Preface

SCOPE

This manual contains operational descriptions of the features contained in the 3900 Series HPD® Test System Options. Refer to the 3900 Series Operation Manual for information regarding general Test Set operation.

NOMENCLATURE STATEMENT

The 3901, 3902, 3920 and 3920B Digital Radio Test Set is the official nomenclature for the test sets currently included in the 3900 Digital Radio Test Set Series. In this manual, 3900, unit or Test Set, refers to the 3901, 3902, 3920 and 3920B Digital Radio Test Sets unless otherwise indicated.

INTENDED AUDIENCE

This manual is intended for personnel familiar with the use of the 3900. Refer to the 3900 Series Operation Manual for information pertaining to Test Set operation.

TEST SET REQUIREMENTS

Refer to the 3900 Series Operation Manual for information on the following:

- Safety Precautions
- Power Requirements
- Platform Performance Data Specifications
- Repacking/Shipping Test Set
THIS PAGE INTENTIONALLY LEFT BLANK.
CHAPTER 1 GENERAL DESCRIPTION
Contains general information regarding HPD® functions and capabilities.

CHAPTER 2 HPD® BASIC SYSTEM OPERATION
Contains information and descriptions of HPD® Basic features.

CHAPTER 3 HPD® ADVANCED ANALYSIS FEATURES
Contains information and descriptions of optional advanced HPD® features.

CHAPTER 4 HPD® USER DATA I/O PORT
Description of the application and use of the User Data I/O Port for transmitting and receiving XML files.

CHAPTER 5 HPD® ACCEPTANCE TEST
Contains Acceptance Test Procedure for HPD® Option.

CHAPTER 6 HPD® TEST APPLICATIONS
Describes how to use the 3900 to perform basic performance tests on HPD® base radios and mobile subscriber units.
Table of Contents

General Description 1 - 1

- HPD® Option Overview 1 - 1
- HPD® Testing Option 1 - 1
- HPD® Advanced Analysis Package 1 - 2
- Installing HPD® Option 1 - 2
- HPD® Option Status 1 - 2

HPD® Basic System Operation 2 - 1

- HPD® Tile Layout 2 - 1
- HPD® Configuration Tiles 2 - 2
 - Decimation Configuration Tile 2 - 2
 - I & Q Measurements Limits Tile 2 - 3
 - Rx Measurements Limits Tile 2 - 4
- HPD® Test Tiles 2 - 6
 - Constellation Tile 2 - 6
 - Error Vector Magnitude Tile 2 - 8
 - RF Control Settings (Gen/Recv) Tile 2 - 10
 - Rx Meter Display Tile 2 - 16
 - Trajectory Tile 2 - 18

HPD® Advanced Analysis Features 3 - 1

- Introduction .. 3 - 1
- Advanced Analysis Test Tiles 3 - 2
 - Eye Diagram Tile 3 - 2
 - I & Q Display Tile 3 - 3
 - Magnitude/Phase Estimation Tile 3 - 6
 - Profile Full Tile 3 - 8
 - Profile Ramps Tile 3 - 12
 - Rx Bits Tile 3 - 15
 - Rx Time Display Tile 3 - 17
Table of Contents

HPD® User Data I/O Port ... 4 - 1
- Introduction .. 4 - 1
- Viewing Application .. 4 - 1
- Connecting Equipment ... 4 - 1
- HPD® XML Command Structure. .. 4 - 2
 - `<burst> </burst>` ... 4 - 2
 - `<type> </type>` ... 4 - 2
 - `<modulation> </modulation>` .. 4 - 2
 - `<timestamp> </timestamp>` .. 4 - 2
 - `<mhbk> </mhbk>` .. 4 - 2
 - `<mdbk> </mdbk>` .. 4 - 3
 - `<skip> </skip>` ... 4 - 3
 - `<sync> </sync>` .. 4 - 3

HPD® Acceptance Test ... 5 - 1
- Introduction .. 5 - 1
- Required Equipment .. 5 - 1
- Test Procedure .. 5 - 1

HPD® Test Applications ... 6 - 1
- Introduction .. 6 - 1
- HPD® BR Functionality Test Procedure ... 6 - 1
 - BR Functionality Test Setup .. 6 - 1
 - BR Functionality Test Set Configuration .. 6 - 1
- HPD® MSU Functionality Test Procedure ... 6 - 3
 - MSU Functionality Test Setup .. 6 - 3
 - MSU Functionality Test Set Configuration ... 6 - 3

HPD® Terms and Acronyms .. A - 1

HPD® Contact Information .. B - 1
Chapter 1 - General Description

1.1 HPD® OPTION OVERVIEW

HPD®, High Performance Data, has been developed by Motorola to address the need for High Performance packet data operation on 700 and 800 MHz channels within the Narrowband 25 kHz bandwidth. The 3900 HPD® Options provide users with the ability to test High Performance Data systems.

When configured to operate in BR Mode the Test Set simulates Base Radio operation and is used to test the functionality of Motorola HPD® Mobile Subscriber Units (MSU). When configured to operate in MSU Mode the Test Set simulates Mobile Subscriber Unit operation and is used to test the functionality of Motorola HPD® Base Radios (BR).

1.1.1 HPD® Testing Option

The HPD® Testing Option (Motorola Part # R2091A) includes the following capabilities and features:

- Meter fields display measurement readings for Signal Power, Frequency Error, EVM, Symbol Clock Error, Rx BER, Occupied Bandwidth, Burst Timing Error (when Receive Sync Mode is set to TDO), Amplitude Imbalance, Phase Mismatch and Carrier Feed Through.
- The user is able to define the number of bursts over which readings are calculated as well as the maximum frequency drift and Frequency profile period for transmitted signal.
- User has option to include or exclude TDM Synchronization from the transmitted signal.
- User can define Modulation type, Sync Mode, Burst type and PSC of transmit and receive HPD® signals.
- Data I/O Port feature allows user(s) to configure signal files in XML format which can be transmitted to and from the 3900 Test Set.
- The EVM (Error Vector Magnitude) graph plots the average adjustment compensation values the Test Set applies to the received signal to match the signal to the expected points along the burst.
- The Constellation and Trajectory Tiles display visual representations of received HPD® signal for QPSK, 16 QAM and 64 QAM modulation types.
1.1.2 **HPD® Advanced Analysis Package**

The HPD® Advanced Analysis Package (Motorola Part # R2092A) includes all features in the HPD® Testing Option as well as the following capabilities and features:

- **Rx Bits Tile** provides a readout of the bit blocks received in the HPD® data stream.
- **Rx Time Display Tile** shows the history of the frequency error, symbol clock error or power readings over a user defined span of time.
- **Magnitude/Phase Error Tile** shows magnitude and phase fluctuations of the received signal over a period of one burst.
- **Eye Diagram Tile** provides representations of the symbol pattern of the received frequency.
- **Power Profile Display Tiles** provide visual representation of the Full and Ramp power profile readings.
- **I & Q Display Tile** displays the I and Q patterns in the last received signal.

