height can be significant, 35m or more are common.

3.3.7 GPS:GPRMC

This command instructs the Mini-JLT GNSS™ to send the NMEA standard string \$GPRMC every N seconds, with N in the interval [0,255]. The command is disabled until the GNSS receiver achieves a first fix.

This command has the following format:

GPS:GPRMC <int> [0,255]

3.3.8 GPS:GPGSV

This command instructs the Mini-JLT GNSSTM to send the NMEA standard string GPGSV every N seconds,

with N in the interval [0,255]. The command is disabled until the GPS receiver achieves a first fix.

GPS:GPGSV <int> [0,255]

Please note that due to the large number of GNSS satellites that can be tracked in this unit, more than the customary four GSV messages can be sent once per second. With multiple GNSS systems enabled, a typical sky view may generate up to six GSV messages per second.

To simultaneously support all available GNSS systems, the following PRN numbering scheme modified from the traditional NMEA standard is being used:

GNSS Type	SV Range	GPGSV PRN vehicle numbering
GPS	G1-G32	1-32
SBAS	S120-S158	33-64,152-158
Galileo	E1-E36	301-336
BeiDou	B1-B37	401-437
IMES	I1-I10	173-182
QZSS	Q1-Q5	193-197
GLONASS	R1-R32, R?	65-96,0

3.3.9 GPS:XYZSPeed

This command is a 3D velocity vector output command. Enabling this command will output a 3 dimensional velocity vector indicating the unit's speed in centimeters per second in the ECEF coordinate system.

X, Y, and Z speed are individually given, and are independent of each other. An accuracy estimate in centimeters per second is also given. The velocity data is time-stamped using the time-of-week with a resolution of milliseconds.

Additionally, the number of accrued Leapseconds is indicated in this message, which allows proper calculation of GPS time from UTC time as indicated by other messages, as well as proper handling of Leapsecond events.

Use the following format to generate the velocity vector every N seconds, with N in the interval [0,255]:

GPS:XYZSPeed <int> [0,255]

3.3.10 **GPS:GPZDA**

This command instructs the Mini-JLTTM to send the NMEA standard string \$GPZDA every N seconds, with N in the interval [0,255]. The command is disabled until the GNSS receiver achieves a first fix.

This command has the following format:

GPS:GPZDA <int> [0,255]

3.3.11 GPS:PASHR

The NMEA string \$PASHR,POS has been added for compatibility to legacy GPS hardware. The PASHR command alongside the GPZDA command will give all relevant parameters such as time,

date, position, velocity, direction, altitude, quality of fix, and more. As an example, the String has the following data format:

\$PASHR,POS,0,7,202939.00,3716.28369,N,12157.43457,W,00087.40,????,070.01,000.31,-000.10, 05.6,03.5,04.3,00.0,DD00*32

Please note that the length of the string is fixed at 115 characters plus the two binary 0x0d, 0x0a termination characters.

\$PASHR,POS,0,aa,bbbbbb.00,cccc.cccc,d,eeeee.eeee,f,ggggg.gg,hhhh,iii.ii,jjj.jj,kkkk.kk,ll.l, mm.m,nn.n,00.0,p.pp,*[checksum]

Where:

aa:Number of Sats

bbbbbb.00:Time of Day UTC

cccc.cccc,d:Latitude,S/N

eeee.eeee,f:Longitude,W/E

ggggg.gg:Antenna Height in meters

hhhh:Four fixed '?' symbols

iii.ii:Course Over Ground

jjj.jj:Speed in Knots

kkkk.k: Vertical Velocity in meters/s

11.1:PDOP

mm.mHDOP

nn.nVDOP

00.0Static number

p.pp:Firmware Version (1.05 and above)

This command instructs the Mini-JLT GNSS™ to send the NMEA standard string \$PASHR every N seconds, with N in the interval [0,255]. The command is disabled until the GNSS receiver achieves a first fix.

This command has the following format:

GPS:PASHR <int> [0,255]

3.3.12 GPS:GYRO

This command sets up the output period of the Accelerometer data (in g's per axis, and in tilt in Degrees per axis). The fastest period is 50ms (20 outputs per second) achieved when setting the command to GPS:GYRO 1. The resolution of this command is 1/20 of a second.

Setting the command to 0 disables the Accelerometer output.

This command has the following format:

GPS:GYRO <int> [0,255]

GPS:GYRO? returns the setting of the period of this command.

The output of the system is in six floating point numbers: the acceleration on the X, Y, and Z axis in g's, and the Tilt of the X, Y, and Z axis in Degrees (-90 to +90).

Please note that the Accelerometer has its best resolution and accuracy when the earth's gravitational acceleration is perpendicular to the axis to be measured. Thus the sensors accuracy and resolution will be best when the tilt of any axis is around 0 Degrees. The worst performance (with an accuracy of only \sim +/-5 Degrees) is when any of the axis are at their +/- 90 Degree angles, this is due to the fact that a SIN(g-load) calculation is done to generate the output normalized to Degrees, and the vector is thus least sensitive at +/- 90 Degree angles.

Acceleration can be measured with up to +/-3g range on all three axis. Please note that since the tilt angle is calculated from the acceleration vectors (using gravity) that the tilt angles will actually exceed +/-90 Degrees when acceleration greater than 1g is applied.

3.3.13 GPS:GYRO:CAL

This command calibrates the output period of the Accelerometer data (in g's per axis, and in tilt in Degrees per axis). Both offset and gain need to be calibrated on the unit to properly format the output of the three axis tilt to be -90 Degrees to +90 Degrees, and the 0 Degree reference.

By default, the unit is shipped with a normalized output of 0 Degrees Offset, and a gain of 1.0, and the user will need to calibrate their unit in their system.

This command has the following format:

```
GPS:GYRO:CAL <float>, <float>, <float>, <float>, <float>, <float>
```

Calibration is accomplished by slowly tilting the unit on all six axis and measuring the maximum and minimum tilt indications in all six axis, and writing these down on a piece of paper to calculate the calibration values. Later firmware releases may automate this process.

Example: if the result for say the X axis is -87 Degrees to +93 Degrees, then we need to remove an offset of +3 Degrees from the X axis while the gain of the X axis is properly set. We would thus send the following calibration command to the unit:

```
GPS:GYRO:CAL -3, 0, 0, 1, 1, 1
```

This will remove a 3 Degree offset from the X Axis, and keep the Y and Z axis without offset or gain adjustments.

After the Offset is removed, we may have to adjust the gain of the axis sensor. For example if the range of the X Axis output is -82 Degrees to +78 Degrees then the axis has both an offset of 2 degrees, and a gain error of 90/80 Degrees (a factor of 1.125).

Thus we need to add 2 Degrees offset, and a gain of 1.125. The calibration command would thus look as follows:

GPS:GYRO:CAL 2, 0, 0, 1.125, 1, 1

All three axis need to be calibrated simultaneously as shown above for the X Axis.

GPS:GYRO:CAL? returns the setting of the calibration factors of the accelerometer system.

Due to the nature of the accelerometer chip, the Z axis will have the largest error and lowest sensitivity of all three axis. The X, and Y axis will have the best resolution and highest sensitivity when the unit is sitting level (horizontally).

3.3.14 GPS:DYNAMic:MODE

This command allows the user to select the dynamic motion model being applied to the Kalmann filters in the GNSS receiver. This allows for larger amounts of filtering for lower velocity applications, effectively reducing noise and multipath interference. Applications with high acceleration can now be used with fast filter settings to allow for the most accurate GPS coordinates to be provided in high-dynamic applications such as Jet aircraft. Doppler tracking is enabled in all airborne modes, as Carrier Phase tracking is very difficult to achieve in high velocity applications. The GNSS receiver will perform Carrier Phase tracking for non-airborne modes.

