VIAVI Solutions

Data Sheet

VIAVI

Multiport Tunable Filter Module (mTFX-C1)

MAP Series 100G+ Wavelength Management Filter

The Multiple Application Platform (MAP series) multiport tunable filter module (mTFX-C1) dramatically simplifies test signal management for next-generation 100 G+ interfaces, sub-systems, and system test.

Benefits

- Tunable filter with bandwidth adjustment from 6.2 to 5100 GHz with 0.5 GHz resolution.
- Offered in C- and L-bands.
- Low loss continuous extended C-band or L-band coverage with ±3.5 GHz wavelength accuracy.
- Automated peak tracking function without loss of transmitted power.

Key Features

- Up to 120 independent filters, each with independent attenuation and output port assignment.
- New filters can be added and removed without disturbing existing connections.
- Internal power meter option with automated single and multiple peak find algorithms.
- Center frequency ad bandwidth resolution < 10 pm.
- Fast, simple GUI and SCPI control interfaces for filter generation.
- Optional SW license to enable up to 8 output ports.

Applications

- Transmitter dispersion, eye mask, and receiver sensitivity testing.
- Photonic communication test automation.
- 100 G+ coherent interface testing.
- ROADM node emulation.
- Signal extraction or insertion during DWDM system testing.
- Amplifier gain spectrum management and load tone generation.
- OSNR measurements.

Safety Information

- Complies with CE, CSA/UL/IEC61010–1, plus LXI class C requirements when installed in a MAP chassis.

Figure 1 - Example application: isolate (drop) a signal from a DWDM test system and route to a test application while expressing all other wavelengths to other receivers.
Functional Description

Based on next-generation liquid crystal on silicon (LCOS) technology, the mTFX-C1 is much more than a tunable filter. It combines variable attenuator, switch, power meter, and DWDM multiplexer functions to dramatically simplify photonic testing of coherent interfaces, amplifier, and DWDM systems. Leveraging TrueFlex™ technology, filters are continuously tunable in center wavelength and bandwidth and are not locked to the ITU grid.

Multiple parallel wavelength paths can be created without disrupting already established connections—all with sub-GHz resolution. Industry leading specifications for loss and out-of-band rejection ensure minimal impairments on your test signals. The tunable filter is offered in the C- and L-bands variant with the option of power monitor.

To simplify interaction and programming, control of the mTFX-C1 has been divided into simple, easy-to-visualize functional blocks. A “virtual filter” is defined by a center wavelength, bandwidth, shape, and attenuation. A virtual filter can be easily moved anywhere in the C-band or L-band through assignment of the center wavelength. The virtual switch allows the filter to be expressed to a physical output port. Up to 120 virtual filters can be created and independently controlled. To manage assignment conflicts, a slice of spectrum may only be assigned to one output port at a time (although multiple independent slices can go to the same port).

An intuitive graphic user interface (GUI) is optimized for use in either a laboratory or a manufacturing environment. Efficient transition between summary and detailed views (figure 3 and figure 4) allow users to operate at a system level or access the full power of a module. The mTFX-C1 has a more complex GUI than many of VIAVI’s other modules due to its three modes of operations, channel mode, full mode and shape mode.
Tunable Filter Modes

Three control modes are available to further simplify use and let a user tailor the level of complexity they require.

1) **Channel mode**

Channel mode is the basic operation mode. In this mode, the post-filter has been disabled. This allows for powerful yet simple control of individual virtual filters. This mode supports both square and Gaussian shaped filters. Square top modes are ideal for ROADM emulation and systems employing multiple carriers in the channel. Gaussian shapes are ideal where it is critical to have the filter center wavelength and the carrier tightly aligned. Any drift in the carrier results in an unambiguous decrease in the power of the signal. Channel mode also includes an automated express capability. In a single command, the unfiltered spectrum is automatically routed to the selected port.

If the internal power meter option is selected, three powerful peak-signal detection functions become available.