1.2 **INSTALLING HPD® OPTION**

Refer to the section titled Install New License (Option) File in Chapter 3 of the 3900 Series Operation Manual for option installation procedures.

1.3 **HPD® OPTION STATUS**

To check the status of installed options when operating in Test Mode:

1. Push the UTILS Key twice to open Utility Menu.
2. Select Software Settings, License from the Utility menu.
3. The License Tile lists installed options, including the version and version date of each option (refer to example below).

HPD® Testing Option is option 300; HPD® Advanced Analysis Package is Option 301. To check the status of these options, follow these steps:

Example:

<table>
<thead>
<tr>
<th>Installed License</th>
<th>Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 300: CALIBRATION</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 305: ANALOG DUPLEX</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 351: SENSITIVITY SEARCH</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 354: IQ CREATOR</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 110: TETRA MS</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 111: TETRA BS</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 112: TETRA DM</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 113: Upgrade</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 200: P25 CONVENTIONAL</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 300: HPD</td>
<td>None</td>
</tr>
<tr>
<td>OPTION 301: HPD ADV ANALYSIS</td>
<td>None</td>
</tr>
</tbody>
</table>

Fig. 1-1 3900 Software Upgrade Tile
Chapter 2 - HPD® Basic System Operation

2.1 HPD® TILE LAYOUT

This chapter describes how to use the HPD® Testing Option package (Motorola Part #R2091A).

Fig. 2-1 HPD® Tile Layout

- Section A of the HPD® User Screen always displays the RF Control Settings Tile when the Tiles are minimized.
- Sections B through E of the HPD® User Screen are configured using the Measurements Tile drop-down menu. Rx Meter Display Tiles are enabled in Section B through E when HPD® is first accessed or when Factory Default Settings have been restored. Menu options depend on the HPD® Test options installed in the Test Set.
- HPD® includes access to the Channel Analyzer, Spectrum Analyzer and Oscilloscope which can also be selected on these tiles.

NOTE

The Channel Analyzer and Spectrum Analyzer are asynchronous, swept analyzers, and are not synchronized with incoming HPD® signals. Inbound HPD® signals are on a 30 ms timeslot frame and appear discontinuous on the analyzer displays. Use Peak Hold to accumulate multiple sweeps to display an entire trace of the incoming HPD® signal.
2.2 HPD® CONFIGURATION TILES

2.2.1 Decimation Configuration Tile

The Decimation Configuration Tile contains fields that define decimation values for all readings and display graphs. Selectable range for each reading is 10 to 10,000. Selecting 10 means that new data is available every tenth burst or time slot. Selecting 10,000 means that new data is available every 10,000 bursts or time slots.

Fig. 2-2 Decimation Configuration Tile

2.2.1.A Field Definitions

2.2.1.A.1 Rx Meter/IQ Measurements Decimation

The Rx Meter/IQ Measurements Decimation field specifies the rate at which meter measurement readings are available to the user interface.

2.2.1.A.2 Constellation/Trajectory Decimation

The Constellation/Trajectory Decimation field specifies the rate at which I & Q readings are available to the user interface for the Constellation Tile, Trajectory Tile and Eye Diagram Tile plot fields.

2.2.1.A.3 IQ Time Display Decimation

The IQ Time Display Decimation field specifies the rate at which I & Q readings are available to the user interface for the I & Q Display Tile graphs and Profile - Full Tile and Profile - Ramps Tile. This field is only available when the HPD® Advanced Analysis feature is installed in the Test Set.

2.2.1.A.4 Mag/Phase Estimation Decimation

The Mag/Phase Estimation Decimation field specifies the rate at which magnitude and phase readings are available to the user interface for the Magnitude/Phase Estimation Tile. This field is only available when the HPD® Advanced Analysis feature is installed in the Test Set.

2.2.1.A.5 Received Bits Decimation

The Received Bits Decimation field specifies the rate at which received bits data is available to the user interface for the Rx Bits Tile. This field is only available when the HPD® Advanced Analysis feature is installed in the Test Set.
2.2.2 I & Q Measurements Limits Tile

The I & Q Measurements Limits Configuration Tile contains parameters that define Upper Limit and Lower Limit for meter readings on the maximized Constellation Tile. Refer to the section titled Limits in the 3900 Series Operation manual for information on configuring and enabling Limits.

![I & Q Measurements Limits Configuration Tile](image)

Fig. 2-3 I & Q Measurements Limits Configuration Tile

2.2.2.A Field Definitions

2.2.2.A.1 Amplitude Imbalance Upper & Lower Limits
The Amplitude Imbalance Upper and Lower limit fields set limit values for Amplitude Imbalance measurements.

2.2.2.A.2 Phase Mismatch Upper & Lower Limits
The Phase Mismatch Upper and Lower limit fields set limit values for Phase Mismatch measurements.

2.2.2.A.3 Carrier Feedthrough Upper & Lower Limits
The Carrier Feedthrough Upper and Lower limit fields set limit values for Carrier Feedthrough measurements.

2.2.2.A.4 Disable/Enable
Toggle button turns the limit indicators for the selected meter ON or OFF.
2.2.3 **Rx Measurements Limits Tile**

The Rx Measurements Limits Configuration Tile defines upper and lower limit values to define pass/fail conditions for Rx measurements. Refer to the section titled Limits in the 3900 Series Operation manual for information on configuring and enabling Limits.

![Rx Measurements Limits](image)

Fig. 2-4 Rx Measurements Configuration Tile

2.2.3.A Field Definitions

2.2.3.A.1 Signal Power Upper & Lower Limits

The Signal Power Upper and Lower limit fields set limit values for Signal Power measurements.

2.2.3.A.2 Symbol Clock Error Upper & Lower Limits

The Symbol Clock Error Upper and Lower limit fields set limit values for Symbol Clock Error measurements.

2.2.3.A.3 Burst Timing Error Upper & Lower Limits

The Burst Timing Error Upper and Lower limit fields set limit values for Burst Timing Error measurements. This meter is only visible when Receive Sync Mode field on the RF Control Settings (Gen/Recv) Tile is set to TDO.

2.2.3.A.4 Frequency Error Upper & Lower Limits

The Frequency Error Upper and Lower limit fields set limit values for Frequency Error measurements.

2.2.3.A.5 Rx BER Upper & Lower Limits

The Rx BER Upper and Lower limit fields set limit values for Receiver Bit Error Rate measurements.

