TAKING THE SCA TO NEW FRONTIERS

Steve Bernier (CRC, Ottawa, Ontario, Canadeve.bernier@crc.ta
Claude Bélisle (CRC, Ottawa, Ontario, Canadailto:claude.belisle@crc.ta
Communications Research Centre Canada (CRC)
3701 Carling Ave., PO Box 11490, Station H
Ottawa ON K2H 8S2
Government of Canada

ABSTRACT Rather than creating yet another framework from a white
The Software Communications Architecture (SCA) hassheet, the SCA has been built by assembling commercially
been developed by the US Department of Defence in thavailable software standards:
late 1990’s to respond to an urgent requirement te- POSIX (Portable Operating System Interfaces) offers
standardize the development of their radio equipment. The code portability
SCA has now been adopted throughout the world by CORBA abstracts inter-process communications
military organizations as the foundation for their radio- CCM (CORBA Component Model) provides a
development. development life cycle structure

. _ - X.731 ITU/CCITT OSI provides device state
The SCA however is not, and should not be considered, amanagement

military specific architecture. The SCA, and the now

available associated development tOOlS, trUly form The Concept behind the SCA is one of deveiopment by

component-based development architecture, so popular febmponents, software and hardware, with a key emphasis

Business-to-Business applications. on a set of rules and behaviour to facilitate the integration of
these components together.

There are however still some reluctance in using the SCA

outside the mllltary market. In this paper, we first eXplainThiS approach is the foundation of Component_Based

how the SCA can be seen as a CBD framework and how fevelopment (CBD).

differs from other popular CBD frameworks. We will then

cover the Myths and Realities of the SCA and demonstrate

that the SCA is well suite for not only public safety and 2. CBD FOR EMBEDDED SYSTEMS
commercial radio systems but has applicability in almostBp is a programming trend that started some ten years ago
any embedded systems, from space to avionics, automobilghd has reached an unprecedented level over the past three
radar, test equipment and other electronic devices. years, with the most popuiar CBD environment being
Microsoft .Net and Sun Microsystems Enterprise Java
Beans (EJB). However, unlike .Net and EJB, which require
1 INTRODUCTION specific operating infrastructures (.Net mandates the use of
As defined by the creators of the specification, the SCA imicrosoft operating systems —Windows or Vista - and EJB
more or less a framework that standardizes the developmeﬂ@quires a Java virtual machine) the SCA was designed to
of signal processing platforms and applications to simplifjpe a framework suitable for heterogeneous systems. The
their integration. The Original goal was to prOVide the USSCA is a piatform-independent framework, Supporting
DoD with radio sets for which: multiple operating systems, in their native form; multiple
o] processor families; and a wide range of external devices.
— applications could be easily ported from one platform to
another to enhance communications interoperability; \yhjle the SCA was developed to address the specific needs
. of the US DoD communications infrastructure, it has all the
~ commercial-off-the-shelf (COTS) technology could be ., cteristics to be an architecture of choice for many other
easily integrated, to reduce development and maintenange. - 4 qed system applications, from space, to avionics,
cost, automobile, medical, personal devices and other electronics

- the relation between the hardware platforms and theYStems:

software applications could be abstracted, to simplify th

. .) She SCA standardizes two main categories of components,
integration and testing phases.

those forming an application, and those forming the
hardware platform. It also defines a set APIs to support

deployment related functionalities and for making 3.SCA MYTHSAND REALITIES

components “composable” which is at the heart of CBD. It

does not specify any domain specific API, such as one fo&s discussed in the previous section, the SCA has all the

an RF synthesizer or an antenna positioning gimbal. attributes required for a development and deployment
framework for any embedded system. It supports multiple

It is these domain specific APIs that define the domain angperating systems and with the use of CORBA, it is truly

the type of applications that can be deployed as shown ignostic of the hardware platform. However, there is still

the Figure 1. some reluctance to use it for non-military applications.

