
HOW DIFFERENT MESSAGING SEMANTICS CAN AFFECT SCA
APPLICATIONS PERFORMANCES: A BENCHMARK COMPARISON

Steve Bernier (Communications Research Centre Canada, Ottawa, Ontario, Canada;

steve.bernier@crc.gc.ca); Hugues Latour (Communications Research Centre Canada,
Ottawa, Ontario, Canada; hugues.latour@crc.gc.ca); Juan Pablo Zamora Zapata

(Communications Research Centre Canada, Ottawa, Ontario, Canada;
juan.zamora@crc.gc.ca)

ABSTRACT

Software Communications Architecture (SCA) compliant
radios typically contain a large number of software
components. Some software components provide access to
hardware devices while others perform signal processing.
By interacting with each other, the software components
implement a radio communications standard. To interact,
the software components use a middleware called Common
Object Request Broker Architecture (CORBA).

Using CORBA, each interaction is carried out as an
exchange of messages between two components. CORBA
supports two main types of messaging: one-way and two-
way. This paper explores the differences between the two
types of messaging and provides performance metrics. The
paper also describes design approaches that can be used to
avoid common pitfalls associated with the use of both types
of messaging.

1. INTRODUCTION

SCA waveform applications are typically composed of a
number of software components through which voice or
digital data samples travel. Typically the software
components get data samples from a device, transform the
data via signal processing, and send the modified data to
another device. In short, SCA waveform applications are
structured as a pipeline of components processing data
samples.

Each software component performs a specific
transformation on the data samples it receives via an input
port and sends the modified data to another component via
an output port. The more software components an
application has, the more connections between components
will be required which will lead to more interactions via the
middleware. CORBA offers two main types of interactions.
This paper describes both messaging types in section 2.
Section 3 describes the very common empty pipeline
problem which is related to the use of two-way messaging.
Section 4 describes how one-way messaging can address the
empty pipeline problem issue. It also describes the

drawback of one-way messaging with respect to order of
interactions. Section 5 presents two solutions that can
preserve the order of interaction which is important for
waveform applications. Finally, section 6 provides
performance metrics for different types of messaging. The
conclusion of the paper is provided in section 7.

2. CORBA MESSAGING

Using CORBA, the invocation of a member function
implemented by an object is carried out as a message sent
from a client object to a server object. When the invocation
of the member function produces a result, a second message
is used to communicate the result back from the server to
the client object. This type of interaction is called two-way
messaging, and is used by the Joint Tactical Radio System
(JTRS) in its application programming interfaces. With two-
way messaging, the client thread used to make the
invocation is blocked until the return message is delivered.
This means the client’s execution thread is suspended while
the message travels through the transport to the server, and
remains suspended while the server member function is
invoked and the result is returned to the client via the
transport.

The second type of messaging supported by CORBA is
called one-way messaging. It is used when the client does
not require a result back from the server. With one-way
messaging, the execution thread of the client resumes before
the member function is invoked on the server side. One-way
messaging is often mistakenly thought to be the same as an
invocation to a C/C++ function defined as having a void
return value. When a client invokes a C/C++ void function,
its execution is suspended until the function is executed and
returns. And such a behavior actually corresponds to a two-
way invocation.

The CORBA specification [1, 2, 3] actually defines four
types of one-way messaging. They differ in the level of
synchronization for interactions between clients and servers.
The desired level of synchronization can be selected by

mailto:steve.bernier@crc.gc.ca�
mailto:hugues.latour@crc.gc.ca�
mailto:juan.zamora@crc.gc.ca�

changing a property of the Object Request Broker (ORB)
called SyncScopePolicy to one of the following values:

• SYNC_NONE: The client’s invocation thread only

blocks until the request message is created and pushed to
the ORB. The invocation thread resumes before the ORB
sends the request message to the transport protocol (see
Figure 1). The client has no guarantee the ORB has been
successful in transferring the request to the transport
protocol stack on the client side.

Figure 1. SYNC_NONE CORBA Request.

• SYNC_WITH_TRANSPORT: The client’s invocation
thread blocks until the ORB request message is accepted
by the transport protocol stack (see Figure 2). The
invocation thread is unblocked without any guarantee the
request message has been received by the server.

Figure 2. SYNC_WITH_TRANSPORT CORBA Request.

• SYNC_WITH_SERVER: The client’s invocation thread
blocks until the request is accepted and validated by the
ORB on the server side (see Figure 3). The server-side
ORB makes sure the request is for a valid function of an
existing object. If the request is invalid, the
acknowledgment message sent by the server will cause an
exception to be raised on the client-side which will
unblock the invocation thread.

Figure 3.SYNC_WITH_SERVER CORBA Request.

• SYNC_WITH_TARGET: The client’s invocation thread
blocks until the function is executed on the server side
(see Figure 4). The sever-side ORB returns an
acknowledgment message which contains no data if
everything went well. The return message contains an
exception otherwise. This level of synchronization
provides a messaging semantic that is equivalent to two-
way messaging. The difference is that two-way messaging
can return a user-defined response or exception while
one-way messaging cannot.

Figure 4.SYNC_WITH_TARGET CORBA Request.