2.2.3.A.6 Error Vector Magnitude (EVM) Upper & Lower Limits

The EVM Upper and Lower limit fields set limit values for Error Vector Magnitude measurements.

2.2.3.A.7 Occupied Bandwidth Upper & Lower Limits

The Occupied Bandwidth Upper and Lower limit fields set limit values for Occupied Bandwidth measurements.
2.2.3.A.8 Disable/Enable

Toggle button turns the limit indicators for the selected meter ON or OFF.
2.3 HPD® TEST TILES

2.3.1 Constellation Tile

The Constellation plot displays the signal Constellation points of the received HPD® signal. The Amplitude Imbalance, Phase Mismatch and Carrier Feed Through meters measure signal impairments that occur as a result of imbalances between I & Q signal components.

Fig. 2-5 Constellation Tile - Maximized View

2.3.1.A Field/Soft Key Definitions

2.3.1.A.1 Channel Tick Boxes

The CH1 through CH4 tick buttons select channel(s) to be displayed on the plot field. More than one channel can be enabled. When enabled the tick buttons show the color used to display the selected channel(s).

2.3.1.A.2 Persistence

 Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

2.3.1.A.3 SYNC/PILOT/DATA

Selecting these tick boxes displays SYNC, PILOT and DATA indicators on the display field. User may enable the PILOT, SYNC and DATA indicators in any combination. The system does not allow all tick buttons to be disabled. For example, if PILOT, SYNC and DATA are enabled, the PILOT and SYNC tick buttons can be deselected, however, the DATA tick button can not be disabled (the least active button can not be deselected).

2.3.1.A.4 Reset Meters Soft Key

 Stops, clears, and re-starts the acquisition of data for the data display fields.

2.3.1.A.5 Reset Acquire Soft Key

“Re-synchronizes” the test set with the incoming HPD® signal.
2.3.1.A.6 Markers Soft Key

The Markers Soft Key opens a soft key sub-menu that allows the user to enable and configure markers on the graph field.

Fig. 2-6 Constellation SYNC and PILOT Markers Enabled

2.3.1.A.7 Markers Cross/Circle Soft Key

The Markers Cross/Circle Soft Key selects either CROSS or CIRCLE symbol indicators for the markers on the display field. This soft key is accessed by pressing the Markers Soft Key.

2.3.1.A.8 Pilot Markers Soft Key

Enables (ON) and disables (OFF) Pilot markers on the Constellation display field. The Pilot markers are located on the outside of the constellation plot. This soft key is accessed by pressing the Markers Soft Key.

2.3.1.A.9 SYNC Markers Soft Key

Enables (ON) and disables (OFF) Sync markers on the Constellation display field. The Sync markers are located on the inside constellation plot. This soft key is accessed by pressing the Markers Soft Key.
2.3.2 Error Vector Magnitude Tile

The Error Vector Magnitude (EVM) graph plots the average adjustment compensation values the Test Set applies to the received signal to match the signal to the expected points along the burst. Error Vector Magnitude (EVM) is a measure of the difference between the actual signal and an ideal signal. The difference measured between signals is calculated as a percent and plotted on the graph on a symbol by symbol basis.

![Error Vector Magnitude - Minimized View](image1)

![Error Vector Magnitude - Maximized View](image2)

2.3.2.A Field Definitions

2.3.2.A.1 Mkr 1 and Mkr 2 ON/OFF

Enables (ON) or Disables (OFF) vertical markers on the display field.

2.3.2.A.2 Horizontal Position

The horizontal scale is indicated in symbols as defined by the number of symbols contained in the selected channel. Symbol ranges vary based on the Burst Type selected on the RF Control Settings (Gen/Recv) Tile selected and the Channel being displayed. When multiple channels are selected the Symbol range shown reflects the largest range required.

2.3.2.A.3 EVM Reading

The field to the right of the Horizontal Position field indicates the EVM reading at the marker’s position for each enabled channel (CH1 through CH4). This field is read only and can not be altered by the user. The value is indicated as a percentage and is only displayed for enabled channels.
2.3.2.A.4 Mkr Deltas

The Mkr Deltas fields contain data only when both markers are enabled. The first field indicates the marker horizontal delta between Mkr 1 and Mkr 2. The second through fifth field indicates the difference in EVM reading between Mkr 1 and Mkr 2. These fields are read only and cannot be altered by the user.

2.3.2.A.5 Channel Tick Boxes

The CH1 through CH4 tick buttons select channel(s) to be displayed on the plot field. More than one channel can be enabled. When enabled the tick buttons show the color used to display the selected channel(s).

2.3.2.A.6 Vertical Graph Scale

The vertical scale of the EVM field is indicated as a percent value. The highest value is defined by the Top of Scale drop down menu. Default value is Auto.

2.3.2.A.7 Horizontal Graph Scale

The horizontal scale is indicated in symbols as defined by the number of symbols contained in the selected channel. Symbol ranges vary based on the Burst Type selected on the RF Control Settings (Gen/Recv) Tile selected and the Channel being displayed. When multiple channels are selected the Symbol range shown reflects the largest range required.

<table>
<thead>
<tr>
<th>Burst Type</th>
<th>Range Channel 1 and 4</th>
<th>Range Channel 2 and 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound Random</td>
<td>1 to 20</td>
<td>1 to 21</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>1 to 92</td>
<td>1 to 94</td>
</tr>
<tr>
<td>Outbound</td>
<td>1 to 102</td>
<td>1 to 102</td>
</tr>
</tbody>
</table>

2.3.2.A.8 Reset Meters Soft Key

Stops, clears, and re-starts the acquisition of data for the data display fields.

2.3.2.A.9 Reset Acquire Soft Key

“Re-synchronizes” the test set with the incoming HPD® signal.
2.3.3 RF Control Settings (Gen/Recv) Tile

The RF Control Settings Tile is divided into two sections. The left side of the RF Control Settings Tile displays Transmit signal information. The right side of the RF Control Settings Tile displays information for the Received signal.

The example below shows the fields available on the RF Control Settings Tiles. The fields present on the Tile vary according to the selected parameters. For example, when Receive Burst Type is set to Inbound Random, the SAC, BKF, COS and LCM fields are not displayed.

![Fig. 2-9 RF Control Settings Tile - Minimized View](image1)

![Fig. 2-10 RF Control Settings Tile - Maximized View](image2)

2.3.3.A RF Generator and Receiver Parameter Definitions

2.3.3.A.1 RF Gen Freq

The RF Generator Frequency indicates the frequency being generated by the RF Generator. Available units are GHz, MHz, kHz or Hz.

2.3.3.A.2 RF Gen Level

The RF Gen Level indicates the output power level in dBm as defined by the user.