- Peak Find: Measures the center frequency of any peak with a power level above a threshold; the signal is blocked while executing.
- Peak Search: Searches for the highest power signal within user defined start, stop and step wavelengths. A Gaussian channel centered on the peak frequency is created.
- Peak Up: Optimizes the placement of an isolation filter around a signal to maximize the transmitted power and minimizing the insertion loss.

2) **Full Span Mode**

Full span mode, disables the virtual filters and allows the unit to be operated like a simple single-port programmable filter. The primary intention of this mode is to shape the full transmitted spectrum and it is an ideal tool to generate frequency combs, gain tilt, and gain shape corrections. Standard programmable shapes are available, and users may upload up to five custom shapes. Prefilters available include, loss flattening filter, EDFA Gain-flattening filter and comb filter.
3) Shape mode

Shape mode combines the power of Channel and Full mode. Together, they enable the generation of more complex filtering patterns while retaining a simple and intuitive interface. In this mode, the virtual filter attenuation profile is modified by the presence of the Full mode attenuation shape.
Figure 10 – Using the shape mode in the mTFX to combine a comb filter and a low pass and high pass filter to remove a single channel. Displayed on the HROSA

Chassis and Modular Family

The VIAVI Multiple Application Platform (MAP) is a modular, rack mountable or benchtop, optical test and measurement platform with chassis’ that can host 2, 3 or 8 application modules. The LightDirect family of modules are characterized by their simple control and single function nature. Individually or together they form the foundation of a diverse array of optical test applications. The web enabled multiuser interface is simple and intuitive. LXI compliant with a full suite of SCPI based automation drivers and PC based management tools, the VIAVI MAP is optimized for both the lab to manufacturing environments.

The mTFX is part of the LightDirect module family. Alongside the many other modules, such as light sources, attenuators, polarization scramblers, power meters, and spectrum analyzers, the MAP series is the ideal, modular platform for photonic system and module testing.

The mTFX is compatible with all current MAP-300 and MAP-200 chassis.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>C-Band</th>
<th>L-Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>191.15 to 196.25 THz</td>
<td>186.30 to 191.05 THz</td>
</tr>
<tr>
<td></td>
<td>1527.61 to 1568.35 nm</td>
<td>1569.19 to 1609.19 nm</td>
</tr>
<tr>
<td>Number of Active Output Ports</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Number Independent User Defined Filters</td>
<td>120 (maximum)</td>
<td></td>
</tr>
<tr>
<td>Standard Filter Shapes</td>
<td>Square top and Gaussian top (valid up to 20 dB attenuation)</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 1 standard configuration</td>
<td>< 5.5 dB</td>
<td>< 6.0 dB</td>
</tr>
<tr>
<td>Port 1 with power monitor option</td>
<td>< 6.0 dB</td>
<td>< 6.5 dB</td>
</tr>
<tr>
<td>Ports 2 to 8</td>
<td>< 6.0 dB</td>
<td>< 6.5 dB</td>
</tr>
<tr>
<td>Short-term Insertion Loss Stability²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Averaging time < 10 ms</td>
<td>± 0.05 dB</td>
<td></td>
</tr>
<tr>
<td>Averaging time > 10 ms</td>
<td>± 0.01 dB</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss Repeatability³</td>
<td>± 0.025 dB</td>
<td></td>
</tr>
<tr>
<td>PDL⁴</td>
<td>< 0.3 dB (typical) from 0 to 10 dB attenuation</td>
<td></td>
</tr>
<tr>
<td>Return Loss⁵</td>
<td>> 30 dB</td>
<td></td>
</tr>
<tr>
<td>Square Top Filter Bandwidth⁶</td>
<td>6.2 to 5100 GHz</td>
<td>6.2 to 4800 GHz</td>
</tr>
<tr>
<td>Maximum Bandwidth for Gaussian Filter Shape</td>
<td>250 GHz</td>
<td></td>
</tr>
<tr>
<td>Center Wavelength and Bandwidth Resolution</td>
<td>0.5 GHz</td>
<td></td>
</tr>
<tr>
<td>Center Frequency Accuracy⁷</td>
<td>± 3.5 GHz (typical)</td>
<td>± 5 GHz (maximum)</td>
</tr>
<tr>
<td>Maximum Input Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For single 12.5 GHz channel</td>
<td>13 dBm</td>
<td>9 dBm</td>
</tr>
<tr>
<td>Broad Band Source</td>
<td>24 dBm</td>
<td></td>
</tr>
<tr>
<td>Max Attenuation Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Profile</td>
<td>10 dB</td>
<td></td>
</tr>
<tr>
<td>Square Top Profile</td>
<td>20 dB</td>
<td>15 dB</td>
</tr>
<tr>
<td>Attenuation Setting Resolution</td>
<td>0.1 dB</td>
<td></td>
</tr>
<tr>
<td>Single Filter, Average Out of Band Rejection⁸</td>
<td>> 40 dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Variations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Top, over 3 dB bandwidth</td>
<td>< 5.0 ps</td>
<td></td>
</tr>
<tr>
<td>Square Top, over 80% of bandwidth</td>
<td>< 4.0 ps</td>
<td></td>
</tr>
<tr>
<td>Differential Group Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaussian Top, over 3 dB bandwidth</td>
<td>< 2.0 ps</td>
<td></td>
</tr>
<tr>
<td>Square Top, over 80% of bandwidth</td>
<td>< 0.3 ps</td>
<td></td>
</tr>
<tr>
<td>Warm-up Time</td>
<td>60 min</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 to 45°C</td>
<td></td>
</tr>
</tbody>
</table>
Specifications continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C-Band</th>
<th>L-Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-30 to 60°C</td>
<td></td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>Maximum 85% Relative Humidity, non-condensing from 10 to 40 °C</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>8.1 x 13.26 x 37.03 cm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>2.4 kg (5.4 lbs)</td>
<td></td>
</tr>
</tbody>
</table>