Note that the default for one-way messaging is set to
SYNC_WITH_TARGET for many ORBs. In fact, some
ORBs don’t implement SYNC_NONE and define it to be
the same as SYNC_WITH_TARGET [2]. Also note that
the characteristics of a transport protocol can influence the
synchronization scope. For instance, The INTEGRITY®
operating system offers an Inter-Process Communication
(IPC) messaging framework called “integrity connections”
[4]. This IPC works in a way that the client sending a
message is blocked until the server accepts the message.
With such a transport, SYNC_WITH_TRANSPORT
behaves the same way as SYNC_WITH_SERVER does.
Another example is with the use of a UDP-like transport.
With such a transport, there might not be a significant
difference between SYNC_NONE and
SYNC_WITH_TRANSPORT since messages can be lost
over the network.

3. THE EMPTY PIPELINE PROBLEM

Most SCA Applications [5, 6] are made of several software
components. And often those components are
interconnected in a sequence much like a pipeline where the
output of the first SCA component is fed to the input of the
next component and so on. Figure 5 illustrates a pipeline
with four components named R1, R2, R3, and R4. The
components represent the stages of the pipeline.

Figure 5. Processing Pipeline.

Figure 6 provides a sequence diagram of two-way
interactions between the four same components processing
two packets of data samples. Message number 1 shows that
component R2 receives the first data packet from R1.
Messages number 2 and 3 indicate that R2 performs a
transformation of the input data and produces output data
which is then sent to R3. Component R3 does the same and
the modified data eventually reaches R4. The same
sequence of interaction happens again starting at message
number 10 for data packet number 2.

Figure 6. Two-way Messaging.

This sequence diagram clearly illustrates the pipeline of
components is only working on 1 packet at a time. That’s
because R1 waits for all other components to be done before
it can push a new data packet in the pipeline. Because of the
two-way messaging, R2 sits idle waiting for R3 to return
control. And the same is true between R3 and R4. At any
one time, only one component is processing data samples.
This type of interaction between the components is called
the empty pipeline problem and leads to a very inefficient
use of the computational elements of a platform (GPP, DSP,
FPGA). This problem is the same as with multi-stage
pipeline micro-processors; every functional unit in the
pipeline (i.e. stage) must stay busy to maximize the usage of
the processor.

4. USING ONE-WAY MESSAGING TO AVOID
THE EMPTY PIPE LINE PROBLEM

To avoid the empty pipeline problem, each individual
component must be able to work in parallel. In the context
of an SCA Application, the solution is to make each
component work on a different data packet at the same time.
One approach to achieve this consists in using one-way
messaging. Figure 7 illustrates a sequence diagram where
the components are using one-way messaging.

Figure 7. One-way Messaging.

This sequence diagram shows that using one-way
messaging; the different components are working in parallel
on three different data packets. While R4 is working on
packet number 1 (message 12), R3 is working on packet
number 2 (message 10), and R2 is working on packet
number 3 (message 11). This approach leads to a better
usage of the computational elements provided by a platform.
However, the pipeline will be fully occupied only if each
component takes about the same time to perform its signal
processing. If one component takes more time to process its
input data, it becomes a bottleneck and the remaining
components in the pipeline will spend more time waiting for
input data. This illustrates how crucial it is to perform a
good functional decomposition of a waveform into
individual components.

4.1 THE IMPACT OF ADDRESS SPACE
COLLOCATION ON ONE-WAY MESSAGING

It is important to note that one-way messaging can behave
like two-way messaging under special circumstances. And
in such a case, it will lead to the empty pipeline problem.

For a client to invoke a function implemented by a CORBA
server, it must use the local stub that represents the remote
server. The client invokes the function on a local stub which
generates a request message and tells the ORB core to
transmit the message to the targeted server using the
appropriate transport layer. The stub is generated from the
CORBA Interface Definition Language (IDL) [7] definition
of the remote function being invoked.

However, real-time ORBs use several optimizations to
accelerate interactions. One common optimization allows a
client and a server to transparently interact with each other
directly when they are located in the same address space.
This means the interaction will not cause a request to be sent

over a transport, but it will result in a direct call to the
function implemented by the server. The performance
improvement with such an approach is significant [8]. In the
context of the SCA, address space collocation can be
achieved via the use of a ResourceFactory.

The direct function call optimization is implemented in the
stub. The stub is in a position to recognize that the remote
object it represents is in the same address space as the client,
and therefore perform a direction function call. This is
thought to be transparent to the client since the client always
uses a stub to make invocations.

However, when the stub makes a direct method invocation
instead of asking the ORB to go through the transport, it
does so using the client’s thread. The execution of the
client’s thread making the invocation ends up waiting until
the function returns, which is the semantic of two-way
messaging. Since the ORB core is by-passed with direct
function calls, the resulting messaging semantic will always
be two-way even if the IDL definition specifies one-way.

In most cases, the use of a single address space and direct
function calls will provide better performance than the use
of multiple address spaces with function calls that go over a
transport. That is true even if the single address space calls
are done in a way that produces the empty pipeline problem.
And as discussed in section 5.2, there is a solution to avoid
the empty pipeline problem even with two-way messaging
and it applies to the use of a single address space.

4.2 THE PACKET REORDERING PROBLEM

Using one-way messaging in a pipeline configuration can
however lead to packet reordering. In other words, data
packets being sent by the first component in the pipeline
might be reordered before they reach the last component of
the pipeline. This is not the case when the pipeline is
implemented using two-way calls. With two-way calls, if
component R1 sends packet number 1 before packet number
2, component R2 will always receive the packets in that
same order. This is very important to most waveform
applications since they use signal processing algorithms that
are sequential in nature. That is, the algorithms transform
data samples using information gathered from previous data
samples. With one-way messaging, the reordering of
CORBA interactions can happen for a number of reasons.