2.3.3.A.3 RF Rcvr Freq

The RF Rcvr (Receiver) Frequency indicates the received frequency. Available units are GHz, MHz, kHz or Hz.
2.3.3.A.4 Receiver Bandwidth Setting
Selects the receiver bandwidth filter used along the received HPD® signal path.

- **Cabled**
 Selects a Wideband IF Bandwidth, meaning that no filter is included in the received HPD® signal path. This setting is typically used for testing radios that are connected directly to the Test Set. Cabled is the default setting.

- **Off Air**
 Selects a Narrowband (30 kHz) IF Bandwidth filter to be included in the received HPD® signal path. This setting is typically used to reduce interference received when RF Carriers are present that are in close proximity to the receiver’s tuned frequency.

2.3.3.A.5 Offset Mode
When the Offset option button is set to Lock, changing the RF Gen Freq also changes the RF Rcvr Freq setting so that it is offset from the RF Generator frequency by the value specified in the Offset field.

When set to Unlock, a value can be entered independently for either the RF Gen Freq or RF Rcvr Freq. The Offset value indicates the RF Gen Freq minus the RF Rcvr Freq value.

2.3.3.A.6 PSC
Selects the Pilot and Sync Code to be received or transmitted in the HPD® signal. Available selections are 0 to 6.

2.3.3.B Transmit and Receive Parameter Definitions

2.3.3.B.1 Receive Mode
Selects the method of setting the Modulation field of the received signal. When AUTO is selected the 3900 matches the Modulation type to the modulation of the incoming signal. When MANUAL is selected the user selects the Modulation type of the received signal from the Modulation field.

2.3.3.B.2 Modulation
Selects the modulation type to be transmitted by the Test Set. Available selections include QPSK, 16 QAM and 64 QAM. The Modulation types available in the drop-down menu are determined by the Burst Type selected. For example, Inbound Random burst patterns only enable QPSK modulation.

When Receive Mode is set to Manual, the Receiver Modulation type can be manually selected as QPSK, 16 QAM or 64 QAM.

2.3.3.B.3 Pattern
Selects the pattern to be generated. The O.153 Std pattern is a pseudorandom sequence based on ITU-T O.153 standard. The O.153 Std w/ 1% Err pattern is calibrated with a 1% bit error rate included in the pattern.

2.3.3.B.4 Sync Mode
Selects how the Test Set references timing in an HPD® signal. The Test Set always sends out a pulse at the beginning of Timeslot 0, regardless of the Sync Mode selected.

- **Free Run (Transmit and Receive Sync Mode)**
 When Free Run is selected the Test Set transmits and/or receives a continuous signal with all timeslots filled. There is no relationship between the timing of the Inbound Reserved and Outbound channels.
TDO (Receive Sync Mode)

The Test Set transmits an Outbound signal. Acquisition of the Inbound Reserved signal received from the MSU is based on the assumption that the Inbound Reserved signal is aligned with the Outbound signal as defined by HPD® Specifications (i.e., separated by the TDO value). When TDO is selected for Receive Sync Mode, Transmit Sync Mode automatically defaults to Free Run and vice versa.

The block diagram below illustrates the signal path between the Test Set and the MSU when the Test Set is configured to receive the MSU’s Inbound signal.

```
Fig. 2-11  TDO (Receive Sync Mode)
```

The RF Control Settings Tile Burst Type and Sync Mode parameters must be configured as follows to align the Test Set with the MSU signal:

<table>
<thead>
<tr>
<th>Transmit Parameters</th>
<th>Receive Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Type</td>
<td>Outbound</td>
</tr>
<tr>
<td>Sync Mode</td>
<td>Free Run</td>
</tr>
<tr>
<td></td>
<td>Burst Type</td>
</tr>
<tr>
<td></td>
<td>Inbound Reserved</td>
</tr>
<tr>
<td></td>
<td>Sync Mode</td>
</tr>
<tr>
<td></td>
<td>TDO</td>
</tr>
</tbody>
</table>

```
Fig. 2-12  RF Control Settings Tile - TDO (Receive Sync Mode)
```
TDO (Transmit Sync Mode)

The Test Set derives its TDM Synchronization from the Outbound signal transmitted by the BR. The Inbound Reserved signal is transmitted by the Test Set as defined by HPD® Specifications (i.e., separated by the TDO value).

The block diagram below illustrates the signal path between the Test Set and the BR when the Test Set is configured to receive and align itself to the BR’s Outbound signal. When TDO is selected for Transmit Sync Mode, Receive Sync Mode automatically defaults to Free Run and vice versa.

![Block Diagram](image)

Fig. 2-13 TDO (Transmit Sync Mode)

The RF Control Settings Tile Burst Type and Sync Mode parameters must be configured as follows to align the Test Set with the BR’s signal:

<table>
<thead>
<tr>
<th>Transmit Parameters</th>
<th>Receive Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Type</td>
<td>Inbound Reserved</td>
</tr>
<tr>
<td>Sync Mode</td>
<td>TDO</td>
</tr>
<tr>
<td>Burst Type</td>
<td>Outbound</td>
</tr>
<tr>
<td>Sync Mode</td>
<td>Free Run</td>
</tr>
</tbody>
</table>

![RF Control Settings](image)

Fig. 2-14 RF Control Settings Tile - TDO (Transmit Sync Mode)
2.3.3.B.5 Burst Type
Burst Type defines the functionality of the 3900, enabling the Test Set to function as a BR or an MSU. BR mode allows the service monitor to simulate Base Radio operation. MSU mode allows the test set to simulate a mobile subscriber unit.

BR Simulation

To simulate BR operation set Burst Type fields as follows:
- Transmit Mode: Outbound (signal is transmitted by BR)
- Receive Mode: Inbound Reserved or Inbound Random (signal is being received from MSU)

MSU Simulation

To simulate MSU operation set the Burst Type fields as follows:
- Transmit Mode: Inbound (signal is being received from MSU)
- Receive Mode: Outbound (signal is being transmitted by the BR)

2.3.3.B.6 TDM Syn
Enables or disables TDM_SYNC in the BCCH (Broadcast Control Channel). This setting only applies to the Outbound Burst Type.

2.3.3.B.7 Max Freq Drift
Maximum Frequency Drift is the slope of the sine wave pattern when the Offset of the sine wave pattern is zero.

2.3.3.B.8 Freq Profile Period
The Frequency Profile Period is the period of the Sine wave.

2.3.3.B.9 SAC (Subscriber Access Code)
Display only field indicates the Subscriber Access Code in the header block of the received signal. Displayed in hexadecimal format.