The command has the following syntax:

GPS:DYNAMic:MODE <int> [0,8]

Sending the following command to the Mini-JLT GNSSTM will select a stationary GNSS dynamic model for example:

gps:dynam:mode 1

The following table lists all available modes:

Value	Model	Application
0	Portable	Recommended as a default setting

1	Stationary	Used in stationary applications
2	Pedestrian	Used in man-pack, pedestrian settings
3	Automotive	Vehicular velocity applications
4	Sea	Used on Ships, where altitude is expected to be constant
5	Airborne <1g	Airborne applications with less than 1g acceleration
6	Airborne <2g	Airborne applications with less than 2g acceleration
7	Airborne <4g	Airborne applications with less than 4g acceleration
8	Automatic Mode	Select one of the above states $(0-7)$ based on the actual velocity of the vehicle

The Mini-JLT GNSSTM GPSDO uses a GNSS receiver that is capable of running in a stationary mode with Position Auto Survey called Position Hold Mode. This mode increases timing stability by storing the position into memory, and solving the GNSS signal only for time as the position is not expected to change. Two modes can be selected for Auto Survey operation (see section 3.3.20 for a description of the GPS:TMODE command):

- 1) Manually setting Timing Mode to ON with a hard-coded position in NVRAM
- 2) Enabling Auto Survey to start automatically after power-on by setting Timing Mode to RSTSURV

If either one of the above two GPS:TMODE Auto Survey/Position Hold modes is selected, the GPS:DYNAMIC:MODE command is disabled internally and its setting is ignored as the unit does not expect any motion on the antenna. In this case, the dynamic state as programmed into the GNSS receiver is set to STATIONARY independent of the user selection for GPS:DYNAMIC:MODE.

The current dynamic state being applied to the GNSS receiver can be queried with the command

GPS:DYNAMIC:STATE?

Please note that this command syntax has changed from previous products such as the FireFly-IIA GPSDO units which did not support Position Hold Auto Survey modes.

3.3.15 GPS:DYNAMic:MODE 8 (Automatic Dynamic Mode)

Automatic Dynamic Mode allows the Mini-JLT GNSSTM GPSDO firmware to automatically configure the GNSS receiver Kalman filter parameters based on actual mission velocities and motion profiles. The unit will try to set the GNSS receiver to the optimal setting for any given velocity. The unit is able to set 7 different modes, as shown in section 3.3.14.

The following table shows the Dynamic mode the unit will program into the GNSS receiver when Automatic Mode is selected (Dynamic Mode 8).

Velocity Threshold	Selected Dynamic Model	Fallback to lower setting
0-2 knots	Stationary	none
>2 knots	Pedestrian	<1 knots
>10 knots	Automotive	<8 knots
>60 knots and >400 Feet/min climb/descent	Airborne 1g	<50 knots
>150 knots	Airborne 2g	<130 knots
>240 knots	Airborne 4g	<210 knots

In this Automatic mode, the unit will configure the GNSS receiver based on the actual vehicle-velocity:

Please note that in order to switch from the Automotive mode into the first Airborne (1g) mode, both a vehicle velocity greater than 60 knots as well as a climb/descent rate greater than 400 feet per minute are required. Alternatively, a vehicle velocity of greater than 100 Knots will also initiate a switch into airborne-1g mode.

Without an appropriate climb/descent, the unit will remain in Automotive mode.

The following command returns the setting of the GNSS dynamic model:

GPS:DYNAMic:MODE?

The actual state chosen by the firmware for the GNSS receiver based on vehicle velocity can be obtained with the command:

GPS:DYNAMic:STATe?

A value between 0 and 7 is then returned depending on vehicle dynamics.

The dynamic state is always set to STATIONARY if one of the Position Hold Auto Survey stationary modes is selected using the command GPS:TMODE, as the Position Hold mode setting overrides any dynamic state user setting.

Settings will be applied immediately to the GNSS receiver, and are stored in Non Volatile memory.

3.3.16 GPS:DYNAMic:STATe?

This query returns the actual state of the dynamic model, chosen by the firmware to be applied to the GNSS receiver depending on vehicle velocity. It returns a value between 0 and 7, which correspond to one of the dynamic models defined in the Table in section 3.3.15.

This state can be different from the user-selected Dynamic model mode for two reasons:

- if the dynamic mode is set to 8 (Automatic mode), the state will reflect the dynamic model being applied to the GNSS receiver depending on actual vehicle dynamics
- if the GPS Timing Mode is set to ON or to RSTSURV, the dynamic state will always be set to 1 (Stationary)

3.3.17 GPS:REFerence:ADELay <float> <s | ns > [-32767ns,32767ns]

The ADELay command allows bi-directional shifting of the 1PPS output in relation to the UTC 1PPS reference in one nanosecond steps. This allows antenna cable delay compensation, as well as retarding or advancing the 1PPS pulse arbitrarily. Typical antenna delays for a 30 foot antenna cable with 1.5ns per foot propagation delay would be compensated with the following command:

GPS:REF:ADEL 45ns

This command can be used to fine-tune different units to have co-incident 1PPS pulse outputs. Please note that during normal operation the 1PPS pulse may wander around the UTC 1PPS pulse while the unit is tracking the GNSS signals. The present offset between the 1PPS output and the UTC 1PPS signal can be queried with the command SYNC:TINT? and this offset should be taken into account when calibrating two unit's 1PPS outputs to each other, since the lock algorithms will try to steer the OCXO for a 0.0ns offset to the UTC 1PPS time-pulse.

3.3.18 GPS:REFerence:PULse:SAWtooth?

This command returns the momentary sawtooth correction factor that the GNSS receiver indicated.

3.3.19 GPS:RESET ONCE

Issues a reset to the internal GNSS receiver. This can be helpful when changing the antenna for example, since the GNSS receiver measures the antenna system's C/No right after reset, and adjusts its internal antenna amplifier gains accordingly. It takes approximately 1 minute for locking to commence after a GNSS receiver reset, as indicated by the red blinking LED.

3.3.20 GPS:TMODe <ON|OFF|RSTSURV>

This command selects the Timing Mode of the GNSS receiver.

If the Timing Mode is OFF, the receiver will act as a regular GNSS receiver in 3D mobile mode. This mode has to be chosen if the unit is used with a moving antenna.

If the Timing Mode in ON, the timing features of the GNSS receiver are enabled. At power-up, the Hold position stored in NVRAM will be sent to the GNSS receiver and will be used as the reference. In order to use this mode, the receiver position must be known as exactly as possible. Errors in the Hold position will translate into time errors depending on the satellite constellation.

The Hold position can be set manually by the user or can be the result of a position Auto Survey executed by the GNSS receiver.

If the Timing Mode is set to RSTSURV, the GNSS receiver will start an Auto Survey every time the unit is powered-on and following the Survey sequence, the GNSS receiver will run with the timing features enabled. Once in Position Hold mode, the antenna location should be held completely stationary.

3.3.21 GPS:SURVey ONCE

This command starts a Survey. At the end of the Survey, the calculated Hold position will be stored in NVRAM. The Survey parameters can be set with the command GPS:SURVey:DURation and GPS:SURVey:VARiance

3.3.22 GPS:SURVey:DURation <sec>

This command sets the Survey minimal duration.

3.3.23 GPS:SURVey:VARIANCE <mm²>

This command specifies the minimum variance of the average position computed during the Survey. This minimum value is used as a threshold under which the GNSS receiver can stop the Survey. The GNSS receiver will stop the Survey when the minimal duration has been reached and the variance of the average position is under the specified minimum variance.

3.3.24 GPS:HOLD:POSition <cm, cm, cm>

This command allows the user to specify manually the exact position of the unit. This command will overwrite the Hold position in NVRAM. Subsequent Survey will overwrite also the Hold position. The Hold position is stored in ECEF coordinates

3.3.25 GPS:SURVEY:STATus:DURation?

This query specifies the duration of the survey in progress or the last survey.

3.3.26 GPS:SURVEY:STATUS?

This query displays the current status of the survey. The status of the survey is in one of the 3 states: ACTIVE: a survey is in progress

VALID: a survey has been achieved successfully and the GNSS receiver is now using this Hold position as reference.

INVALID: no survey are in progress or have been achieved since the last power cycle.