1 Includes one optical connector. Measured using depolarized light source. For filters with bandwidth >20 GHz.
2 Measured using a depolarized light source. Values at center wavelength with no attenuation applied. Values reported are measured over 20,000 samples at the indicated averaging time.
3 Min-max, Insertion Loss variation measured using depolarized source at the center wavelength. Measured by activating and deactivating filter at the same wavelength on the same output port.
4 PDL is valid at the Gaussian minimum loss or over 80% of square top bandwidth.
5 Excludes directivity. Measured into a common port when all other channels are routed to outputs.
6 Bandwidth is specified at 0.2 dB loss level relative to the minimum filter insertion loss. Allocated spectrum based on square top filter definition. Selection of Gaussian profile will reduce the effective bandwidth of the channel.
7 Center wavelengths is measured at 3 dB and 10 dB levels relative to minimum loss in the filter.
8 Ratio of filter minimum IL to background maximum from a spectrum ranges that would represent a higher and lower frequency adjacent channel.

Ordering Information

For more information on this or other products and their availability, please contact your local VIAVI account manager or VIAVI directly at 1-844-GO-VIAVI (1-844-468-4284) or to reach the VIAVI office nearest you, visit viavisolutions.com/contacts.

<table>
<thead>
<tr>
<th>Category</th>
<th>Connector</th>
<th>C-Band</th>
<th>Description</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Power Monitor</td>
<td>FC/APC</td>
<td>MTFX-C111C008C0-M100-MFA</td>
<td>C-band multiport tunable filter SMF FC/APC</td>
<td>MTFX-C111C008L0-M100-MFA</td>
<td>L-band multiport tunable filter SMF FC/APC</td>
</tr>
<tr>
<td></td>
<td>FC/PC</td>
<td>MTFX-C111C008C0-M100-MFP</td>
<td>C-band multiport tunable filter SMF FC/PC</td>
<td>MTFX-C111C008L0-M100-MFP</td>
<td>L-band multiport tunable filter SMF FC/PC</td>
</tr>
<tr>
<td></td>
<td>SC/APC</td>
<td>MTFX-C111C008C0-M100-MSU</td>
<td>C-band multiport tunable filter SMF SC/APC</td>
<td>MTFX-C111C008C0-M100-MSU</td>
<td>L-band multiport tunable filter SMF SC/APC</td>
</tr>
<tr>
<td></td>
<td>SC/PC</td>
<td>MTFX-C111C008C0-M100-MSC</td>
<td>C-band multiport tunable filter SMF SC/PC</td>
<td>MTFX-C111C008L0-M100-MSC</td>
<td>L-band multiport tunable filter SMF SC/PC</td>
</tr>
<tr>
<td>With Power Monitor</td>
<td>FC/APC</td>
<td>MTFX-C111C008CM-M100-MFA</td>
<td>C-band multiport tunable filter SMF FC/PC with power monitor</td>
<td>MTFX-C111C008LM-M100-MFA</td>