Transport reordering: The transport used between
components can have an influence over packet reordering.
Using a UDP-like transport can cause data packets to travel
via different paths between a client and a server. But in the
context of the SCA, embedded platforms are used.
Transports on such platforms are usually more reliable,
which makes this type of reordering less likely.

Client-side reordering: packet reordering is mostly due to
multi-threading. It can be caused when a client uses multiple
threads to invoke the same server-side function; there is no
guarantee the client threads will run in the order they have
been started. Furthermore, using a multi-core processor can
actually cause reordering even with a fair scheduler and
signal processing algorithms that use a constant amount of
time to process data. In a multi-core processor, each thread
can run on a different core and be affected by how busy
each core is. Thus, once more, there is no guarantee client
threads will run in a specific order.

The ORB can also cause packets order to be changed if it
uses a thread to decouple the invocation to a stub from the
introduction of the function call request on the transport.
This approach can be used by ORB-generated stubs to
implement the SYNC_NONE policy. However it allows a
client to quickly invoke the same function which will cause
several threads to be created in the client-side ORB. And as
explained earlier, there is no guarantee the operating system
scheduler will preserve the order of execution of the threads.

Server-side reordering: The most common problem of
packet reordering is caused by servers that use multiple
threads to execute the function that is invoked to transform
data packets. As described above, the operating system
scheduler can skew the packets order by allowing some
threads to get more time slices than others.

In fact, even with a fair scheduler from a good real-time
operating system, the use of multiple threads can lead to
packet reordering. For instance, packets order can be
changed when the amount of time necessary to perform the
signal processing is not constant. This time is related to the
input data. Some algorithms use dictionaries to compress or
encode data and the amount of time used to perform their
task depends on the correlation between the input data and
the dictionary. This means that in a multithread
environment, the threads used to encode the data that finds
the most matches in the dictionary will finish before the
other threads, and thus the order of packets cannot be
preserved.

Finally, it is important to note that most ORBs use multiple
threads. CORBA objects are serviced by multiple threads
unless explicitly configured otherwise. Different ORBs use
different multithreading algorithms to read a message
request and perform the requested invocation. Most ORBs
will allow several threads to run in parallel after they have
read a request from the transport. This allows multiple
threads to be performing the same invocation at the same
time which introduces the risk for threads to be reordered
which translates to packet reordering.

With CORBA, it is possible to specify that an object must
be served by only one thread at a time. This can be achieved

using a specific threading policy [1, 2, 9]. This policy means
the server-side ORB cannot invoke the functions of an
object using multiple threads at the same time. It provides
multi-thread safety for the target object. One might think
that using the single thread policy would preserve the packet
order by not allowing more than one thread at once to run
the data processing function. But it is not the case. The ORB
can still use several threads to read from the transport. The
single thread policy only guarantees that the ORB threads
trying to invoke the requested function will run one after the
other. And the operating system scheduler can still reorder
the waiting ORB threads and cause packet reordering.

5. AVOIDING DATA PACKET REORDERING

In the end, there are solutions to preserve the order of data
packets. First, a client needs to make sure it does not reorder
packets right from the beginning. The easiest way to do this
is to use a single thread to make invocations to a same
server-side function. This solution is independent of the type
of messaging being used. However, on the server-side, the
solution can be more or less difficult to implement. It
depends on the type of messaging being used.

5.1 ONE-WAY MESSAGING
Since one-way messaging can always cause packet
reordering, one solution involves stamping each packet with
a sequential number as they are produced and introduced
into the pipeline of components. This must be implemented
at the application-level. With this solution, each component
must store the packet(s) that are out of sequence in a buffer
and process them in order. The components also have to
deal with the possibility of having to skip packets when they
don’t arrive within a specific amount of time or risk
delaying the processing for too long. Determining the
appropriate buffer sizes and time delays is not easy and is
platform-specific.

Flow control is also very important with one-way
messaging. The producer of data packets can outpace the
pipeline of processing components. And since buffers
cannot be of unlimited capacity, flow control is required.
Flow control must provide APIs that deal with both buffer
overflow and buffer underflow. The APIs must allow a
server component to tell a client component to stop sending
data packets when the server-side buffer is near full. The
APIs also need to allow the server to tell the client to
resume sending packets when the buffer is near empty.
Calibrating flow control can be difficult; it involves finding
the appropriate low and high buffer thresholds for each
component of the pipeline. This thresholds can change with
different operating environments.
Note that flow control alone generally cannot be used to
avoid packet reordering. This is related to the fact that even
when the flow of packets is under control, it is possible for a

server-side ORB to use multiple threads and cause
reordering. The only way to avoid packet reordering with
flow control is to only allow a packet to be delivered to a
component after it is done processing the previous packet.
This kind of flow control would increase the amount of
signaling required for each packet which would most
certainly have a negative impact on performance.

An alternative approach considers the usage of worker-
threads in one-way messaging. Unfortunately, worker
threads alone cannot guarantee the absence of packet
reordering as later illustrated in experiment 3 of section 6.
Worker threads are further discussed in the next section as a
solution to the empty pipeline problem earlier described in
section 3.

5.2 TWO-WAY MESSAGING WITH WORKER-
THREAD

Another approach to avoid packet reordering is to use two-
way messaging. But as discussed earlier, this solution can
cause a pipeline to remain empty and lead to performance
issues. There is however a solution to the empty pipeline
problem. The solution consists in using a thread within each
component to decouple the reception of a packet from the
processing of a packet. That is, instead of processing the
data packet on the ORB thread making the invocation, the
processing can be done on a worker-thread that will also
forward the packet to the next component. This approach
allows the pipeline to fill in with more than one data packet
at the same time. As shown in Figure 8, this approach leads
to a pipeline usage that is very similar to one-way
messaging when it is synchronized with the server as shown
in Figure 3. The main difference is that two-way messaging
implicitly preserves the order of packets.