When in ACTIVE or VALID state, this query will also display the duration, the Hold position in ECEF coordinates and the position variance.

3.3.27 GPS:INITial:DATE <yyyy,mm,dd>

Firmware revision 2.32 and later adds support for manually setting the time and date in the RTC in the event that no GNSS signals are available. This command allows setting the internal RTC DATE manually when operating the unit in GNSS denied environments. This command is compatible to the PTIME:OUT ON command described in section 3.5.5. to allow automatic time and date synchronization of two units to each other. The internal RTC is driven by the highly stable ovenized oscillator 10MHz signal, and thus has very high accuracy.

3.3.28 GPS:INITial:TIME <hour,min,sec>

Firmware revision 2.32 and later adds support for manually setting the time and date in the RTC in the event that no GPS signals are available. This command allows setting the internal RTC TIME manually when operating the unit in GPS denied environments. This command is compatible to the PTIME:OUT ON command described in section 3.5.5. to allow automatic time and date synchronization of two units to each other. The internal RTC is driven by the highly stable ovenized oscillator 10MHz signal, and thus has very high accuracy.

3.3.29 GPS:SYSTem:SELect [GPS | SBAS | QZSS | GAL | BD ^ GLO]

This command selects the GNSS systems that are enabled in the GNSS receiver and are used to generated the timing and positioning information for the NMEA data, and to generate the 1PPS reference for the GNSDO. The command is followed by a list of the shortened names of the GNSS systems to enable. The shortened names of supported GNSS system include GPS, SBAS, QZSS, BD (BeiDou), GAL (Galileo) and GLO (GLONASS). Please see Section 2.3 for restrictions on the concurrent GNSS systems that can be enabled. Invalid combinations of GNSS systems will result in a Command Error response and no change to the configuration.

The following command will enable GPS, SBAS, Galileo and GLONASS:

GPS:SYST:SEL GPS SBAS GAL GLO

The following command will query the currently enabled GNSS systems:

GPS:SYST:SEL?

The Mini-JLT GNSSTM will respond to the query with the list of enabled GNSS systems like:

GPS SBAS GAL GLO

3.3.30 GPS:JAMlevel?

This command provides GNSS signal jamming-indicator. The GNSS receiver will detect, and flag jamming interference with levels ranging from 0 (no jamming) to 255 (strong jamming). Any level exceeding 50 and loss of the 1PPS signal from the GPS will cause a SYNC:HEALTH 0x800 event to be flagged, and the unit to disable the LOCK OK signal on connector J3.

3.3.31 GPS:FWver?

This command queries and returns the Firmware version used inside the GNSS receiver itself.

3.3.32 GPS?

This query displays the configuration, position, speed, height and other relevant data of the GNSS receiver in one convenient location.

3.4 GYRO SUBSYSTEM

The following Gyro commands are supported on the Mini-JLT GNSSTM unit:

GYRO:MODE <ON | OFF> GYRO:TRACE <int> [0,255]

GYRO:CALibrate <float,float,float,float,float,float

GYRO:CALibrate:COMPute GYRO:CALibrate:RESET

GYRO:SENSitivity <float, float, float>

GYRO:EFC <float>

GYRO:GLOAD?

3.4.1 GYRO:MODE <ON | OFF>

Enables or disables electronic compensation. This feature must be calibrated at the factory before it can be used.

3.4.2 GYRO:TRACE <int> [0,255]

Similar to the GPS:GYRO command. Please see the GPS:GYRO command for details

3.4.3 GYRO:CAL <float,float,float,float,float,float

Similar to the GPS:GYRO:CAL command. Used to manually calibrate the gain and offset of the (optional) Accelerometer output. Please see the GPS:GYRO:CAL command for details. See also the GYRO:CAL:COMPUTE command for a semi-automated calibration method.

3.4.4 GYRO:CAL:COMPUTE

This command can be used to automatically compute the offset and gain compensation of the accelerometer output for units that are not factory-calibrated. The goal is to have the unit indicate a range of \pm 1.0g on all three axis when slowly rotated through the axis, as well as 0.0g for any axis that is perpendicular to the earth's gravity.

The user must establish the minimum and maximum g-loads that are displayed on all three axis by slowly tilting the unit over 180 degrees on all three axis. These values are written down on a piece of paper, and the system calculates the required gain and offset parameters to scale the accelerometer output to +/- 1g peak-to-peak scale, and 0g indication based on entering these values. The GYRO:CAL:COMPUTE command will query the user for the maximum and minimum indicated g-loads. The GYRO:TRACE 10 command can be used to help establish the g-indications on the three different axis to aid in this calibration.

3.4.5 GYRO:SENS, GYRO:EFC, and GPS:CAL:RESET

Used for factory calibration of Gyro subsystem.

3.4.6 GYRO:GLOAD?

This command will return the present acceleration on the X, Y, and Z axis.

3.5 PTIME Subsystem

The PTIME subsystem regroups all the commands related to the management of the time. The list of the commands supported is the following:

PTIMe:DATE? PTIMe:TIME?

PTIMe:TIME:STRing?

PTIMe:TINTerval?

PTIME?

3.5.1 PTIMe:DATE?

This query returns the current calendar date. The local calendar date is referenced to UTC time. The year, month, and day are returned.

3.5.2 PTIMe:TIME?

This query returns the current 24-hour time. The local time is referenced to UTC time. The hour, minute, and second is returned.

3.5.3 PTIMe:TIME:STRing?

This query returns the current 24-hour time suitable for display (for example, 13:24:56).

3.5.4 PTIMe:TINTerval?

This query is equivalent to the command SYNChronization:TINTerval

3.5.5 PTIMe:LEAPsecond?

This command returns the results of the four following queries:

PTIMe:LEAPsecond:PENDing?

PTIMe:LEAPsecond:ACCumulated?

PTIMe:LEAPsecond:DATE? PTIMe:LEAPsecond:DURation?

3.5.6 PTIMe:LEAPsecond:PENDing?

This command returns 1 if the GPS Almanac data contains a future pending leap second data and 0 if no future leap second is pending or Almanac data is not available. The GNSS receiver must have the GPS system enabled for the GPS Almanac to be available.

3.5.7 PTIMe:LEAPsecond:ACCumulated?

This command returns the internally applied leapsecond offset between GPS time and UTC time as stored in the EEPROM (GPS Almanac not received yet) or as indicated by the GNSS receiver (GPS Almanac is available).

3.5.8 PTIMe:LEAPsecond:DATE?

This command returns the date of the pending leap second, if any.

3.5.9 PTIMe:LEAPsecond:DURation?

This command returns the duration of the last minute of the day during a leap second event. The returned value is 59, 60 or 61 if GPS Almanac data is available, and 0 otherwise. A response of 60 indicates that no leap second is pending.

3.5.10 PTIME?

This query returns at once the result of the four following queries:

PTIME:DATE?
PTIME:TIME?
PTIME:TZONE?

PTIME:TINTerval?

PTIMe:LEAPsecond:ACCumulated?

3.6 SYNChronization Subsystem

This subsystem regroups the commands related to the synchronization of the Mini-JLTTM with the GPS receiver. The list of the commands supported for this subsystem is the following:

SYNChronization:SOURce:MODE [GPS|EXTernal|AUTO]

SYNChronization:SOURce:STATE?

SYNChronization: HOLDover: DURation?

SYNChronization: HOLDover: STATe?

SYNChronization:HOLDover:INITiate

SYNChronization:HOLDover:RECovery:INITiate

SYNChronization:OUTput:1PPS:RESET [ON|OFF]

SYNChronization:TINTerval?

SYNChronization:TINTerval:THReshold [50,2000]

SYNChronization:IMMEdiate SYNChronization:FEEstimate? SYNChronization:LOCKed?

SYNChronization?