2.3.3.B.10 BKF (Block Format)
Display only field indicates the Block Format in the header block of the received signal. Displayed in hexadecimal format.

2.3.3.B.11 COS (Coding Scheme)
Display only field indicates the Coding Scheme in the header block of the received signal. Data is displayed as a numeric value. Displayed in hexadecimal format.
- 00 = Test Pattern
- 01 = SAM Radio Channel Coding
2.3.3.B.12 LCM (Logical Channel Multiplexing)

Display only field indicates the Logical Channel Multiplexing in the header block of the received signal. Displayed in hexadecimal format.

Fig. 2-15 RF Control Settings Soft Keys

2.3.3.C Soft Key Definitions

2.3.3.C.1 RF Gen Soft Key

Selects and indicates the On/Off state of the RF Generator output from the Test Set. When the generator is disabled, an RF OFF indicator is shown on the Tile.

2.3.3.C.2 RF Out Soft Key

The RF Out Soft Key controls the RF Output signal routing. Select either the GEN (Generator) Connector or T/R Connector as RF Output port.

2.3.3.C.3 RF In Soft Key

The RF In Soft Key controls the RF Input signal routing. Select either the T/R Connector or ANT (Antenna) Connector as the RF Input port.

2.3.3.C.4 Transmit Soft Key

Enables (starts) and disables (stops) HPD® signal transmission.

2.3.3.C.5 Pre-Amp Soft Key

The 3900 is equipped with an internal 15 dB broadband amplifier that affects the T/R Connector and ANT (Antenna) Connector. When Pre-Amp is turned ON, the 3900 has a typical noise figure of -9 dB leading to a noise floor level of approximately -140 dBm in the Spectrum Analyzer (RBW = 300 Hz) and approximately -126 dBm for the Inband Power Meter (IF = 6.25 kHz). Using the Pre-Amp feature increases the sensitivity of the 3900.

NOTE

When Pre-Amp is used, special attention is required; it is a broadband amplifier and could lead to saturation or compression problems in the receiver chain if the signal of interest is very low, but a strong out of band signal is present.

2.3.3.C.6 Reset Acquire Soft Key

"Re-synchronizes" the test set with the incoming HPD® signal.
2.3.4 **Rx Meter Display Tile**

The Rx Meter Display Tile shows measurement results pertaining to the received HPD® signal. Parameters configured on this Tile update the parameters on other HPD® Measurement Tiles.

Fig. 2-17 shows the maximized display, which provides a wider range of data than the minimized Tile and contains radio buttons that select the readings to be shown on the minimized Tile, Meter Bar and bar graph.

![Maximized and Minimized View of Rx Meter Display Tile](image)

Burst Timing Error Meter

Symbol Clock Error Meter

Fig. 2-16 Rx Meter Display - Minimized View

Fig. 2-17 Rx Meter Display - Maximized View

2.3.4.A Field/Soft Key Definitions

2.3.4.A.1 Signal Power

Indicates power of the received signal. Drop-down menu selects unit of measurement as dBm or W. When the Watts is selected and the reading falls below 100 mW, the meter background turns GRAY, indicating the reading may be inaccurate. If this occurs, switch the unit of measurement to dBm to obtain an accurate reading.

2.3.4.A.2 Frequency Error

Indicates frequency error of the received signal.

2.3.4.A.3 EVM

Indicates the Error Vector Magnitude reading of the received signal.

2.3.4.A.4 Symbol Clock Error

Indicates the Symbol Clock Offset between the Test Set and the transmitter.
2.3.4.A.5 Burst Timing Error
Indicates Timing Offset between the expected and received signal. This meter is only visible when Receive Sync Mode field on the RF Control Settings (Gen/Recv) Tile is set to TDO.

2.3.4.A.6 Rx BER
Indicates Bit Error Rate (BER) readings of signal.

2.3.4.A.7 Occupied Bandwidth
Indicates the percent of Occupied Bandwidth of the signal.

2.3.4.A.8 Over n Bursts
The Over n Bursts field specifies the number of bursts over which data is averaged for each measurement. Values can be set independently for each meter. If the Bursts field is set to 20 (default value) it means the Test Set averages data over 20 bursts.

2.3.4.A.9 min/avg/max Reading Indicators
These radio buttons select the reading displayed when the Rx Meter Display Tile is minimized.
Selecting min displays the lowest recorded reading. Pressing the Reset Meters Soft Key resets this value.
Selecting avg displays the average of all recorded readings over the period of defined bursts (default setting).
Selecting max displays the highest recorded reading. Pressing the Reset Meters Soft Key resets this value.

2.3.4.A.10 Meter Bar
The METER BAR is a single, linear indicator that provides a visual measurement reading based on a user defined scale. Upper and lower limit indicators are set on the Rx Measurement Configuration Tile.
Refer to the sections in this chapter titled I & Q Measurements Limits Tile and Rx Measurements Limits Tile for more information on Upper and Lower Limits.

2.3.4.A.11 Scale
Defines the horizontal scale of the METER BAR. User selection is made from a drop-down box offering the choice of Auto (default value) or a fixed value. The available range is specific to the referenced reading.
Fig. 2-18 shows an example of the Symbol Clock Error Meter with different scale settings selected.

2.3.4.A.12 Reset Meters Soft Key
Stops, clears, and re-starts the acquisition of data for the data display fields.

2.3.4.A.13 Reset Acquire Soft Key
“Re-synchronizes” the test set with the incoming HPD® signal.
2.3.5 Trajectory Tile

The Trajectory plot displays a visual representation of the received samples. The graph allows up to four channels to be displayed simultaneously.

![Fig. 2-19 Trajectory Tile - Maximized View (One Channel)](image)

2.3.5.A Field Definitions

2.3.5.A.1 Channel Tick Boxes

The CH1 through CH4 tick buttons select channel(s) to be displayed on the plot field. More than one channel can be enabled. When enabled the tick buttons show the color used to display the selected channel(s).

2.3.5.A.2 Persistence

Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

2.3.5.A.3 Reset Meters Soft Key

Stops, clears, and re-starts the acquisition of data for the data display fields.

2.3.5.A.4 Reset Acquire Soft Key

“Re-synchronizes" the test set with the incoming HPD® signal.