JTRS
Waveform
Applications

In this section, some of the most commonly heard
complaints about the SCA and its usage will be discussed
and shown to be simply myths.
Radar API Au“fp',?t've SCA API 3.1 Myth #1: The SCA is Slow to Boot
Supplement Supplement Supplement According to rumors, some SCA radios take up to up to 15
minutes to boot. It is agreed that software defined radios
will, in most cases, take longer to become operational than
hardware-only radios. The question here is: Is this due t
Figure 1. SCA Vertical Markets the SCA or simply to the fact that software must be loaded?
In order to get a better understanding of the boot time,issu
One of the early issues with the SCA for embedded systethis section describes the different steps required to
was the requirement to use proprietary code to handleomplete the boot sequence.
communications with specialized hardware devices (DSP,
FPGA). HAL-C was produced but quickly becamea. First, upon power up, an SCA POSIX AEP [1] compliant
superfluous. With CORBA now available for DSP and operating system and its services (e.g. file system) must
FPGA, we can communicate directly to these devices and be started. This step requires copying the binary image of
use them in similar fashion as for GPP. an OS kernel from permanent storage memory to the
processor run-time memory and launching the kernel.
The software communications architecture (SCA) has been Depending on the speed of the physical memory and the
developed by the US Department of Defense in the late bus connecting it to the processor, this step can be very
1990’s to respond to an urgent requirement to standardizefast; especially with a real-time operating system (RTOS).
the development of their radio equipment. As created, the
SCA is more or less a collection of commercially availableb. Once the operating system is started, the software
software, assembled to offer an operating environment to components forming the SCA platform are launched.
radio developers. First, a CORBA naming service must be started. Second,
a DomainManager and potentially several
The SCA has now been adopted throughout the world by DeviceManagers are launched. Then, each
military organizations and is also being used by many DeviceManager launches a number of Device software
commercial organizations as the foundation for their radio components. As far as the OS is concerned, all that work
development. A number of companies are now offering amounts to launching a number of tasks. Here again, the
signal processing platforms, enabled with the SCA. speed of memory, bus, and processor can make a big
difference. And of course, it also helps to use a very fast
The SCA however is not, and should not be considered, aOS.
military specific architecture. The SCA, and the now
available associated development tools, truly form a CBD During the SCA platform boot up, both the
architecture, so popular in the Business-to-Business DomainManager and the DeviceManager will parse a
community. However, by opposition to the Microsoft .Net, number of XML files. Generally speaking, parsing an
Sun EJB, or OMG CCM, the SCA is device centric and is XML file can be slow and require a large amount of
targeted at applications with heterogeneous platforms. runtime memory. But there are many ways to implement
those steps; some better than others. However, no matter
As much as the SCA was a paradigm shift in the how it's done, parsing XML files still requires file access
development of military radio, as much as the SCA can and that is something a CF vendor cannot easily optimize.
become a paradigm shift in the CBD world. The choice of a file system type (say NFS) over another
(say RAM FS) can have a huge impact on performance.

SCA Core Framework

number of transports (UDP, multicast, shared memory).
c.Last but not least, an application must be launched iSome even support RTOS specific transports and embedded
order to bring the radio in operational mode. During thasystem interconnects like CompactPCIl and VME [7].
process, potentially several software components will be
launched and many XML files will be parsed. In other
words, the launch of an application is much the same as
booting the node components. Therefore, it can benefit

from the same solutions.

In summary, the speed at which an SCA radio can be booted T l T l
is affected by a number of things. The hardware actuall
makes a difference. As explained earlier, the memory spee ORB
(storage, run-time, etc.) and buses to the processor can mal
the difference. Obviously, the speed of the processors als GIO

plays a major role. The speed of communications k_)etweer Pluggable Transport
SCA software components can also affect the boot time of &

. : ; _ (e.g. GIOPoverVMIE
radio; but that is covered in the next section. Nevertheless N 7
the boot time myth is slowly being put to rest as SCAosad - —
are being deployed and are actually booting as fast as the Figure 2 — CORBA Communications
legacy radios they are replacing [2] [3].

It is a myth that the SCA is slow because of CORBA. As
explained above, CORBA communications can be made as
3.2 Myth #2: SCA Applications are Slow fast as the native platform transport [7]. Unfortunatelystmo

One of the longer lasting myths about the SCA is that it {CORBA developers are unaware of the concept of
t0o slow because of CORBA. CORBA is the inter-proces@'_“ggable transports which contributes to keeping this myth
communications (IPC) mechanism which allows Scaalive.

components to interact and exchange information. Since _ .