3.6.1 SYNChronization: HOLDover: DURation?

This query returns the duration of the present or most recent period of operation in the holdover and holdover processes. This is the length of time the reference oscillator was not locked to GNSS receiver 1PPS, and thus "coasting". The time units are seconds. The first number in the response is the holdover duration. The duration units are seconds, and the resolution is 1 second. If the Receiver is in holdover, the response quantifies the current holdover duration. If the Receiver is not in holdover, the response quantifies the previous holdover. The second number in the response identifies the holdover state. A value of 0 indicates the Receiver is not in holdover; a value of 1 indicates the Receiver is in holdover.

3.6.2 SYNChronization: HOLDover: INITiate

The SYNC:HOLD:INIT and SYNC:HOLD:REC:INIT commands allow the user to manually enter and exit the holdover state, even while GNSS signals are still being properly received. This forced-holdover allows the unit to effectively disable GNSS locking, while still keeping track of the state of the 1PPS output in relation to the UTC 1PPS signal as generated by the GNSS receiver. When the unit is placed into forced-holdover with this command, the unit will indicate the time interval difference between the 1PPS output and the GNSS receiver 1PPS by using the SYNC:TINT? command. This allows the user to see the OCXO drift when not locked to GNSS signals for testing purposes, or to prevent the GNSS receiver from being spoofed and affecting the OCXO frequency

accuracy. All other frequency-disciplining functions of the unit will behave as if the GNSS antenna was disconnected from the unit while in this forced-holdover state.

3.6.3 SYNChronization: HOLDover: RECovery: INITiate

This command will disable the forced holdover state (see the SYNC:HOLD:INIT command). The unit will resume normal GPS locking operation after this command has been sent.

3.6.4 SYNChronization:SOURce:MODE

This command is not supported in the Mini-JLTTM board.

3.6.5 SYNChronization:SOURce:STATE?

This command is not supported in the Mini-JLTTM board.

3.6.6 SYNChronization:TINTerval?

This query returns the difference or timing shift between the Mini-JLTTM 1 PPS and the GPS 1 PPS signals. The resolution is 1E-10 seconds.

3.6.7 SYNChronization:TINTerval:THReshold [50,2000]

This command selects the oscillator 1PPS phase-offset threshold as compared to the reference 1PPS at which point the unit will initiate a counter-reset (jam-sync) aligning the oscillator generated 1PPS with the reference 1PPS phase. The oscillator phase is slowly and continuously adjusted toward 0ns offset to the reference 1PPS while the phase difference is less than the THReshold phase limit. The oscillator generated 1PPS phase is allowed to drift up to this threshold before a jam-sync is initiated. The default setting is 220ns, allowing a drift of up to +/-220ns. Reaching this selected threshold will cause a jam-sync phase-normalization to be initiated, which will also cause the SYNC:HEALTH? Status to indicate 0x200, and the lock status to be unlocked as indicated by the Green LED turning off for several minutes.

3.6.8 SYNChronization: IMMEdiate

This command initiates a near-instantaneous alignment of the GPS 1 PPS and Receiver output 1 PPS. To be effective, this command has to be issued while not in holdover.

3.6.9 SYNChronization: FEEstimate?

This query returns the Frequency Error Estimate, similar to the Allan Variance using a 1000s measurement interval and comparing the internal 1PPS to GPS 1PPS offset.

Values less than 1E-012 are below the noise floor, and are not significant.

3.6.10 SYNChronization:LOCKed?

This query returns the lock state (0=OFF, 1=ON) of the PLL controlling the TCXO.

3.6.11 SYNChronization:OUTput:1PPS:RESET [ON|OFF]

This command allows the generation of the 1PPS pulse upon power-on without an external GPS antenna being connected to the unit. By default the unit does not generate a 1PPS pulse until the GNSS receiver has locked onto the Satellites. With the command SYNC:OUT:1PPS:RESET ON the unit can now be configured to generate an asynchronous 1PPS output after power-on even if a GNSS antenna is not connected to the unit. Once the GNSS receiver locks, the 1PPS pulse will align itself to UTC by stepping in 10 equally spaced steps toward UTC alignment. The default setting is OFF which means the 1PPS pulse is disabled until proper GNSS lock is achieved.

3.6.12 SYNChronization:health?

The SYNChronization:health? query returns a hexadecimal number indicating the system's health-status. Error flags are encoded in a binary fashion so that each flag occupies one single bit of the binary equivalent of the hexadecimal health-status flag.

The following system parameters are monitored and indicated through the health-status indicator. Individual parameters are 'ored' together which results in a single hexadecimal value encoding the following system status information:

If the OCXO coarse-DAC is maxed-out at 255	HEALTH STATUS $ = 0x1;$
If the OCXO coarse-DAC is mined-out at 0	HEALTH STATUS $\models 0x2;$
If the phase offset to UTC is >250ns	HEALTH STATUS $= 0x4$;
If the run-time is < 300 seconds	HEALTH STATUS $= 0x8$;
If the GNSS receiver is in holdover > 60s	HEALTH STATUS $= 0x10$;
If the Frequency Estimate is out of bounds	HEALTH STATUS $= 0x20$;
If the OCXO voltage is too high	HEALTH STATUS $= 0x40$;
If the OCXO voltage is too low	HEALTH STATUS $= 0x80$;
If the short-term-drift (ADEV @ 100s) > 100ns	HEALTH STATUS $= 0x100;$
For the first 7 minutes after a phase-reset, or a coarsedac change:	HEALTH STATUS $= 0x200;$
If the GNSS receiver indicates a strong jamming signal of >=50 (range is 0 to 255)	HEALTH STATUS = 0x800;

As an example, if the unit is in GNSS receiver holdover, and the OCXO voltage is too high, and the UTC phase offset is > 250ns then the following errors would be indicated:

1) UTC phase > 250ns: 0x4

2) OCXO voltage too high: 0x40

3) GNSS receiver in holdover: 0x10

'Oring' these values together results in:

 $0x40 \mid 0x10 \mid 0x4 = 0x54$

The unit would thus indicate: HEALTH STATUS: 0x54

A health status of 0x0 indicates a properly locked, and warmed-up unit that is completely healthy.

3.6.13 SYNChronization?

This query returns the results of these four queries:

SYNChronization:SOURce:MODE?

SYNChronization:SOURce:STATE?

SYNChronization:LOCKed?

SYNChronization: HOLDover: DURation?

SYNChronization:health?

3.7 DIAGnostic Subsystem

This subsystem regroups the queries related to the diagnostic of the TCXO. The list of the commands supported for this subsystem is as follows:

DIAGnostic: ROSCillator: EFC ontrol: RELative?

DIAGnostic:ROSCillator:EFControl:ABSolute?

DIAGnostic:LIFetime:COUNt?

3.7.1 DIAGnostic:ROSCillator:EFControl:RELative?

This query returns the Electronic Frequency Control (EFC) output value of the internal reference oscillator. It returns a percentage value between -100% to +100%.:

3.7.2 DIAGnostic:ROSCillator:EFControl:ABSolute?

This query returns the Electronic Frequency Control (EFC) output value of the internal reference oscillator. It returns a value in volts between 0 and 5 V

3.7.3 DIAGnostic:LIFetime:COUNt?

This command returns the number of hours the unit has been powered-on.

3.8 MEASURE Subsystem

This subsystem regroups the queries related of some parameters that are measured on-board on the Mini-JLTTM. The list of the commands supported for this subsystem is the following:

MEASure: VOLTage? MEASure: CURRent? MEASure?

3.8.1 MEASure: VOLTage?

This query returns the power supply voltage applied to the OCXO (~10.45V)

3.8.2 MEASure: CURRent?

This command is not supported on the Mini-JLTTM board.

3.8.3 MEASure?

This query returns the result of the two following queries:

MEASure:VOLTage? MEASure:CURRent?

3.9 SYSTEM Subsystem

This subsystem regroups the commands related to the general configuration of the Mini-JLTTM. The list of the commands supported for this subsystem follows:

SYSTem:COMMunicate:SERial:ECHO <ON | OFF>
SYSTem:COMMunicate:SERial:PROmpt <ON | OFF>

SYSTem:COMMunicate:SERial:BAUD <9600 | 19200 | 38400 | 57600 | 115200>

SYSTem:STATus?