2.3.5.A.5 Markers Cross/Circle Soft Key

The Markers Cross/Circle Soft Key selects either CROSS or CIRCLE symbol indicators for the markers on the display field. This soft key is accessed by pressing the Markers Soft Key.
3.1 INTRODUCTION

This chapter describes the features found in the Advanced HPD® Analysis Package (Motorola Part # R2092A). These optional features provide the user with the following capabilities:

- **Rx Bits Tile** provides a readout of the bit blocks received in the HPD® data stream.
- **Rx Time Display Tile** shows the history of the frequency error, symbol clock error or power readings over a user defined span of time.
- **Magnitude/Phase Error Tile** shows magnitude and phase fluctuations of the received signal over a period of one burst.
- **Eye Diagram Tile** provides representations of the symbol pattern of the received frequency.
- **Power Profile Display Tiles** provide visual representation of the Full and Ramp power profile readings.
- **I & Q Display Tile** displays the I and Q patterns in the last received signal.
3.2 ADVANCED ANALYSIS TEST TILES

3.2.1 Eye Diagram Tile

The Eye Diagram Display Tile shows the eye diagram of the received signal.

![Eye Diagram Tile - Maximized View](image)

Fig. 3-1 Eye Diagram Tile - Maximized View

3.2.1.A Field Definitions

3.2.1.A.1 Channel Tick Boxes

The CH1 through CH4 tick buttons select channel(s) to be displayed on the plot field. More than one channel can be enabled. When enabled the tick buttons show the color used to display the selected channel(s).

3.2.1.A.2 Vertical Graph Scale

The vertical scale represents the I & Q positions of the Rx signal at specific points in time. The vertical scale is system defined at -8 to +8.

3.2.1.A.3 Horizontal Graph Scale

The horizontal scale is indicated in symbols as defined by the Number Symbols field. A smaller scale setting results in a more detailed trace display.

3.2.1.A.4 Number Symbols

Defines the horizontal scale of the display field. The example screens show how adjusting the horizontal scale changes the appearance of the trace on the graph field. The example shows a trace with the Number Symbols field set to 10. Lowering the number or symbols shows more detail of the signal pattern.

3.2.1.A.5 Reset Meters Soft Key

Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.1.A.6 Reset Acquire Soft Key

“Re-synchronizes” the test set with the incoming HPD® signal.
3.2.2 I & Q Display Tile

The I & Q Display Tile shows the I and Q patterns in the last received signal over a period of time.

![I & Q Time Display](image)

Fig. 3-2 I & Q Display Tile - Minimized View

![I & Q Display Tile](image)

Fig. 3-3 I & Q Display Tile - Maximized View

3.2.2.A Field/Soft Key Definitions

3.2.2.A.1 Marker 1/Marker 2 ON/OFF
Toggle button turns the limit indicators for the selected meter ON or OFF.

3.2.2.A.2 Horizontal Position
The white data field to the right of the ON/OFF button indicates the marker’s location along the display field’s horizontal scale. The markers can be placed at any point along the horizontal scale.

3.2.2.A.3 I and Q Fields
Indicates the readings at I and Q points at marker location. Data is only present in these fields when the parameter is enabled by the I and Q tick boxes. These fields are read only and can not be edited.

3.2.2.A.4 Marker Deltas
The first field indicates the difference between Marker 1 and Marker 2 locations. The second field indicates the difference in measurement readings between Marker 1 and Marker 2 locations. These fields are read only and can not be edited. Marker Delta fields only contain data when both markers are enabled.
3.2.2.A.5 I and Q Tick Buttons

Tick boxes enable (ON)/ disable (OFF) the I and Q points on the graph field. When enabled, the tick boxes indicate the color used to display the selected pattern.

3.2.2.A.6 Top of Scale

The I & Q Display Tile automatically centers the signal trace at “0” on the vertical scale. TOS defines the highest value of the vertical scale. When a value is selected, the corresponding negative value is displayed at the bottom of the graph.

Fig. 3-3 shows an example with the TOS set to 10; Fig. 3-4 shows an example with the TOS set to 5.

3.2.2.A.7 Persistence

Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

3.2.2.A.8 Vertical Graph Scale

The vertical scale represents the I & Q positions of Rx signal at points in time. Value is defined by the Top of Scale field. Default range -10 to +10.

3.2.2.A.9 Horizontal Graph Scale

The horizontal scale of the I & Q Time Display field is indicated in ms (msec). Default range for a single Outbound burst or Inbound Reserved burst is 0 to 30 ms (msec). Default range for a single Inbound Random burst is 0 to 10 ms (msec). The Adjust Horizontal Soft Key opens a soft key sub-menu that adjusts the position and range of the graph’s horizontal scale.

3.2.2.A.10 Reset Meters Soft Key

Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.2.A.11 Reset Acquire Soft Key

“Re-synchronizes” the test set with the incoming HPD® signal.
3.2.2.A.12 Adjust Horizontal Soft Key

The Adjust Horizontal Soft Key opens a soft key sub-menu as shown in example below. The additional soft keys adjust the position of the horizontal scale and the appearance of the signal trace on the graph. The smallest range setting is 2 ms (msec).

Fig. 3-4 I & Q Display Adjust Horizontal Soft Key Sub-menu

3.2.2.A.13 Reset Horizontal Soft Key

Reset the horizontal scale to default range of the burst type. This soft key is accessed by pressing the Adjust Horizontal Soft Key.
3.2.3 Magnitude/Phase Estimation Tile

The Magnitude/Phase Error Tile shows magnitude and phase fluctuations of the received signal over a period of one burst.

![Magnitude/Phase Estimation Tile](image)

Fig. 3-5 Magnitude/Phase Estimation Tile - Maximized View

3.2.3.A Field/Soft Key Definitions

3.2.3.A.1 Marker 1/Marker 2 ON/OFF

Toggle button turns the limit indicators for the selected meter ON or OFF.

3.2.3.A.2 Horizontal Position

The white data field to the right of the ON/OFF button indicates the marker’s location along the display field’s horizontal scale. The markers can be placed at any point along the horizontal scale.

3.2.3.A.3 Magnitude/Phase

Indicates the current measurement reading at the marker’s position. This field is read only and cannot be edited.

3.2.3.A.4 Marker Deltas

The first field indicates the difference between Marker 1 and Marker 2 locations. The second field indicates the difference in measurement readings between Marker 1 and Marker 2 locations. These fields are read only and cannot be edited. Marker Delta fields only contain data when both markers are enabled.

3.2.3.A.5 Persistence

Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

3.2.3.A.6 Magnitude TOS (Top of Scale)

Defines the highest value on the vertical scale of the Magnitude display field. Fig. 3-5 and Fig. 3-6 show examples of how adjusting the TOS value changes the display.

3.2.3.A.7 Phase TOS (Top of Scale)

Defines the highest value of the vertical scale of the Phase display field.
3.2.3.A.8 **Magnitude Graph Scale**

Vertical

The vertical scale of the magnitude graph is defined by the Magnitude TOS (Top of Scale) field. Default range is -2 to +2 dBm.

Horizontal

The horizontal scale of the Magnitude graph is system defined based on the number of symbols present in one burst.