Under this approach, packet ordering is preserved
independently of the characteristics of the transport being
used. Two-way messaging makes a client wait for the
invocation to terminate before it can make a new invocation.
As a result, the client is not able to send a new packet to the
server before the server actually stores the current packet in
a buffer. There is only one packet in transit between the
moment a client invokes a function and the moment at
which the execution of the server function is terminated. It
is thus not possible to cause the reordering of packets. And
this approach is independent of the transport characteristics
and of the ORB’s multithreading strategy.

Naturally, since a buffer is used to store packets within each
component of the pipeline, flow control is still required.
Consequently, the server needs to be able to tell the client
when to stop sending new packets to avoid buffer overflow.
However, with two-way messaging, the client and the server
are synchronized. Therefore, if the client only regains
control when the server has room to accept a new packet,
the client cannot cause buffer overflow. And since the

server never tells the client to stop producing packets, there
is no need for an API to control buffer underflow. This
solution still requires that appropriate buffer sizes be
determined. However, it does not require the use of explicit
APIs for high and low watermarks.

Figure 8. Two-way messaging with a worker-thread

The other main difference with one-way messaging lies in
the bundling of components into a single address space. As
explained earlier, if components using one-way messaging
are co-located in an address space, the messaging semantic
changes to two-way messaging and leads to the empty
pipeline problem. That is not the case with components that
use two-way messaging with a worker-thread in each
component. When combined together, those components
will still have a worker-thread per component to perform the
packet processing. And that allows different packets to be
processed in parallel by different component worker-
threads.

6. METRICS

This section provides metrics used to make a performance
comparison between the different types of messaging.

Definition of the experiments
Tests were executed on a system using a Intel Q9300 quad
processor, clocked at 2.5GHz, with 6 gigabytes of RAM,
and ran Linux FC12. The ORB used was ORBexpress RT
version 2.8.2 with the IIOP transport. The system was setup
in two different configurations: the first configuration used
the four cores of the processor, while the second only used
one core. The second setup was used to eliminate any
parallel processing among the multiple cores of the
processor.

In all experiments, 3 SCA components on a pipeline
performed a certain amount of signal processing that took 5
ms. The pipeline was fed by a fourth SCA component
called the packet producer. Based on the theory, it can be
calculated that at least 5010 ms is needed before the 1000th
packet comes out of the last stage of the pipeline. It should
take 5 ms for each packet to go through the first stage and
the last packet should take an extra 10 ms to go through the
last 2 stages. The assumption behind this reasoning is that
each stage is supported by only one thread. In other words,
each stage only deals with one packet at a time.

In a single core processor, using multiple threads cannot
significantly increase the throughput since the threads run in
time sharing mode. Nevertheless, according to [10], multi-
threading can be used to minimize the waste of processing
cycles in a single core when many requests are made to
access external memory. And this being the case,
throughput can be increased. In the experiments conducted
for this paper, there was no explicit limit imposed in the
number of threads used in each stage. The number of
threads used was defined by processor workload, and the
default settings of the operating system and the CORBA
ORB

With a pipeline configuration, each stage must be able to
perform in less time than it takes for the next packet to
arrive. Buffers can be used to accommodate the potential
bursty-ness of the traffic. Using multiple cores, different
stages of a pipeline can run concurrently. If each stage is
assigned to a different core, the packet budget is effectively
multiplied by the number of cores [10].

During the tests, two different measurements were
employed for packet reordering. The first, labeled as
"reordered from previous", indicates the number of
instances in which a packet was out of sequence when
compared with the previous packet. The second, labeled
"reordered from original", indicates packets that were out of

sequence considering the original sequential sending order.
In an example where packets 1 through 10 arrive in the
following sequence: 1, 2, 4, 5, 6, 7, 8, 9, 3, 10, under the
"reordered from previous" rule, packets 4, 3 and 10 are
considered reordered. That is because packet 4 arrived after
packet 2, packet 3 arrived after packet 9, and packet 10
arrived after packet 3. Under the "reordered from original"
rule, packets 3, 4, 5, 6, 7, 8, and 9 are considered reordered.
That is because packet 3 arrived at original order 9, packet 4
arrived at original order 3, etc.

All experiments consisted in pushing 1000 packets through
the pipeline of three SCA components. Each packet was
made of 1024 elements of type double, requiring eight bytes
per element on the Intel Q9300 quad processor used for
testing.

For this paper, six different experiments were conducted
that considered three variations. The first variation involved
changing the CORBA messaging semantics from one-way
to two-way. During this test, the one-way synchronization
level was set to SYNC_WITH_TRANSPORT. The second
variation consisted in making the packet producer wait 5ms
or not between each packet being pushed in the pipeline.
The 5ms wait time represents a typical amount of time
allocated to processing a packet for waveform applications.
The third variation consisted in making each stage of the
pipeline use a separate worker thread to process the
incoming packets or not. An example of using a worker
thread can be seen in figure Figure 8, where the client’s
invocation thread unblocks in messages 3, 8 and 11, while a
worker thread retrieves and process packets starting in
message 4.

The experiments can be summarized in Table 1. Each
experiment was run under both the multi-core and single
core configurations.