SCA components are developed separately as black boxeéss MYth #3: The SCA istoo fat _ _
they must rely on an IPC mechanism to interact with eachh® SCA requires a POSIX AEP compliant operating
other. The SCA mandates the use of CORBA as the |pSYystem which theoretically takes more space than not using
CORBA is actually a programming language and is2" operating system. The SCA also relies on CORBA which
processor independent. CORBA is also scalable as fgduires a translation layer (source code for stu'bs and
provides a single model for communications betweergk€l€tons) that, for the SCA, amounts to approximately
components whether they are located in the same process/cioKB of binary code using Objective Interface System
across the network. In short, CORBA is great forORBexpress or 3.3 MB using TAO (obtained using default

portability, which is the main goal of the SCA after all. configuration for respective IDL compilers). But more

importantly, the SCA relies on XML files which typically
However, CORBA has the very bad reputation of beindeq“ire an XML parser..Such a parser is usually rather large
slow. That reputation dates back to its early days when tH8 memory footprint. Using the open-source Xerces-C++ [8]
General Inter-Orb Protocol (GIOP) was only implementedML parser to build an SCA core framework requires
using TCP/IP (called Internet Inter-Orb Protocol — [IOP),approximately 2.6 MB of static footprint and typically 4
GIOP s the protocol by which different CORBA objects MB of dynamic footprint.

interact. Fortunately, CORBA has come a long way since o)
then. Footprint is dependent of the number of components in the

radio (platform and application). As an example, the ISR

ORBs can now be used for real-time embedded system®P-100 [9] runs simultaneously a Voice-over-IP and a
COTS real-time ORBs provide a very fast implementatiorstréaming video application with approximately 51 MB of
of 110P; nearly as fast as if TCP/IP was used directly [4]Memory. That fpotprlnt also includes all the software of the
However, TCP/IP being inherently too slow for most real-OP€rating — environment, namely: the SCARI++ core
time applications, it is also possible to use a differenframework (CRC), the platform SCA devices (ISR),
pluggable transport [5] which outperforms 110P (see figureP?RBexpress and naming service (OIS), and INTEGRITY
2). In some cases, switching from the TCP/IP transpat to with file system and POSIX support (Green Hills Software).
very fast transport can produce savings of one order of

magnitude [6]. Real-time ORB vendors typically support a

Those memory requirements may seem large for small forf8CA rules of precedence for property value overloading. If
factor platforms. CF implementers are improving andthe resolved values were saved by the core framework, there
constantly making their product smaller and fasterwould be no need to compute the second time a component
However, it will always remain that implementing ais deployed. In other words, the property resolving task
waveform with software instead of hardware requires moreould be skipped.
memory. The memory requirements of a SDR can not be
compared to the requirements of a radio which merely usBasically, any decision made by a core framework could be
software for implementing basic control functions. For thesaved and used the next time it is required. For instance,
same reasons, the flexibility of a SDR cannot be compareghen an application is used for the second time, a core
to traditional radios. The cost of flexibility is memorgpre framework could avoid redeploying it if the target devices
than before but not a whole lot. used in the previous deployment support a caching feature.
Avoiding the copy of component artifacts saves a
significant amount of time especially when memory access
4. THE FUTURE OF THE SCA is slow. Of course, there are cases where a core framework
The future core frameworks will be smaller and fastercan’t simply restart a previously deployed component. For
that's no secret. But what's not so obvious is that thexe alinstance, when a device’s cache has been cleared or when a
two approaches for achieving those goals. Most of theevice doesn’t support caching. In those cases, the core
research has been focused on optimizing the tasks to framework defaults back to deploying the components as
executed for maximum speed or minimum footprint.usual.
Another approach consists in eliminating some tasks
normally required for the deployment of components. ThisAnother example of a static deployment optimization is the
second technique will be referred to as static deploymentrtansformation of indirect connections into direct
The remainder of this section describes both approaches. connections. As explained in [11], a connection is indirect if
at least one of the components involved in the connection

4.1 Tasks Optimization (source or destination) is identified using run-time
The tasks optimization approach is relatively straighinformation. A direct connection is one where both
forward. First, the sequence of task S performecdomponents involved in the connection are identified by

during the deployment phase of the components isame or identifier. The current SCA supports three types of
identified. Then each one of these tasks can be optimizenhdirect identification mechanisms [12]: domainfinder,
Optimizations need to maintain compliancy with the SCAdevicethatloadedthiscomponentref, and
requirements. A core framework typically has to performdeviceusedbythiscomponentref. All three mechanisms
several tasks to deploy any component so there is plenty tequire that a core framework gather deployment
choose from for optimization. information which can then be used in lookup tables to
identify a component. Core frameworks could save the
Charles Linn [10] identified a number of different tasks thatresult of the identification process and thus perform direct
can be optimized for small platforms. Some optimizationsonnections the next time the application is deployed.
actually require additional APIs to the SCA standard ones.
For instance, speeding up file system access actuallyltimately, a core framework could remember every
requires an extended API (to the SCA File interface) to gedecision it makes to deploy applications. This would allow
access to a native file name. However, eliminating the usapplications to be redeployed skipping all the tasks except
of a DOM XML parser is an implementation level the actual instantiation of components, their configuration
optimization which does not require APl changes. Mostind their inter-connections. Static deployment doesn'’t
tasks optimizations are relatively easy to implement andequire any special API from the components being

