

Spirent CyberFlood DPU and SmartNIC Assessment Solution

Benchmarking with AI/RDMA workloads

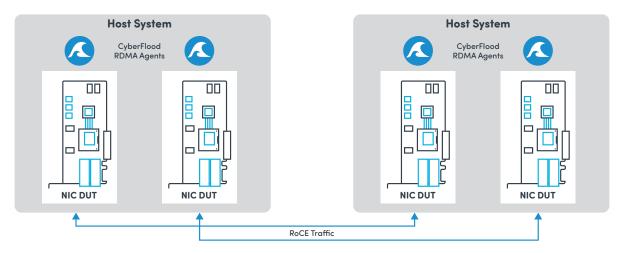
The rapid growth of AI/ML, cloud computing, and hyperscale data centers demands low-latency, high-bandwidth, and efficient resource use. As network functions move from dedicated hardware to software-driven virtualization, general-purpose CPUs struggle with tasks they weren't designed for, affecting performance, power efficiency, and cost-effectiveness.

Data Processing Units (DPUs) and SmartNICs offload critical infrastructure functions, enhancing performance and reducing CPU overhead. This improvement boosts the performance of complex AI/ML, storage, and advanced security workloads, enabling more efficient and scalable data centers.

To ensure data center operators realize the efficiency gains of DPUs, they must benchmark and tune configuration parameters to avoid bottlenecks, inefficient resource utilization, and unpredictable performance. This proactive approach ensures that data centers can handle increasing demands and remain cost-effective while delivering high performance.

Solution Overview

CyberFlood delivers stateful RDMA emulation to test and validate DPUs and SmartNICs with real-world AI and storage network workloads, ensuring scalability, low latency, and maximum throughput for next-generation AI applications.


Lightweight CyberFlood software agents installed on the host compute establishes Q-Pair connections and performs RDMA READ and WRITE operations in Reliable Connection (RC) mode. CyberFlood provides complete flexibility for users to define the data transfer size, RDMA message size, and number of Q-pairs, and define custom jobs or workloads. In an Al cluster, a job or workload involves multiple GPUs working together to share and compute results. The 'Job' function in CyberFlood allows users to define an action list that combines multiple RDMA contexts. This makes it possible to emulate complex GPU cluster communication patterns and measure job completion times—rather than relying solely on message latency statistics. CyberFlood DPU assessment solution enables users to:

- Benchmark the performance of DPUs and SmartNICs with varying block sizes, MTUs,
 Q-pairs, and complex multi-node topologies
- Tune DPU and SmartNIC parameters such as Q-pairs, buffers, and flow control
 mechanisms to optimize configurations to suit the deployment environment to achieve
 the best performance
- Validate scaled scenarios with complex N:1, and N:M topologies to assess the impact
 of congestion on overall performance both with and without congestion control
- Ensure interoperability in complex multi-vendor switching and NIC environments
- Validate the server efficiency gains realized with RDMA offload capabilities to justify adoption and investment

Key Capabilities and Benefits

- Emulates stateful RDMA over IPv4 and IPv6 transport to assess RDMA offload performance.
- Compare both RDMA over Converged Ethernet (RoCE) or InfiniBand (IB)transports.
- Performs RDMA READ and WRITE operations with Reliable Connection (RC) service type
- Define QP Memory Regions (Single or Global Regions).
- Generate N:1 (in cast), and N:M, traffic patterns for congestion control validation.
- Provides user-configurable Q-Pair numbers and block sizes.
- Provides a flexible 'Job' function that combines multiple RDMA contexts and sequences RDMA operations to emulate complex AI workloads across multiple compute nodes, validating job completion times.
- Provides detailed real-time statistics and reporting, including the ability to expose statistics and counters specific to the NIC.
- Provides comprehensive REST API support for automation.

SPIRENT CYBERFLOOD DPU AND SMARTNIC ASSESSMENT SOLUTION

Test traffic originates from the CyberFlood RDAM Agents residing on the host and terminates in another CyberFlood agent on a separate host system via the SmartNICs or DPUs connected to both the hosts. The NICs can also be connected via switching infrastructure as well.

The Spirent CyberFlood DPU and SmartNIC testing solution enables organizations to comprehensively evaluate the real-world impact of NICs and tune their configurations to support critical Al workloads, as they ensure high-performance, low-latency, and scalable GPU-GPU communications. Proactive testing and optimization can unlock the full potential of their Al infrastructure investment and drive more efficient model training and inference.

Description
 Stateful Reliable connections Synthetic Read & Write with variable payload size Custom Job definition Configurable queue pairs N:1, 1:N, and N:M workload distribution Dynamic load control – Bandwidth, Simulated User, and Simulated Users Per Second
Port speed and Q-pair scale depend on the NIC capabilities
 Bandwidth Transactions – Attempted, Successful, Unsuccessful, Aborted Jobs – Attempted, Successful, Unsuccessful Job Completion Latency – Avg, Min, Max RDMA Operations – Attempted, Successful, Unsuccessful, Latency Custom Stats – NIC-specific counters and statistics

Agent Deployment Requirements Minimum requirement: 1 x vCPUs per test agent and sufficient memory for the intended Q-pair scale

Ordering Information		
Part Number	Description	
CF-RDMA-AGENT-02-SUB	CyberFlood RDMA Emulation supports up to 2 test agents, 1YR SUB	
CF-RDMA-AGENTL-04-SUB	CyberFlood RDMA Emulation supports up to 4 test agents, 1YR SUB	
CF-RDMA-AGENT-08-SUB	CyberFlood RDMA Emulation supports up to 8 test agents, 1YR SUB	
CF-RDMA-AGENT-16-SUB	CyberFlood RDMA Emulation supports up to 16 test agents, 1YR SUB	

Requires CyberFlood Advanced Mixed Traffic license. Perpetual license options are also available.