Experiment

Message
mechanism

Producer
wait
time

Worker
thread

1 one-way 0 no
2 one-way 5 ms no
3 one-way 0 yes
4 one-way 5ms yes
5 two-way 0 no
6 two-way 0 yes

Table 1: Experiment configurations

Experiment 1
Table 2 shows metrics produced for the Multi-core setup,
with a test where the packets are exchanged between the
pipeline components using a one-way producer, used a one-
way API to send packets to the pipeline, and without
waiting before sending each packet. The table shows how

much time it took for the last packet (i.e. the 1000th packet)
to leave each stage of the pipeline.

 Packet
Producer

Stage 1 Stage 2 Stage 3

Time of last Pkt
sent/processed 4330.24ms 4458.38ms 4477.53ms 4498.38ms

of Pkt reordered
with previous - 252 363 487
with original - 358 564 694

Table 2: One-way messaging with a no-wait producer (4 cores)

Results from Table 2 provide several interesting facts: First,
it can be observed that the packet producer sent the last
packet after only 4330.24ms, well before the expected 5s
mark. That was because the test allowed for packets to be
sent faster than they could be processed, and as a result, the
ORB within the first stage component used more than one
thread to invoke the processing function. Second, all 1000
packets were processed in less than the theoretical 5010ms.
The third stage completed processing of the last packet after
only 4498.38ms. The reduced time can be explained by the
fact that all four cores of the processor were used for
processing packets. The core that hosted the packet producer
was periodically idle and the 3 stages were able to share the
4th core to run extra threads concurrently. On a single core
processor, this did not happen.

Table 2 also provides the number of packets that were
received out-of-sequence in each stage of the pipeline. It
shows that packet reordering was substantial, and it only
increased with each processing stage. At the last stage of the
pipeline, out of 1000 packets, over 487 were out of
sequence with respect to the previous packet number, and
694 did so when compared with the original sequential
order. One-way messaging, coupled with the use of multiple
threads at the server-side ORB, is responsible for the
significant amount of packet reordering. Under both
reordering measurements, the largest amount of reordering
happened at stage 1. This is because the packet producer
introduced as many packets as the transport allowed causing
many threads from stage 1 to process packets concurrently.
The stage 1 threads were scheduled in a way that some
threads finished before others that had started earlier. This is
the reason several packets were processed out of sequence.

Table 2 finally shows that the packet producer was actually
paced by the transport since the last packet was sent after
4330.24ms. Even if the producer did not sleep before
sending each packet, it periodically was blocked by the
transport. Every time the transport buffers became full, the
transport blocked the producer to prevent overflow. In
CORBA terminology, the client stub used by the producer
component to send packets to the stage 1 component had to
wait for the ORB to push the packets to the transport which
was periodically blocking. The producer was blocked by the
transport until the transport buffers had enough space to

accept new packets. During our tests, the default buffer size
for the TCP/IP stack was difficult to determine because the
stack used buffer auto-tuning. This means the buffers
increased in size as needed. Nevertheless, the test caused the
TCP/IP stack to reach a maximum buffer size. Figure 9
shows how much time it took for the producer to send
packets to the first stage of the pipeline. When the transport
buffers were not full, the producer was able to send some
packets in as little as 6 µsec. In fact, 80% of the packets
were sent in less than 15 µsec, while 90% of the packets
were sent in less than 35 µsec. The average for the lowest
90% of the cases was 9.67 µsec. But the transport buffers
reached full capacity quite often (10% of the cases) because
the producer was very aggressive. For the highest 10% of
the cases, the average wait was 42,787 µsec including one
case with a maximum of 108,710 µsec

Figure 9. Time measurements for the no-wait producer to send

each packet using one-way messaging (4 cores)

Table 3 presents a similar test as the one conducted for one-
way messaging with a no-wait producer (Table 2), but it was
obtained under the single core setup.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15236.05ms 15261.42ms 15280.76ms

of Pkt reordered
with previous 442 565 608
with original 941 936 927

Table 3: One-way messaging with a no-wait producer (1 core)

Considering that this test ran using a single core, the
theoretical floor was set at 15 seconds (each stage taking 5
seconds to process its 1000 packets). Table 3 shows that the
test was executed in a time above the theoretical floor. That
is due to the overhead associated with moving the packets
across the pipeline using the transport.

Figure 10 shows how much time it took for the producer to
send packets to the first stage of the pipeline. In this
scenario, the producer was also able to send some packets in
as little as 6 µsec. 81% of the packets were sent in less than
12 µsec, while 89% of the packets were sent in less than 26
µsec. The average for the lowest 89% of the cases was 8.11
µsec. When the transport buffers reached full capacity (11%
of the cases) the average wait was 132,475 µsec including
seven cases above 200,000 µsec.

Figure 10. Time measurements No-Wait SingleCore OneWay

Packet reordering under the single core test was greater than
in the multi-core test. Again, the message mechanism
allowed packets to be introduced into the transport without
synchronization and the multi-threading allowed individual
component threads to process packets out of sequence.

Experiment 2
Table 4 and Table 5 show the same metrics but for a test
that used one-way messaging with a packet producer that
waited 5 ms between each packet being pushed into the
pipeline. Table 4 shows the test using the multi-core setup
while Table 5 does so using the single core setup.