SYSTem:FACToryReset ONCE

3.9.1 SYSTem:COMMunicate

3.9.1.1 SYSTem:COMMunicate:SERial:ECHO

This command enables/disables echo on TTL serial. This command has the following format:

SYSTem:COMMunicate:SERial:ECHO <ON | OFF>

3.9.1.2 SYSTem:COMMunicate:SERial:PROmpt

This command enables/disables the prompt "scpi>" on the SCPI command lines. The prompt must be enabled when used with the software GPSCon. This command has the following format:

SYSTem:COMMunicate: SERial:PROmpt <ON | OFF>

3.9.1.3 SYSTem:COMMunicate:SERial:BAUD

This command sets the TTL serial speed. The serial configuration is always 8 bit, 1 stop bit, no parity, no HW flow control. Upon Factory reset, the speed is set at 115200 bauds. This command has the following format:

SYSTem:COMMunicate:SERial:BAUD <9600 | 19200 | 38400 | 57600 | 115200>

3.9.2 SYSTem:STATus?

This query returns a full page of GNSS status in ASCII format. The output is compatible with the GPSCon Windows program.

3.9.3 SYSTem:FACToryReset ONCE

This command applies the Factory Reset setting to the EEPROM. All aging, tempco, and user parameters are overwritten with factory default values.

3.10 SERVO Subsystem

This subsystem regroups all the commands related to the adjustment of the servo loop:

```
SERVo:COARSeDac <int> [0,225]
SERVo:DACGain <int> [0.1,10000]
SERVo: EFCScale <float>[0.0, 500.0]
SERVo:EFCDamping <float>[0.0, 4000.0]
SERVo:SLOPe
                <NEG | POS >
SERVo:TEMPCOmpensation <float> [-4000.0, 4000.0]
SERVo:AGINGcompensation < float> [-10.0, 10.0]
SERVo:PHASECOrrection <float>[-100.0, 100.0]
SERVo:1PPSoffset
                    <int> ns
SERVo:QUIet <ON | OFF>
SERVo:TRACe \langle int \rangle [0,255]
SERVo:FASTlock <int> [1,20]
SERVo:FALEngth <int> [100,20000]
SERVo?
```

3.10.1 SERVo:FASTlock

The FASTlock command enables the FASTLOCK mode, and sets its gain parameter. Fastlock works by momentarily multiplying the EFCScale gain to a value determined by this SERVo:FASTlock parameter. Gain values of 1x to 20x can be set, with a gain of 1x effectively disabling the FASTLOCK feature.

By selecting gain values of >1, the PLL loop parameter Proportional gain (SERV:EFCscale) will be increased after power on, thus increasing loop aggressiveness and improving lock PLL time. It is not desirable to maintain a high loop gain for longer than necessary to lock the PLL since high loop gains come at the expense of increased phase noise (reduced short term stability). The FASTLOCK mechanism will automatically reduce the FASTLOCK gain over a period of time specified by the SERVo:FALEngth command, during which time the FASTLOCK gain is slowly decreased from its initial value to 1.0x.

Setting the FASTLOCK gain to 2 for example will result in the Proportional gain value stored in the SERVo:EFCscale parameter to be multiplied by 2x initially after power on.

This dynamic gain is slowly reduced until the gain is back to 1.0x, the value stored in the SERVo:EFCScale parameter.

For example:

if we set SERVo:FASTlock to 2, and SERVo:FALEngth to 3600, and SERVo:EFCScale is set to 0.7

Then initially the unit will multiply the EFCscale by 2x, and an effective EFCscale value of 1.4 is applied to the PLL loop.

This increased gain value difference will be reduced every second by 1/3600, so that the gain after two seconds would be: 1.3998, until after 3600 seconds the gain has been reduced back to its long term value of 0.70 as stored in the SERVo:EFCscale parameter.

Disabling the FASTLOCK mode is accomplished by setting the SERVo:FASTlock to 1. This will set the dynamic gain to 1.0, effectively disabling the fastlock feature.

This command has the following format:

SERVo:FASTlock <int> [1,20]

3.10.2 SERVo:FALEngth

This command adjusts the length of time during which the FASTLOCK feature is active, please see the command SERVo:FASTlock above.

It can be set from 100 seconds to 20.000 seconds. The Dynamic FASTLOCK gain is slowly reduced until it reaches a gain of 1.0 after the FALEngth period of seconds. During this time the PLL loop gain is increased by the amount specified in the SERVo:FASTlock parameter, which will result in a faster initial phase lock to UTC after power-on, while giving the lowest possible noise floor (best short term stability) during normal operation.

This command has the following format:

SERVo:FALEngth <int> [100,20000]

3.10.3 SERVo:COARSeDac

This command sets the coarse DAC that controls the EFC. The Mini-JLTTM control loop automatically adjusts this setting. The user should not have to change this value.

This command has the following format:

SERVo:COARSeDac <int> [0,225]

3.10.4 SERVo:DACGain

This command is used for factory setup.

3.10.5 SERVo: EFCScale

Controls the Proportional part of the PID loop. Typical values are 0.7 (double oven OCXO) to 6.0 (simple single oven OCXO). Larger values increase the loop control at the expense of increased noise while locked. Setting this value too high can cause loop instabilities.

This command has the following format:

SERVo: EFCScale <float>[0.0, 500.0]

3.10.6 SERVo: EFC Damping

Set's the Low Pass filter effectiveness of the DAC. Values from 2.0 to 50 are typically used. Larger values result in less noise at the expense of phase delay. This command has the following format:

SERVo:EFCDamping <float>[0.0, 4000.0]

3.10.7 SERVo:SLOPe

The parameter determines the sign of the slope between the EFC and the frequency variation of the OCXO. This parameter should be set to match your OCXO's EFC frequency slope. This command has the following format:

SERVo:SLOPe <NEG | POS >

3.10.8 SERVo:TEMPCOmpensation

This command is not supported on the Mini-JLTTM board.

3.10.9 SERVo: AGING compensation

This parameter is a coefficient that represents the drift of the EFC needed to compensate the natural drift in frequency of the OCXO due to aging. This coefficient is automatically computed and adjusted over time by the Jackson Labs Technologies, Inc. firmware. This command has the following format:

SERVo:AGINGcompensation < float> [-10.0, 10.0]

3.10.10 SERVo:PHASECOrrection

This parameter sets the Integral part of the PID loop. Loop instability will result if the parameter is set too high. Typical values are 10.0 to 30.0. This command has the following format:

SERVo:PHASECOrrection <float> [-100.0, 100.0]

3.10.11 SERVo:1PPSoffset

This command sets the Mini-JLT GNSSTM 1PPS signal's offset to UTC in 16.7ns steps.

Using the SERV:1PPS command results in immediate phase change of the 1PPS output signal.

This command has the following format:

SERVo:1PPSoffset <int> ns

3.10.12 SERVo:TRACe

This command sets the period in seconds for the debug trace. Debug trace data can be used with Ulrich Bangert's "Plotter" utility to show UTC tracking versus time etc.

This command has the following format:

SERVo:TRACe $\langle int \rangle$ [0,255]

An example output is described here:

08-07-31 373815 60685 -32.08 -2.22E-11 14 10 6 0x54

[date][1PPS Count][Fine DAC][UTC offset ns][Frequency Error Estimate][Sats Visible][Sats Tracked][Lock State][Health Status]

Please see the **SYNChronization?** command for detailed information on how to decode the health status indicator values. The Lock State variable indicates one of the following states:

Value	State
0	OCXO warmup
1	Holdover
2	Locking (OCXO training)
4	[Value not defined]
5	Holdover, but still phase locked (stays in this state for about 100s after GNSS lock is lost)
6	Locked, and GNSS active

3.10.13 SERVo?

This command returns the result of the following queries:

SERVo:COARSeDac?

SERVo:DACGain?

SERVo: EFCScale?

SERVo:EFCDamping?

SERVo:SLOPe?

SERVo:TEMPCOmpensation? SERVo:AGINGcompensation? SERVo:PHASECOrrection?

