The market-leading Viavi Solutions® handheld optimization solution now tests user applications such as Facebook, Twitter, Skype, WhatsApp, and SpeedTest.

Viavi lets you measure the experience of an end user running the most popular apps while simultaneously measuring RF network performance.

Key Benefits

- **Understand how users experience the network**
 Test the end-to-end performance of real applications over the network and benchmark against competitors to limit churn

- **Virtually any technician can capture data, anywhere**
 Discreetly collect data and send results via FTP for expert analysis

- **Test with the devices your subscribers use**
 Measure the real customer experience using supported Android™ devices

- **Quickly analyze WCDMA and LTE parameters**
 Engineering mode lets your experts see all associated measurements for GSM, GPRS, WCDMA, HSDPA, LTE, and WiFi

- **In-sequence forcing**
 Ensure consistent, repeatable testing by forcing within the test sequence

Handheld WCDMA/ LTE Service and Applications Testing
Supported Measurements

<table>
<thead>
<tr>
<th>LTE Cell Info Parameters</th>
<th>LTE ML1 Serving Cell Measurements</th>
<th>LTE Serving and Neighbor Configuration Parameters</th>
<th>LTR Demodulation Configuration Parameters</th>
<th>LTR RACH Request Response Parameters</th>
<th>LTE Advance SCC Parameters</th>
<th>LTE Path Loss Result Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Cell identity</td>
<td>· RSSI Rx(0) dBm</td>
<td>· Serving E-ARFCN</td>
<td>· PDSCH RNTI ID</td>
<td>· SCC 1 – 7: serving ARFCN</td>
<td>· SCC 1 – 7: serving neighbor</td>
<td>· SIB 2 RS power (dBm)</td>
</tr>
<tr>
<td>· Physical cell ID</td>
<td>· RSSI Rx(1) dBm</td>
<td>· Serving physical cell ID</td>
<td>· PDSCH RNTI type</td>
<td>· SCC 1 – 7: serving PCI</td>
<td>· SCC 1 – 7: serving</td>
<td>· DL path loss (dB)</td>
</tr>
<tr>
<td>· Tracking area code</td>
<td>· RSSI dBm</td>
<td>· Serving RSSP (dBm)</td>
<td>· Number of Tx antennas</td>
<td>· SCC 1 – 7: neighbor cell count</td>
<td>· SCC 1 – 7: serving</td>
<td>· SIB 2 PONomPUCCH power (dBm)</td>
</tr>
<tr>
<td>· MCC</td>
<td>· RSSP Rx(0) dBm</td>
<td>· Detected cells PCl</td>
<td>· Transmission mode</td>
<td>· SCC 1 – 7: serving RSRQ</td>
<td>· SCC 1 – 7: serving RSRQ</td>
<td>· PUCCH Tx power (dBm)</td>
</tr>
<tr>
<td>· MNC</td>
<td>· RSSP Rx(1) dBm</td>
<td>· Neighbor cell count</td>
<td>· Spatial rank</td>
<td>· RACH response RX time</td>
<td></td>
<td>· UL path loss (dB)</td>
</tr>
<tr>
<td>· DL E-ARFCN</td>
<td>· RSRO Rx(0) dBm</td>
<td>· N1 PCI</td>
<td>· RB allocation for slot 0 (%)</td>
<td>· Timing advance</td>
<td></td>
<td>· Path loss imbalance</td>
</tr>
<tr>
<td>· UL E-ARFCN</td>
<td>· RSRO Rx(1) dBm</td>
<td>· N1 RSRQ (dBm)</td>
<td>· RB allocation for slot 1 (%)</td>
<td>· Temporary C-RNTI</td>
<td></td>
<td>· indicator</td>
</tr>
<tr>
<td>· DL bandwidth</td>
<td>· SINR Rx(0) dB</td>
<td>· N2 PCI</td>
<td>· Frequency selective PMI</td>
<td>· MCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· UL bandwidth</td>
<td>· SINR Rx(1) dB</td>
<td>· N2 RSRQ (dBm)</td>
<td>· PMI index</td>
<td>· TPC for PUSCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Band indicator</td>
<td>· MAIO</td>
<td>· N3 PCI</td>
<td>· Spatially limited</td>
<td>· Hopping flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Allowed access</td>
<td>· TTI in use</td>
<td>· N3 RSRP (dBm)</td>
<td>· UE procedures</td>
<td>· UL delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· RLC Rx throughput</td>
<td>· Traffic-to-pilot block ratio</td>
<td>· N4 PCI</td>
<td>· RB assignment</td>
<td>· CQI request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· RLC Tx throughput</td>
<td>· Stream 1 TBS (bits)</td>
<td>· N4 RSRQ (dB)</td>
<td>· RACH procedure type</td>
<td>· RACH response RX time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· MAC Ul throughput</td>
<td></td>
<td></td>
<td>· RNTI type</td>
<td>· Hopping flag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· MAC DL throughput</td>
<td></td>
<td></td>
<td>· RNTI value</td>
<td>· RB assignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Total PDCP Tx throughput (kbps)</td>
<td></td>
<td></td>
<td></td>
<td>· Temporary C-RNTI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Total PDCP Rx throughput (kbps)</td>
<td></td>
<td></td>
<td></td>
<td>· MCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· LTE mode</td>
<td></td>
<td></td>
<td></td>
<td>· TTI in use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· LTE TDD SF assignment</td>
<td></td>
<td></td>
<td></td>
<td>· Happy bits (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· LTE TDD special SF</td>
<td></td>
<td></td>
<td></td>
<td>· Not-happy bits (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· CQI CWO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· CQI CWI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GSM Parameters
- ARFCN
- BCH
- Cell ID
- MCC
- MNC
- LAC
- Mode
- Rx level
- Rx level sub
- Rx qual full
- Rx qual sub
- Timeslot
- Timing advance
- Tx level
- C1
- C2
- DSF
- DTX
- FER
- HSN
- HOP LIST
- HOP FLAG
- MAIO
- RLT
- Neighbor 1 – 6: BCC
- Neighbor 1 – 6: BSIC
- Neighbor 1 – 6: C1
- Neighbor 1 – 6: C2
- Neighbor 1 – 6: RXLEV