The first thing to notice is that it took more than 5000 ms for
the last packet to exit stage 1. That is because the producer
was not introducing packets faster than the pipeline stages
could handle. As a result, there were fewer threads created
by the server-side ORB of the stage 1 component. Pacing
the packet producer resulted in less reordering, but as stated
earlier, to some waveform applications, even a small
quantity of reordering can cause serious problems.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 5135.00ms 5194.61ms 5213.95ms

of Pkt reordered
with previous 174 305 471
with original 341 455 576

Table 4. One-way messaging with a
5ms wait producer (4 cores)

Table 5 shows the results of experiment 2 using a single
core. When compared with results from using a no-wait
producer (Table 3) there is a slight increase in processing
time associated with the pacing of the packet producer. In
terms of reordering, pacing the packet producer caused a
slight decrease in packet reordering.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15099.51ms 15432.74ms 15456.94ms

of Pkt reordered
with previous 367 425 436
with original 753 747 747

Table 5. One-way messaging with a 5ms wait producer (1 core)

Experiment 3
Table 6 and Table 7 present the results of a test using one-
way messaging with a worker-thread in each stage to
decouple the reception of a packet from the processing and
forwarding of the packet to the next stage. The test was
executed with a producer that did not wait between the
sending of each packet. Upon the reception of a new packet,
instead of processing it before returning control to the ORB,
each stage stored the packet in a buffer, notified a worker-
thread, and returned. The worker-thread would wake up
when notified and take the oldest packet from the buffer,
process it, and send it to the next stage.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 5146.50ms 5182.71ms 5720.99ms

of Pkt reordered
with previous 11 11 11
with original 524 524 524

Table 6. One-way messaging with a no-wait producer and a
worker-thread (4 cores)

From Table 6 it can be seen that packet reordering behaved
differently from previous experiments. It was observed that
packets were only reordered upon arrival to stage 1, and
after that, stage 2 and 3 received them in the exact order as
they were processed by stage 1. The reason for such a
behavior lies in the fact that the packet producer was able to
use many cycles to produce and send packets. The producer
produced more packets than the stage 1 component could
handle. That caused several threads to be used by the stage 1
component. However, since the stage 1, 2, and 3 used the
same amount of time to process packets, there was no need
for multiple threads to be used in stages 2 and 3 which
reduced the risk for packet reordering.

It is also worth highlighting that the introduction of a
worker-thread resulted in increased total time for execution.
In experiment 1 (Table 2) the last packet was processed by
stage three after 4498.38ms, while the equivalent timing for
experiment 3 resulted in 5720.99ms. That is due to the
overhead associated with synchronization.

Figure 11 shows how much time it took for the producer to
send packets to the first stage of the pipeline. In this
scenario, the producer was also able to send some packets in
as little as 7 µsec. 81% of the packets were sent in less than
19 µsec, while 89% of the packets were sent in less than 27
µsec. The average for the lowest 89% of the cases was
11.59 µsec. When the transport buffers reached full capacity
(11% of the cases) the average wait was 1,005 µsec
including one case with a maximum of 34,730 µsec.

Figure 11. Time measurements No-Wait MultiCore OneWay

UserThread

For the single core results illustrated in Table 7, it can be
seen that even though the packet producer was not paced,
there was no packet reordering. It is very important to note
however that under this configuration, there is no guarantee
that packets will be in sequence. The scheduler can still lead
to packet reordering since the producer can introduce a new
packet before the old packet is stored in the queue of the
next stage component as was the case for the multi-core test
presented in Table 6.

An additional interesting fact under the single core setup is
that the total time per stage was only slightly increased from
the one seen in Table 3. The latter indicates that the user-
created thread has a minimal impact under the single core
setup.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15328.17ms 15299.67ms 15299.61ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 7. One-way messaging with a no-wait producer and a
worker-thread (1 core)

The final item to highlight from Table 7 is how the
scheduler behaved under this experiment. The Linux kernel
seemed to behave in a last-in-first-out (LIFO) mode. The
normal set of sequential actions each stage has to execute is
as follows:

1) Receive packet
2) Process packet
3) Forward packet to next stage (stages 1 and 2)
4) Take a time-stamp since the stage is finished with

all activities pertaining to the current packet

Times presented in Table 7 are those obtained at action 4.
The data shows that stage 1 finished all activities for packet
1000 after stage 2 did so and stage 2 finished after stage 3.
This is the result of the scheduler switching to a new task
immediately after the packet is introduced into the transport
(action 3) and never switching back to the time stamping
(action 4) before the packet was processed by the following
stages. The actual sequence observed for packet 1000 is as
follows:

1) Stage 1 received message
2) Stage 1 processed message

3) Stage 1 introduced packet into the transport
4) Scheduler switched tasks giving control to Stage 2
5) Stage 2 received message
6) Stage 2 processed message
7) Stage 2 introduced packet into the transport
8) Scheduler switched tasks giving control to Stage 3
9) Stage 3 received message
10) Stage 3 processed message
11) With no one to forward the message to, stage 3

obtains current time (time stamp)
12) Scheduler switched tasks giving control to Stage 2
13) Stage 2 obtains current time (time stamp)
14) Scheduler switched tasks giving control to Stage 1
15) Stage 1 obtains current time (time stamp)

The same behavior was also observed in the single core
configuration test for experiment 4 below.

Figure 12 shows how much time it took for the producer to
send packets to the first stage of the pipeline. In this
scenario, the producer was also able to send some packets in
as little as 6 µsec. 92% of the packets were sent in less than
17 µsec. The average for the lowest 92% of the cases was
11.13 µsec. When the transport buffers reached full capacity
(8% of the cases) the average wait was 1,110 µsec including
one case with a maximum of 20,411 µsec, and a second case
with a wait of 15,851 µsec.