SERVo:1PPSoffset? SERVo:TRACe?

Firmware Upgrade Instructions

4.1 Introduction

The following is a short tutorial on how to upgrade the Mini-JLT GNSSTM GPSDO firmware. Please follow the instructions in-order to prevent corrupting the Mini-JLT GNSSTM Flash, which may require reflashing at the factory.

With some practice, the entire Flash upgrade can be done in less than one minute, even though the following seems like a fairly long list of instructions.

4.2 ISP Flash Loader Utility installation

There are two Flash loader utilities available to upgrade the Mini-JLT GNSSTM firmware. You can download the Philips LPC2000 utility from the Jackson Labs Technologies, Inc. website under the Support tab:

http://www.jackson-labs.com/index.php/support

The Flash Magic utility is available for download on the Flash Magic website:

http://www.flashmagictool.com/

4.2.1 Philips LPC2000 Flash Utility

The first is the Philips LPC2000 utility version 2.2.3. Please note that some computers are known to be incompatible with the LPC2000 flash utility. Preliminary investigations show Windows Media Center and/or Centrino vPro processor systems to create download difficulties. Please use a different computer if you experience problems such as the download breaking up in the middle of the transfer. Or, alternatively, you may use the Flash Magic programming tool.

Please ensure that you have at least version 2.2.3 of the LPC2100 flash utility installed. Earlier versions may not recognize the LPC2138 processor used on the Mini-JLT GNSSTM boards.

4.2.2 Flash Magic Flash Programming Utility

The second utility is the Flash Magic tool available on the Flash Magic website:

http://www.flashmagictool.com/

If the Philips LPC2000 tool doesn't work, please use this one.

4.3 Putting the PCB into In-Circuit Programming (ISP) mode

Momentarily short-out the ISP# pin 2 of header J5 to pin 1 of header J5 of the Mini-JLT GNSSTM board to ground the ISP# pin during power-on. It may be useful to connect a push-button to pin 1 and pin 2 of J5 to allow in-field firmware upgrades on the Mini-JLT GNSSTM PCB. Both LED's should remain off, indicating the unit is properly placed into ISP mode. If the LED's light up after power-on, the unit is not in ISP mode.

4.4 Downloading the firmware

Download the latest version of Mini-JLT GNSSTM firmware from the Jackson Labs Technologies, Inc. support website and store it in a place that will be remembered. The file is in .hex format.

The unit needs to be connected to the computer's TTL serial port prior to firmware download. The Mini-JLT GNSSTM is TTL-level compatible. A TTL-to-RS-232 converter must be used when connecting to the computer's RS-232 serial port to prevent damage to the board. Connect a USB or TTL serial connector to the Mini-JLT GNSSTM as indicated in Section 2.1.1 . The units' firmware may also be updated through the USB connector serial port.

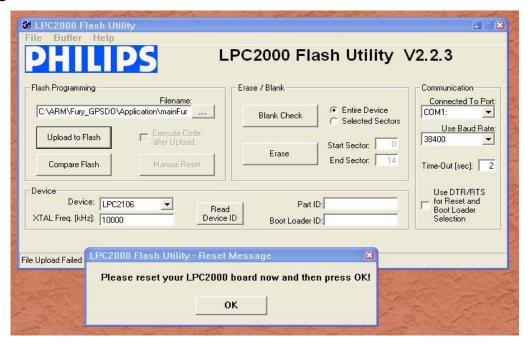
4.4.1 Philips LPC2000 Flash Utility

- A) Open the LPC2000 utility. Set the COM port in the LPC2000 application as needed on your PC.
- B) Select the Baud Rate of the LPC2000 utility to be 38400 or slower. Faster Baud rates will not work properly.
- C) Press the "READ DEVICE ID" button, this should then show "LPC2138" in the DEVICE window if the unit is communicating correctly to the application.

Warning: Make sure NOT(!) to press the "erase" button under any circumstances, this may erase factory calibration data, and the unit will not operate and will have to be returned to the factory. Pressing the "erase" button on the ISP utility will thus void the warranty.

Figure 4.1 LPC2000 flash utility

Please note that the "Use Baud Rate" setting needs to be set to 38400 Baud or less, it will not work faster than 38400 Baud.


The "DEVICE" should show up as "LPC2138" after pressing "READ DEVICE ID"

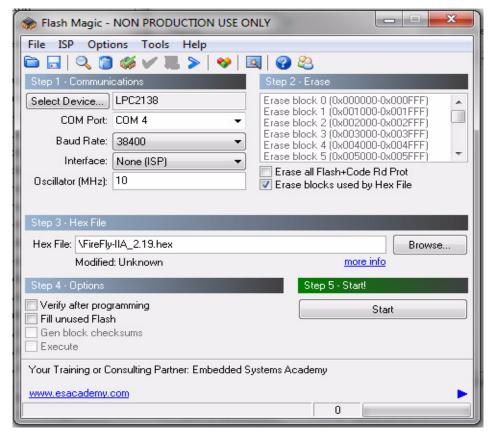
Also, please point the "Filename" to the directory where you have stored the latest firmware hex file that is to be downloaded.

D) Start the download by pressing "Upload to Flash" button. The following window should appear if the correct COM port has been chosen etc.:

Figure 4.2 LPC2000 flash download

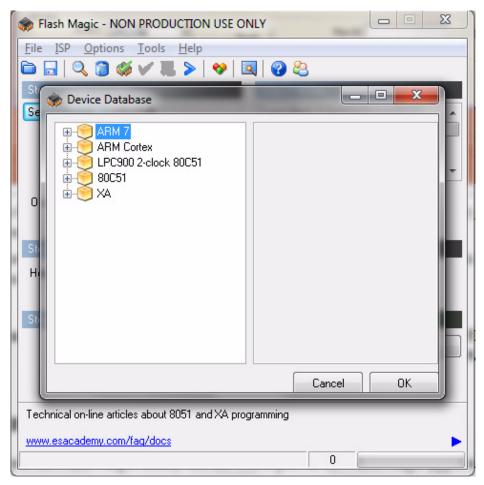
Press the "OK" button, and the download should start. Sometimes the utility gets confused and this process (from item 4.4 B)) has to be tried several times.

It is not necessary to press "reset" as the utility is asking. Just press "OK" on the utility window's button.


Warning: DO NOT PRESS THE "ERASE" BUTTON AT ANY TIME! THIS WILL RENDER THE PCB USELESS AND CAN ONLY BE RECOVERED AT THE FACTORY!

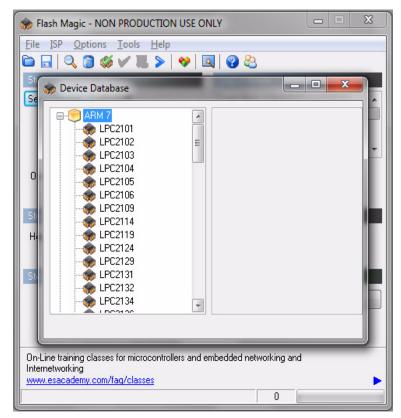
4.4.2 Flash Magic Flash Programming Utility

A) Open the Flash Magic utility. Set the COM port in the Flash Magic application as needed on your PC. Set "Interface" to "None (ISP)".


Figure 4.3 Flash Magic utility

B) Press the "Select Device" button and the window shown in Figure 4.4 will appear:




Figure 4.4 Device selection window

C) Expand the ARM7 folder and select the appropriate processor, in this case the LPC2138.

- D) Select the Baud Rate of the Flash Magic utility to be 38400 or slower. Faster Baud rates will not work properly.
- E) Set the Oscillator (MHz) to "10".
- F) Check the box marked "Erase blocks used by Hex File".

Warning: Make sure NOT(!) to check the box marked "Erase all Flash+Code Rd Prot" under any circumstances, this may erase factory calibration data, and the unit will not operate and will have to be returned to the factory. Checking this box on the ISP utility will thus void the warranty.

- G) Under "Step 3 Hex File" browse for the hex file that you downloaded in step 4.4.
- H) Go to Step 5 and press "Start". You will observe the firmware being downloaded to the Mini-JLT GNSSTM.