GPRS/EDGE Parameters
- C1I
- EGPRS DL CS
- EGPRS UL CS
- EDGE support
- ACC burst type
- Allocation type
- Control ACK type
- DL TS allocation
- UL TS allocation
- ACK mode
- DL CS
- DL TBF state
- DL TFI
- UL CS
- UL TBF state
- UL TFI
- DL LLC throughput
- DL RLC/MAC throughput
- UL LLC throughput
- UL RLC/MAC throughput
- DL RTX RLC block rate
- UL RTX RLC blocks
- UL TX RLC blocks
- DL RX RLC blocks

UMTS Parameters
- Serving UARFCN
- Serving SC
- Serving Ec/Io (dB)
- Serving RSCP (dBm)
- CELL ID
- RRC state
- RX power
- TX power
- SC MCC
- SC MNC
- RLC DL throughput (kbps)
- RLC UL throughput (kbps)
- No trans channels
- Transmission channel
- Active RSI
- Neighbor 1 – 5: UARFCN
- Neighbor 1 – 5: RSI
- Neighbor 1 – 5: Ec/Io
- Neighbor 1 – 5: RSCP
- Detected 1 – 5: UARFCN
- Detected 1 – 5: RSI
- Detected 1 – 5: Ec/Io

HSDPA HSUPA Parameters
- AVG MAC rate
- AVG schedule rate
- AVG served rate
- Modulation scheme
- DL HS-PDSCH BLER
- DL HS-DSDPA throughput
- CQI sample count
- CQI valid count
- CQI average
- % ACK
- % NACKS
- % DTX

IMS/RTTP Parameters
- IMS session setup status
- IMS session setup time
- IMS session handshake time
- Codec type
- Packet loss
- Inter arrival jitter
- R-factor
- R-factor MOS

Satellite Parameters
- Satellites visible
- Satellites tracked
- Battery status
- Battery level
- Current running test
- HTTP throughput
- FTP GET DL throughput
- FTP GET DL interim throughput
- FTP PUT DL throughput
- FTP PUT DL interim throughput
- FTP GET DL throughput
- IPERF DL throughput
- IPERF UL throughput
- SPEED latency
- SPEED DL rate
- SPEED UL rate
- VOICE call setup time
- VOICE MoS score
- VOICE attenuation
- VOICE ref sample rate
- VOICE rec sample rate
- VOICE ref SNR
- VOICE rec SNR
- VOICE ref active speech ratio
- VOICE rec active speech ratio

Contact Us +1 844 GO VIAVI (+1 844 468 4284)
To reach the Viavi office nearest you, visit viavisolutions.com/contacts.
© 2016 Viavi Solutions Inc.
Product specifications and descriptions in this document are subject to change without notice. wcdma-pb-nsd-tm-ae 30173418 903 0416

viavisolutions.com