3.2.3.A.9 **Phase Graph Scale**

Vertical

The vertical scale of the Phase graph is defined by the Phase TOS (Top of Scale) field. Default range is -4.0 to 4.0 radians.

Horizontal

The horizontal scale of the phase graph is system defined based on the number of symbols present in one burst.

![Fig. 3-6 Magnitude TOS (10 dBm)](image)

3.2.3.A.10 **Reset Meters Soft Key**

Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.3.A.11 **Reset Acquire Soft Key**

"Re-synchronizes" the test set with the incoming HPD® signal.
3.2.4 Profile Full Tile

The Profile Full Tile displays the complete profile of the signal’s power reading over a period of one burst.

Fig. 3-7 Profile Full - Minimized View

![Profile Full - Minimized View](image)

Fig. 3-8 Profile Full - Maximized View

![Profile Full - Maximized View](image)

3.2.4.A Field/Soft Key Definitions

3.2.4.A.1 Marker 1/Marker 2 ON/OFF

Toggle button turns the limit indicators for the selected meter ON or OFF.

3.2.4.A.2 Horizontal Position

The white data field to the right of the ON/OFF button indicates the marker’s location along the display field’s horizontal scale. The markers can be placed at any point along the horizontal scale.

3.2.4.A.3 Power Reading

The field to the right of the Horizontal Position field indicates the Power reading at the marker’s position.

3.2.4.A.4 Marker Deltas

The first field indicates the difference between Marker 1 and Marker 2 locations. The second field indicates the difference in measurement readings between Marker 1 and Marker 2 locations. These fields are read only and cannot be edited. Marker Delta fields only contain data when both markers are enabled.
3.2.4.A.5 **Averaging**
Defines the number of bursts measured to calculate average meter readings. Changes made to this field do not affect the Over n Bursts setting on the Rx Meter Display Tile.

3.2.4.A.6 **Persistence**
Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

3.2.4.A.7 **Vertical Graph Scale**
The vertical scale of the graph field is indicated in dBm. The Adjust Vertical Soft Key opens a soft key sub-menu that adjusts the positioning and range of the graph’s vertical scale. The smallest available range span is 20.0 dBm.

3.2.4.A.8 **Horizontal Graph Scale**
The horizontal scale of the Profile Full graph field is indicated in ms (msec). Default range for a single Outbound burst or Inbound Reserved burst is 0 to 30 ms (msec). Default range for a single Inbound Random burst is 0 to 10 ms (msec). The Adjust Horizontal Soft Key opens a soft key sub-menu that adjusts the positioning and range of the graph’s horizontal scale.

3.2.4.A.9 **Profile Soft Key**
Profile Show/Hide Soft Key turns the profile trace ON/OFF. When SHOW is selected a GREEN profile appears on the display indicating the expected pattern of the signal.

![Fig. 3-9 Power Full - Profile SHOW Enabled](image)
3.2.4.A.10 Adjust Vertical Soft Key

The Adjust Vertical Soft Key opens a soft key sub-menu as shown in the example below. The sub-menu soft keys adjust the position and range of the vertical scale. Scale is adjusted in increments of 10 dBm.

![Fig. 3-10 Power Full Adjust Vertical Soft Key Sub-menu](image)

3.2.4.A.11 Reset Vertical Soft Key

The Reset Vertical Soft Key centers trace vertically on graph field. This soft key is helpful in locating a trace when it is not visible on the graph field. This soft key is accessed by pressing the Adjust Vertical Soft Key.

3.2.4.A.12 Adjust Horizontal Soft Key

The Adjust Horizontal Soft Key opens a soft key sub-menu as shown in example below. The additional soft keys adjust the position of the horizontal scale and the appearance of the signal trace on the graph. The smallest range setting is 2 ms (msec). The largest range setting for Outbound and Inbound Reserved signal is 0 to 30 ms. The largest range setting for Inbound Random signals is 0 to 10 ms.

Fig. 3-11 shows the first two ms (msec) of the burst displayed on the graph.
3.2.4.A.13 **Reset Horizontal Soft Key**

Resets the horizontal scale to default range of the burst type. This soft key is accessed by pressing the Adjust Horizontal Soft Key.

![Fig. 3-11 Power Full - First two ms (msec) of Burst](image1)

![Fig. 3-12 Power Full - Last two ms (msec) of Burst](image2)

3.2.4.A.14 **Reset Meters Soft Key**

Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.4.A.15 **Reset Acquire Soft Key**

“Re-synchronizes” the test set with the incoming HPD® signal.
3.2.5 **Profile Ramps Tile**

The Profile Ramps Tile displays the ramp profile of the signal’s power reading over a period of one burst. The left side of the field provides a detailed view of the first 2 ms (msec) of the burst. The right side of the field provides a detailed view of the last 2 ms (msec) of the burst.

The examples below show the Profile Ramps Tile with the SHOW Profile feature selected.

![Fig. 3-13 Power Ramps - Minimized View](image)

![Fig. 3-14 Power Ramps - Maximized View](image)

3.2.5.A Field/Soft Key Definitions

3.2.5.A.1 Marker 1/Marker 2 ON/OFF

Enables (ON) or Disables (OFF) vertical markers on the display field.

3.2.5.A.2 Horizontal Marker Position

The white data field to the right of the ON/OFF button defines the marker’s location along the graph field’s horizontal scale. Markers can be placed at any point within the available time range for each side of the graph field. The range on the left side of the graph field is 0 to 2.0 ms (msec), the first two ms (msec) of the burst. The range on the right side of the graph field is 28 to 30 ms (msec) for Outbound and Inbound Reserved signals and 8 to 10 ms (msec) for Inbound Random signals, the last two ms (msec) of the burst.

3.2.5.A.3 Power Reading

The field to the right of the Horizontal Marker Position field indicates the Power reading at the marker’s position.
3.2.5.A.4 **Marker Deltas**
The first field indicates the difference between Marker 1 and Marker 2 locations. The second field indicates the difference in measurement readings between Marker 1 and Marker 2 locations. These fields are read only and can not be edited. Marker Delta fields only contain data when both markers are enabled.

3.2.5.A.5 **Averaging**
Defines the number of bursts measured to calculate average trace data values. Changes made to this field do not affect the Over n Bursts setting on the Rx Meter Display Tile.

3.2.5.A.6 **Persistence**
Specifies how many trace plots are shown simultaneously on the display field. Selectable range is 1 to 10. Selecting 1 means that only one burst or time slot is displayed on the display field. Selecting 10 means the last 10 bursts or time slots are displayed simultaneously on the display field.

3.2.5.A.7 **Vertical Graph Scale**
The vertical scale of the graph field is indicated in dBm. The Adjust Vertical Soft Key opens a soft key sub-menu that adjusts the positioning and range of the graph's vertical scale.