<td>L-band multiport tunable filter SMF FC/PC with power monitor</td>
</tr>
<tr>
<td></td>
<td>FC/PC</td>
<td>MTFX-C111C008CM-M100-MFP</td>
<td>C-band multiport tunable filter SMF FC/PC with power monitor</td>
<td>MTFX-C111C008LM-M100-MFP</td>
<td>L-band multiport tunable filter SMF FC/PC with power monitor</td>
</tr>
<tr>
<td></td>
<td>SC/APC</td>
<td>MTFX-C111C008CM-M100-MSU</td>
<td>C-band multiport tunable filter SMF SC/APC with power monitor</td>
<td>MTFX-C111C008LM-M100-MSU</td>
<td>L-band multiport tunable filter SMF SC/APC with power monitor</td>
</tr>
<tr>
<td></td>
<td>SC/PC</td>
<td>MTFX-C111C008CM-M100-MSC</td>
<td>C-band multiport tunable filter SMF SC/PC with power monitor</td>
<td>MTFX-C111C008LM-M100-MSC</td>
<td>L-band multiport tunable filter SMF SC/PC with power monitor</td>
</tr>
</tbody>
</table>
Accessories

<table>
<thead>
<tr>
<th>Accessories (Optional)</th>
<th>Product and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection and cleaning tool</td>
<td></td>
</tr>
<tr>
<td>CleanBlast</td>
<td>The patented VIAVI Solutions® CleanBlast fiber end-face cleaning system provides a fast, effective, and cost-efficient solution for removing dirt and debris from connectors in most common applications. It is available in a benchtop and portable version.</td>
</tr>
<tr>
<td>FiberChek probe microscope</td>
<td>One-button FiberChek Probe delivers a reliable, fully autonomous, handheld inspection solution for every fiber technician.</td>
</tr>
<tr>
<td>P5000i fiber microscope</td>
<td>Automated Fiber Inspection & Analysis Probe provides PASS/FAIL capability to PC, laptops, mobile devices and VIAVI test solutions.</td>
</tr>
<tr>
<td>Replacement Parts</td>
<td></td>
</tr>
<tr>
<td>Mating sleeves</td>
<td>AC500;FC/PC-FC/PC Universal Connector Adapter</td>
</tr>
<tr>
<td></td>
<td>AC501;FC/PC-SC/PC Universal Connector Adapter</td>
</tr>
<tr>
<td></td>
<td>AC502;FC/APC-FC/APC Universal Connector Adapter</td>
</tr>
<tr>
<td></td>
<td>AC503;FC/APC-SC/APC Universal Connector Adapter</td>
</tr>
<tr>
<td>Add-On Licenses</td>
<td></td>
</tr>
<tr>
<td>MTFX4PORT</td>
<td>Expansion Licence from 2 TO 4 PORTS</td>
</tr>
<tr>
<td>MTFX8PORT</td>
<td>Expansion Licence from 2 TO 8 PORTS</td>
</tr>
</tbody>
</table>

A wider range of inspection tools are available at VIAVI. More information about the products and accessories can be accessed through our website at www.viavisolutions.com. For further assistance please contact your local VIAVI account manager or VIAVI directly at 1-844-GO-VIAVI (1-844-468-4284) or to reach the VIAVI office nearest you, visit viavisolutions.com/contacts.