generally don't pose a certification problem. deployed. SCA applications don’t need to be modified to be
deployed statically. Another important benefit of full static
4.2 Static Deployment Optimization deployment is determinism. Redeploying an application is

In the second approach, static deployment, the goal is faredictable. Those properties are very important for safety-
eliminate as many tasks as possible. A CF can achieve thisitical embedded systems such as those used in aircrafts.
by saving deployment context information and reusing it.

Linn [10] describes one static deployment optimization. HeStatic deployment optimizations may seem like they could
explains how the resolved property values for componentead to certification issues more easily than tasks
could be saved for future use. Each time a component @ptimizations. But a core framework typically does not skip
deployed, a core framework must determine the initial valuany deployment tasks the first time an application is
to use for configuring each property. This is done udileg t deployed. Thus, for a first deployment, there is no

difference in behavior between a new generation core
framework and a legacy one. Consequently, there should lf(%
no certification problems.

: o 7
As discussed, both optimizations approaches can provide
significant improvements. Clearly, new generation cord8]
frameworks will provide a combination of static deployment®]
and tasks optimizations. In fact, the latest version of th
SCARI++ core framework [13] already provides some
optimizations of both kinds.

Framework for ORB Middlewate Design Patterns in
Communications, Cambridge University Press, 2001.

J. Belzile, ‘Putting it all together — Objectives and
Challenge SDRF’05 Technical Conference, 2005.

G. Middioni, “CORBA over VMEbus Transport for Software
Defined Radigs www.motorola.com2005.

Xerces C++ Parser, http://xml.apache.org/xexes

ISR IDP100 Development Kit, http://www.isr-
t.com/products_idp.htm

flO] C. Linn, ‘Designing Jtrs Core Frameworks For Battery-

Powered Platforms: 10 Techniques For SucteS®RF04
Technical Conference, 2004

[11] F. Lévesque, C. Auger, S. Bernier, H. Latotdtrs Sca:

5. CONCLUSION
The SCA is a component-based development environment
with all the characteristics to be used well beyond miIitar)I1
radio equipment. It is domain and platform agnostic design
makes it a perfect candidate for any embedded system, from
military and public safety radios to space, avionics,

automobile and other commercial systems. Unlike other
component-based development frameworks, it is not
restricted to a specific operating environment. Since the

SCA is mainly a framework for the deployment and
configuration of applications, its impact on the signal
processing performance is minimal. In fact one can say that
it improves the performance as it allows the developer to
choose the best processors and inter-process
communications protocol.

Being an open specification, its evolution can be community
driven, ensuring a rapid response to the market
requirements. The SCA specification has lead to the
creation of an ecosystem of SCA products and services.
This allows SCA radio and application developers to be
more productive since they can concentrate on their
business logic. The SCA is slowly proving that it igwdy
versatile component-based development environment for
embedded systems.

6. REFERENCES
(1]
(2]
(3]

JPEO/JTRS, SCA Application Environment ProfilECA
Specification Appendix B, April 2006.

Press Releas@hales JTRS Radio Achieves Government
Certifications — First in IndustryJanuary 2006.

Mark Turner, ‘Harris SDR Solutions — Scalable, Reusable,
and Securg International Software Radio, London, UK,
June, 2004.

C. Hrustich, ‘CORBA for Real-Time, High Performance and
Embedded SystefnsFourth International Symposium on
Object-Oriented Real-Time Distributed Computingyres p.
345, 2001.

D.C. Schmidt, C. O’'Ryan, O. Othman, F. KuhnsParsons,
“Applying Patterns to Develop a Pluggable Protocols

(4]

(5]

Connecting Software ComponéntsSDRF'03 Technical
Conference, 2003.

[12] JPEO/JTRS, Domain Profile, SCA Specificatidxppendix

D, April 2006.

3] SCARI++, http://www.crc.calrars.