4.5 Verifying Firmware Update

Power cycle the unit with the pin 2 of J5 (ISP#) left floating. Both LED's should blink.

During power on, the unit sends an ID string out of the serial port at 115200 Baud by default. The firmware version can also be queried by sending the *IDN? command. Verify that the firmware version is the version that was downloaded.

5 GPSCon Utility

5.1 Description

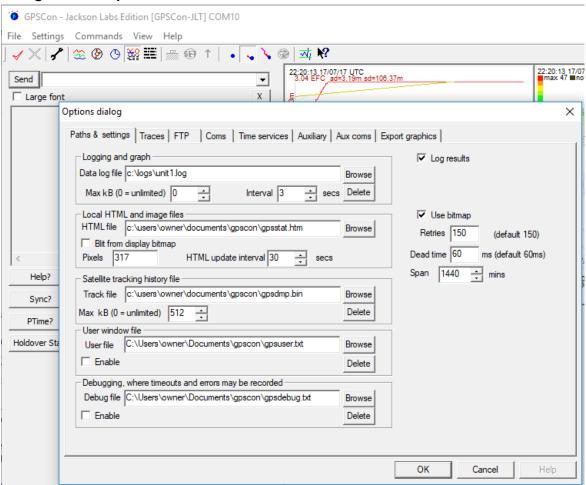
GPSCon - Jackson Labs Edition is a program for the monitoring and control of a Jackson Labs Technologies, Inc. GPSDO, Simulator and receiver products. It communicates with the receiver using the SCPI command set. This free version of the GPSCon utility is compatible only with Jackson Labs products is available for download from the support section of the Jackson Labs website:

http://www.jackson-labs.com/index.php/support

5.2 Installation

Extract the contents of the ZIP file downloaded from the Jackson Lab's website and execute the MSI installer. Follow the on-screen instructions to complete the installation of GPSCon.

5.3 Using GPSCon


The GPSCon utility has a help file that should be consulted in order to get the full functionality of this utility. Only a few of the features and commands are mentioned in this appendix for convenience.

5.3.1 Setting the options

To set up the options for your GPSCon session, press the wrench icon under the menu bar, or select Settings / Options on the menu. The window shown in Figure 5.1 will appear. You can select from the tabs which options you wish to set.

Figure 5.1 Options window

5.3.1.1 Communication Parameters

Before you can use GPSCon you must set the communication parameters for your system. Open the dialog box by pressing the wrench icon. Then select the "Coms" tab. You will see the window shown in Figure 5.2. Select the correct COM port for your computer and set the baud rate to 115200, parity to None, Data Bits to 8 and Stop Bits to 1. Set Flow Control to "None". Once you have configured the communication parameters, press the "OK" button to close the window.

5.3.1.2 Auxiliary Parameters

After pressing the wrench icon, you can select the "Auxiliary" tab to configure auxiliary measurements. See Figure 5.3 for an example of an auxiliary measurement. You will notice that the "Aux1" request string has been set to meas:current?<CR> and the "Trace to go to" is set to trace position 6. See "Trace position" diagram for the arrangement of the trace positions in the trace window. In this example the data obtained from the meas:current? query will be plotted in trace position 6.

5.3.1.3 Traces Parameters

After pressing the wrench icon, you can select the "Traces" tab and configure the trace labels and vertical plot ranges. See Figure 5.4 for an example of an auxiliary measurement. The labels and parameters are completed by default for traces 1 thorugh 5. The auxiliary trace defined on the auxiliary tab for trace 6 has the label "Temp" to indicate that the OCXO current from the meas:current? query is a measure of temperature. Any of the eight traces can be replaced by auxiliary traces as described in Section 5.3.1.2. Press the "Help" button for a full description of each option in the Traces tab.

Figure 5.2 Setting the communications parameters

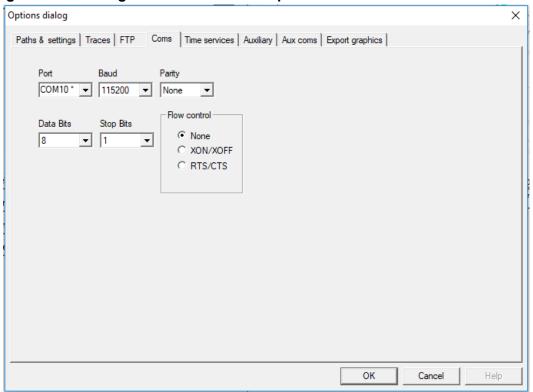


Figure 5.3 Auxiliary Parameters window

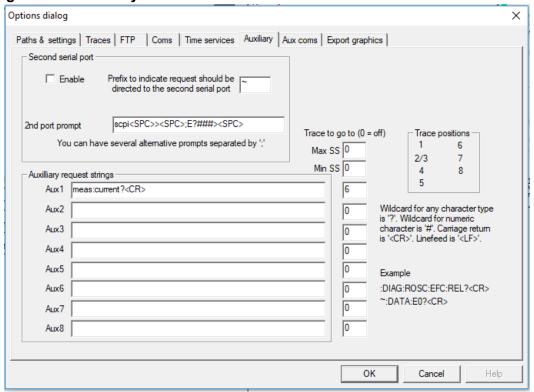
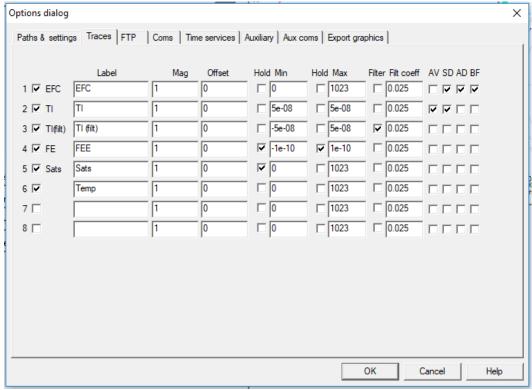



Figure 5.4 Traces Parameters window

5.3.2 Sending manual commands to the receiver

You can send SCPI commands manually by using the drop-down box in the upper left of the main window as shown in Figure 5.5. Care must be taken when sending these commands so be sure that the command that you select is supported by the Mini-JLT GNSSTM. Once you've selected the command you can press "Send" to send it to the Mini-JLT GNSSTM. You can also send common commands by clicking on the buttons below the message window. You can hover over the buttons to see the exact command that is sent.

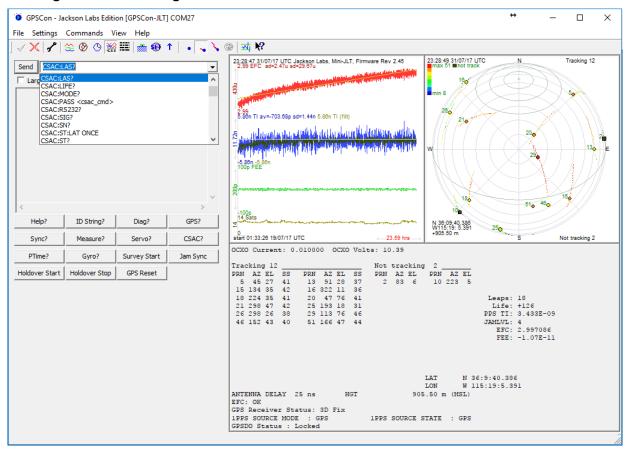


Figure 5.5 Sending manual commands

5.3.3 Using the Mouse in the Graph Window

Refer to Figure 5.6 for the following description. The default view in GPSCon is "All" which you can select with the View/All menu option. To see a larger view of the graph, select the View/Graph menu option.

In the graph window the horizontal range of the graph can be set using he mouse. Set the start time by left clicking on the desired start point. If you wish, the stop time may also be set by right clicking the desired stop point. The set start and stop times can be removed by left double-clicking anywhere on the graph.