Figure 12. Time measurements No-Wait SingleCore OneWay

UserThread

Experiment 4
Table 8 and Table 9 present the results of a test using one-
way messaging with a worker-thread. In the experiment the
packet producer waited 5ms before sending each packet.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 5805.60ms 5810.69ms 5816.96ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 8. One-way messaging with 5ms wait producer and
a worker-thread (4 cores)

The first item to highlight from Table 8, is the fact that no
reordering was observed during the experiment. The
combination of explicitly pacing the packet producer
combined with a user created thread at each of the stages

has lowered the probability of packet reordering enough so
that none of the 1000 packets were reordered. But as
explained for Table 7 above, one-way messaging cannot
guarantee packet ordering.

The overhead observed, calculated as the total experiment
time of 5816.96ms minus the theoretical processing time of
5010ms, was of 806.96ms. This value will be compared
against experiment 6 where two-way messaging is used
coupled with a worker-thread.

Table 9 presents experiment 4 using a single core
configuration. No packet reordering was observed, and stage
times were slightly increased when compared to those in
Table 5. Notice that the task scheduler behavior is similar to
the one observed in the single core test (experiment 3, Table
5).

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15511.86ms 15497.68ms 15483.59ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 9. One-way messaging with a 5ms wait producer and
a worker-thread (1 core)

Experiment 5
Table 10 and Table 11 show metrics for a test that used two-
way messaging with a packet producer that did not wait
between each packet being sent. With this test, the function
invoked on each stage did the signal processing for 5 ms and
then invoked the processing function of the next component
in the pipeline. This caused the empty-pipeline problem as
described in section 3 and illustrated in Figure 6.

The first thing to notice about this test is that each packet
went through the pipeline alone. In this configuration, each
packet takes at least 5 ms to go through each stage which
adds up to 15,000ms for 1000 packets. And since the test
records the time at which each stage finished the packet
processing, the timings are also in reverse order. It took
more time to finish stage 1 than it took to finish stage 2.
And the same is true for stages 2 and 3. Notice that this
reversed order is associated with the two-way message
semantics, and not with the task scheduler as seen in
experiments 3 and 4 for the single core configuration.

It is important to highlight that this two-way test did not
cause any packet reordering. But it was done at the cost of a
much lower throughput when compared to the one observed
for the one-way messaging from Table 2.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 18407.82ms 18393.48ms 18379.11ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 10. Two-way messaging with a
no-wait producer (4 cores)

Figure 13 shows how much time it took for the producer to
send packets through the pipeline stages. The figure also
shows the producer did not get blocked by the transport as
often as for the one-way test (Figure 9). For the two-way
test, in most cases, the producer waited for an average of
18000 µsec between packets. In most cases, it waited
between 16000 µsec and 20000 µsec. In a few cases, it
waited for 22000 µsec. In this scenario, the fastest interval
in which the producer was able to send two consecutive
packets was 15,260 µsec. 99% of the packets were sent in
less than 21,000 µsec, with an average of 18,000 µsec. The
maximum wait in this case was 22,371 µsec.

Figure 13. Time measurements No-Wait MultiCore TwoWay

Table 11 shows the results of experiment 5 under the single
core setup. The overhead observed at stage 3 for this single
core setup was of 273.58ms. That is calculated as
15283.58ms after stage 3 has finished all activities for
packet 1000 minus the 15010 theoretical minimum for the
test. It is interesting to notice how the overhead observed is
substantially less than the one observed for the equivalent
test under the multi-core setup (Table 10) which was of
3369.11ms. The latter is calculated as 18379.11ms after
stage 3 finished all activities for packet 1000 minus the
15010 theoretical minimum for the test. The difference is
caused by the underutilization of the processing cores. Tasks
where repeatedly allocated to different cores and the data
copied across the cores. For experiment 5 an overhead of 2
sec was eliminated by forcing the CPU affinity of all 4
components to their own core. For experiment consistency,
all the data collected for the multi-core did not set CPU
affinity for any components. In the case of the single core
setup, as everything was performed in the same core, task
switching and data movement was substantially reduced.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15312.17ms 15297.90ms 15283.58ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 11. Two-way messaging with a no-wait producer (1 core)

Figure 14 shows how much time it took for the producer to
send a packet to the first stage of the pipeline. In this
scenario, the fastest interval in which the producer was able
to send two consecutive packets was 15,220 µsec. 99% of
the packets were sent in less than 15,773 µsec, with an
average of 15,262 µsec. The maximum wait in this case was
19,163 µsec.

Figure 14. Time measurements No-Wait SingleCore TwoWay

Experiment 6
Table 12 and Table 13 show the result of a test that used
two-way messaging with a worker-thread. In this
experiment, the packet producer did not waiting between the
sending of packets.

As explained earlier, since the component sending the
packet is blocked on the two-way call until the packet is
accepted and stored in a buffer, there are never two packets
in transit at the same time between two stages. This means
none of the components have more than one server-side
ORB thread waiting to invoke the processing function. This
prevents packets from being reordered. For as long as the
worker-thread processes the packets in order and the
transport does not reorder packets, no reordering is possible.