Since this is harder to describe than to actually do, here is a paraphrase of the above:

"To zoom in: The mouse is used to set the left extent and the right extent of the portion of the curve that the user wants to fill the screen. Click once with the left mouse button on the point that marks the left side of what you want to be the magnified curve. Immediately that point becomes the left end of the curve. Then similarly click the right mouse button on the curve at the time you wish to be the right most portion of the magnified curve and it immediately becomes the end point on the right side. And, finally to return to the zoomed out ("fit to window") view, left double-click on the curve."

When you have locked the start and stop time using the mouse, you can scroll left or right through the data. To scroll to a later time, use Shift + Left click. To scroll to an earlier time, use Shift + Right click.

Figure 5.6 Graph display

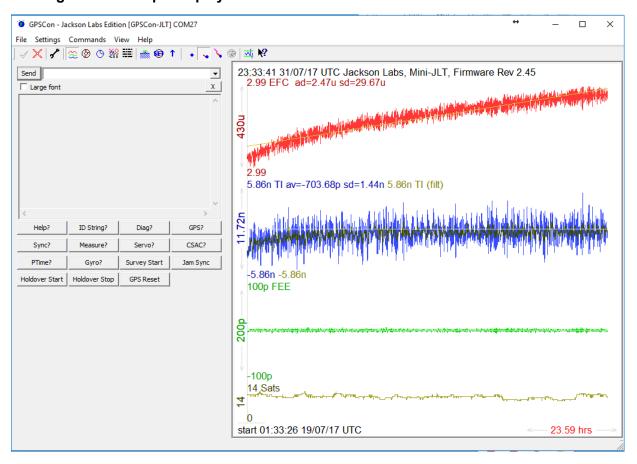
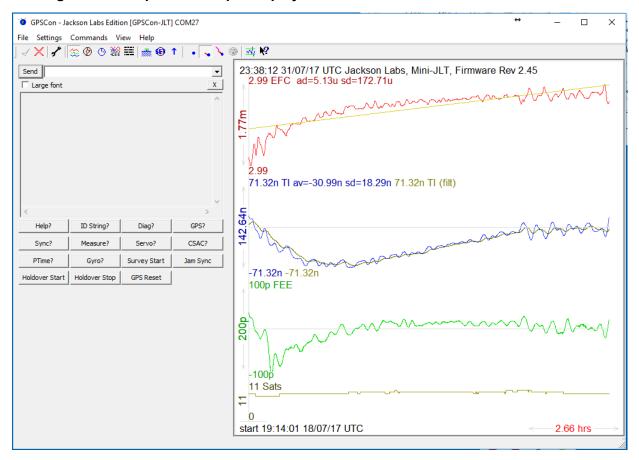



Figure 5.7 Expanded Graph Display

5.3.4 Exporting the graphics

The settings which control the export function are contained in the "Export graphics" tab in the Options dialog.

Export allows you to create an image file of the graph and/or the satellite trails map. You can select which you want by specifying a file for the Graph path and/or Map path. If you export the graph, you have the option to export only that which is currently visible, or to export the graph which is a plot of the entire logfile contents. Use the checkbox "Export all graph data" to make this choice.

You may select a size of the exported images in X and Y. The file format may be .BMP, .JPG, .GIF, or .PNG. Your settings will be stored and will be the default next time you open this dialog.

If you choose to export the graph, you might want to override the TI max setting in force on the screen display. You may do this by entering a non-zero value into the 'Override TI' control. A value of zero causes the export to take the same setting if any as the screen display.

The export may be done automatically on a timed basis. Simply enter a non-zero value in seconds to choose an export time interval. To manually export in accordance with the settings, press the 'Export' button.

Figure 5.8 Captured Data Example

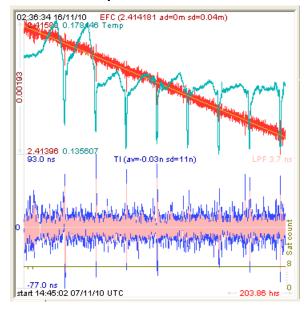
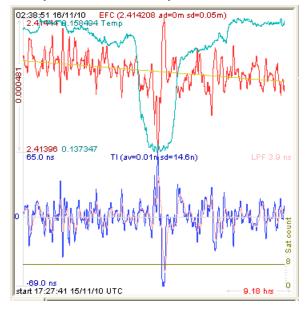



Figure 5.9 Zoomed Captured Data Example

5.4 Interpreting the Data

Figure 5.8 shows the data acquired by the Mini-JLT GNSS™ unit over a period of more than 200 hours The red trace is EFC (crystal frequency control voltage). The crystal is aging (becoming faster in frequency over time). This requires the control voltage to be lowered to maintain precisely 10.0MHz. A drift of ~2mV is visible over 200 hours. On the left side of the screen the EFC range over this 200 hour plot is displayed vertically as 0.00193V. This means the drift of the EFC voltage

due to aging is ~88mV per year. The EFC sensitivity of the crystal is about 8Hz per volt, so the crystal ages at:

8Hz/V * 0.088V/Year = 0.704Hz/Year drift.

At 10MHz:

0.704Hz / 10MHz = 7.04E-08 aging rate per year.

This is the same as 0.2ppb drift due to aging per day. This crystal aging is fully compensated by the firmware with and without GPS reception of course.

The board temperature is shown in turqoise. We can see it ranges from 0.135607A to 0.178146A. The OCXO current jumps lower every 24 hours because the unit is sitting next to a window, and the sun shines onto the OCXO in the evenings, heating it up, and thus making the unit use lower power during that event.

In Figure 5.9, which is a zoom of Figure 5.8, we can see the phase offset error of the internal OCXO to the UTC GPS reference. We can see the maximum drift is -77ns to +93ns. The average is (TI av=-0.03ns). The standard deviation over the 200 hour plot is sd=11ns. This means the average error of the 10MHz phase of this unit over 200 hours is only +/-11ns rms. Or, in other words the average jitter (wander) over 200 hours of operation is:

$$11ns / 200Hrs = 1.528E-014$$

or in other words the unit performs as well as a high quality Cesium Atomic reference clock over long periods of time. The unit disciplines its internal 10MHz reference to within less than +/-80ns peak to peak of UTC at all times, which is less than one complete clock cycle at 10MHz.

Certification and Warranty

6.1 Certification

Jackson Labs Technologies, Inc. certifies that this product met its published specifications at time of shipment.

6.1.1 Warranty

This Jackson Labs Technologies, Inc. hardware product is warranted against defects in material and workmanship for a period of 1 (one) year from date of delivery. During the warranty period Jackson Labs Technologies, Inc. will, at its discretion, either repair or replace products that prove to be defective. Jackson Labs Technologies, Inc. does not warrant that the operation for the software, firmware, or hardware shall be uninterrupted or error free even if the product is operated within its specifications.

For warranty service, this product must be returned to Jackson Labs Technologies, Inc. or a service facility designated by Jackson Labs Technologies, Inc. Customer shall prepay shipping charges (and shall pay all duties and taxes) for products returned to Jackson Labs Technologies, Inc. for warranty service. Except for products returned to Customer from another country, Jackson Labs Technologies, Inc. shall pay for return of products to Customer. If Jackson Labs Technologies, Inc. is unable, within a reasonable time, to repair or replace any product to condition as warranted, the Customer shall be entitled to a refund of the purchase price upon return of the product to Jackson Labs Technologies, Inc.

6.1.2 Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Customer, Customer-supplied software or interfacing, unauthorized modification or misuse, opening of the instruments enclosure or removal of the instruments panels, operation outside of the environmental or electrical specifications for the product, or improper site preparation and maintenance. JACKSON LABS TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Jackson Labs Technologies, Inc. products are not intended for use in medical, life saving, or life sustaining applications.

6.1.3 Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE THE CUSTOMER'S SOLE AND EXCLUSIVE REMEDIES. JACKSON LABS TECHNOLOGIES, INC. SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Contact Us: +1 800 835 2352 | avcomm.sales@viavisolutions.com.

© 2025 VIAVI Solutions Inc. Product specifications and descriptions in this document are subject to change without notice. Patented as described at viavisolutions.com/patents