This approach effectively preserves the order of packets and
keeps the pipeline busy with different packets. It provides
much better performance than the simple two-way approach
which suffers from the empty-pipeline problem. In fact, the
timing observed in Table 12 are close to those observed in
the one-way messaging approach with a time-based paced
producer (Table 6). That is because using two-way
messaging with a worker-thread, each stage can introduce a
new packet as soon as the next stage unblocks. The time
between packets can be shorter than 5 ms when the stages
benefit from multi-core processing.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 5388.72ms 5394.15ms 5399.72ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 12. Two-way messaging with a no-wait producer and a
worker-thread per stage (4 cores)

Figure 15 describes the distribution of time required by the
producer to send 1000 packets, under two-way messaging
with a worker-thread. This test resulted in 92% of the
packets being sent in less than 100µsec, and 99% sent in
less than 120 µsec. From the 1000 packets, only in three
cases the producer waited for as long as 5ms and one single
case, the producer waited 66ms. This scenario did not cause
significant long waits as observed in Figure 9 and Figure 13.

Figure 15. Time measurements No-Wait MultiCore TwoWay

User Thread

Finally Table 13, presents the same execution test under the
single core setup. As with the results of the multi-core setup,
the two-way message semantics coupled with worker-thread
produced comparable results as those produced for the one-
way semantics with a worker-thread shown in Table 9.

 Stage 1 Stage 2 Stage 3
Time of last Pkt
processed 15358.32ms 15372.36ms 15344.16ms

of Pkt reordered
with previous 0 0 0
with original 0 0 0

Table 13. Two-way messaging with a no-wait producer and a
worker-thread per stage (1 core)

Figure 16 shows how much time it took for the producer to
send a packet to the first stage of the pipeline. This test
resulted in wait times as low as 66 µsec. 80% of the packets
being sent in less than 77µsec, and 99% sent in less than 91
µsec. From the 1000 packets, only in one case the producer
waited for as long as 65,198 µsec.

Figure 16. Time measurements No-Wait SingleCore TwoWay

User Thread

7. CONCLUSION

CORBA offers two types of messaging semantics: one-way
and two-way. The main difference between the two resides
in the level of synchronization between a client and a server
which has an impact on the speed of interactions. One-way
messaging is often considered a better approach than two-
way messaging from a throughput perspective. However,
one-way messaging cannot preserve the order of interactions
between components which translates into the reordering of
data packets as they flow through a pipeline of components.
The ordering of packets is very important for the type of
signal processing performed by waveform applications. On
the other hand, two-way messaging preserves the order of
interactions but the messaging mechanism introduces an
empty pipeline problem that substantially degrades
troughput.

Different approaches can be used to preserve the order of
packets. If one-way messaging is used, the components of
an application must implement extra functionality to
preserve the packet order and to perform flow control. Each
component must be prepared to receive packets out of order
and to reorder them before performing the signal processing.
Each component must also provide buffers to hold packets
and implement a mechanism to pace the producer to avoid
buffer overflow as well as buffer underflow. This requires
the use of fairly sophisticated synchronization techniques
(like low and high watermarks) that must be tuned for every
different platform the waveform is be ported to. But this
solution approach can provide better throughput than the
plain two-way messaging.

Another approach is to use two-way messaging with a
worker-thread to decouple the reception of a packet from its
processing and forwarding. The advantage of this approach
is that it can preserve the order of packets without stamping
each packet with a number and without having to sort the
packets back in order after their reception. Table 14 shows
that this approach yielded near-optimum throughput when
compared to one-way messaging using a single core, with
no reorder observed for any of the communication
mechanisms. From Table 14, it would be tempting to infer
that the worker thread solved the reordering issue, and to
conclude that by presenting a better throughput (although

only marginally), the one-way mechanism should be
preferred.

Table 14. One-way / Two way messaging with a no-wait

producer and a worker-thread (1 core)

Table 15 shows a similar comparison only this time, reorder
was observed for the one-way messaging. From this, it can
be concluded then that the worker-thread targets and solves
the empty pipeline problem, and that it cannot guarantee to
solve the reordering problem. The performance of the one-
way messaging was only marginally better than the two-way
alternative.

In all cases the metrics show that components were well
synchronized with each other regarding the throughput of
the data flow.

Table 15. One-way / Two way messaging with a no-wait

producer and a worker-thread (4 core)

To conclude, among the number of things that can be done
to improve the throughput of interactions between SCA
components,-the type of messaging used can make a
significant difference.

8. REFERENCES

[1] Object Management Group, Common Object Request
Broker Architecture: Core Specification, version 3.0.3,
formal/04-03-01, March 2004.
[2] Objective Interface Systems Inc., CORBA
Programming using ORBexpress RT for C++, version 2.6,
April 2006.
[3] S. Vinoski, “New Features for CORBA 3.0”,
Communications of the ACM, October 1998.
[4] INTEGRITY Kernel Reference Guide, June 2006.
[5] Software Communications Architecture Specification,
Version 2.2.2., December 2006.
[6] F. Lévesque, S. Bernier, “Interconnection SCA
Applications”, SDR’07, Denver, USA, November 2007.
[7] Object Management Group, CORBA 3.0 - OMG IDL
Syntax and Semantics chapter
formal/02-06-39, June 2002.
[8] S. Bernier, C. Auger, J.P. Zamora Zapata, H. Latour,
M. Michaud-Rancourt, “SCA Advanced Features –
Optimizing Boot Time, Memory Usage, and Middleware
Communications”, SDRF’09 Technical Conference, 2009.
[9] M. Henning, S. Vinoski, “Advanced CORBA
Programming with C++”, Addison Wesley, February 1999.
[10] Y. Zhang, K. Ootsu, T. Yokota, T. Baba, “Clustered
Communication for Efficient Pipelined Multithreading on
Commodity MCPs”, IAENG International Journal of
Computer Science, 2009.

	Abstract
	8. References