3.2.5.A.8 **Horizontal Graph Scale**
The horizontal scale of the graph field is indicated in ms (msec). The left field range is 0 to 2 ms (msec); the right field range is 28 to 30 ms (msec) or 8 to 10 ms (msec) depending on the burst type. Marker indicators appear along the horizontal axis when markers are enabled.

3.2.5.A.9 **Profile Soft Key**
Profile Show/Hide Soft Key turns the profile trace ON/OFF. When SHOW is selected, as in the example below, a GREEN profile appears on the display indicating the expected pattern of the signal.
3.2.5.A.10 Adjust Vertical Soft Key

The Adjust Vertical Soft Key opens a soft key sub-menu as shown in the example below. The sub-menu soft keys adjust the position and range of the vertical scale. The smallest available range span is 30 dBm. Scales is adjusted in increments of 10 dBm.

![Image of Adjust Vertical Soft Key sub-menu](image)

Fig. 3-15 Power Ramps - Adjust Vertical Soft Keys Sub-menu

3.2.5.A.11 Reset Vertical Soft Key

The Reset Vertical Soft Key centers trace vertically on graph field. This soft key is helpful in locating a trace when it is not visible on the graph field. This soft key is accessed by pressing the Adjust Vertical Soft Key.

3.2.5.A.12 Reset Meters Soft Key

Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.5.A.13 Reset Acquire Soft Key

"Re-synchronizes" the test set with the incoming HPD® signal.
3.2.6 Rx Bits Tile

The Rx Bits Tile provides a visual representation of the bits received in the HPD® data stream. The data is displayed as hexadecimal characters grouped in an 8 character word format. When the Test Set receives a signal, the bit fields log data according to the position of the data in the burst stream, starting with bit “0” and continuing until the Test Set stops receiving a signal.

![Received Bits Tile - Maximized and Minimized View](image)

3.2.6.A Field/Soft Key Definitions

3.2.6.A.1 Receive Bits Field
Displays bit blocks acquired from the received HPD® signal. Correctly received bits are displayed as BLACK hexadecimal characters; bit errors are displayed as RED hexadecimal characters.

3.2.6.A.2 Rx BER (avg)
Displays the average BER reading.

3.2.6.A.3 Data Soft Key
The DATA Soft Key PAUSES the live feed of received bit data packets. Pressing the CONTINUE Soft Key resumes the display of received bit data packets. Bit data packets transmitted when Pause is selected are not recovered when Continue is pressed.
3.2.6.A.4 **Reset Acquire Soft Key**

“Re-synchronizes” the test set with the incoming HPD® signal.

3.2.6.A.5 **Clear Soft Key**

Clears acquired bit data from data field.
3.2.7 **Rx Time Display Tile**

The Rx Time Display Tile shows the history of the frequency error, power readings and symbol clock error or burst timing error readings over a user defined span of time.

![Fig. 3-17 Rx Time Display - Minimized View](image)

![Fig. 3-18 Rx Time Display - Maximized View](image)

3.2.7.A Field/Soft Key Definitions

3.2.7.A.1 Marker 1/Marker 2 ON/OFF

Enables (ON) or Disables (OFF) vertical markers on the display field.

3.2.7.A.2 Horizontal Position

The white data field to the right of the ON/OFF button indicates the marker’s location along the display field’s horizontal scale. The markers can be placed at any point along the horizontal scale.

3.2.7.A.3 Measurement Reading

Indicates the current measurement reading at the marker’s position. This field is read only and cannot be edited.

3.2.7.A.4 Marker Delta

The first field indicates the difference between Marker 1 and Marker 2 locations. The second field indicates the difference in measurement readings between Marker 1 and Marker 2 locations. These fields are read only and cannot be edited. Marker Delta fields only contain data when both markers are enabled.
3.2.7.A.5 Span
Defines the period of time over which the selected reading is plotted on the display field. Valid span setting depends on the decimation rate selected in the Rx Meter Field on the Decimation Configuration Tile and the signal burst type.

3.2.7.A.6 Horizontal Graph Scale
The graph’s horizontal scale is defined by the Span setting. The Test Set automatically adjusts the defined Span setting to the closest valid value according to the signal burst type being received.

3.2.7.A.7 Vertical Graph Scale
The graph’s vertical scale unit of measurement is defined by the reading displayed on the graph field. Symbol Clock Error is indicated in mHz; Power readings are indicated in dBm.

3.2.7.A.8 Reset Meters Soft Key
Stops, clears, and re-starts the acquisition of data for the data display fields.

3.2.7.A.9 Reset Acquire Soft Key
“Re-synchronizes” the test set with the incoming HPD® signal.

3.2.7.A.10 Adjust Vertical Soft Key
The Adjust Vertical Soft Key opens a soft key sub-menu as shown in the example below. The sub-menu soft keys adjust the position and range of the vertical scale.

3.2.7.A.11 Reset Vertical Soft Key
The Reset Vertical Soft Key centers trace vertically on graph field. This soft key is helpful in locating a trace when it is not visible on the graph field. This soft key is accessed by pressing the Adjust Vertical Soft Key.
Chapter 4 - HPD® User Data I/O Port

4.1 INTRODUCTION

The HPD® User Data I/O Port allows XML formatted information, referred to in this manual as XML files, to be relayed to and from a remote PC location and a Test Set. Each XML file contains processing instructions, a timestamp, and MAC header and MAC data blocks. When the PC and Test Set are connected, the Test Set sends any valid received HPD® data to the PC in XML format. The PC receives the XML file, which can be saved to a file, edited and re-transmitted to the Test Set, or deleted.

NOTE

Received XML files can only be viewed when a viewing application Viewing Application has been installed on the PC.

4.2 VIEWING APPLICATION

The following information is necessary to develop an internal viewing application:
• The Test Set Raw Data Service is listening on TCP socket number 2222.
• The Test Set’s IP address can be configured and accessed from the Network Utility Tile.

4.3 CONNECTING EQUIPMENT

To use the User Data I/O Port, the PC and the Test Set must be operating on the same local network via an Ethernet cable. Once equipment is connected, XML files can be transmitted to and from the PC and the Test Set. In this configuration, the Test Set functions as a TCP socket server and the PC application functions as a TCP client. The port number used by the Test Set is 2222.

NOTE

The TCP socket on the PC should be opened in blocking mode so that XML data is not lost when it is sent to the Test Set. PC processing speed must be sufficient to allow it to accept the incoming data burst stream of XML lines.
4.4 **HPD® XML COMMAND STRUCTURE**

This section describes HPD® XML commands and command formatting instructions. This section is intended for users familiar with XML and therefore only describes XML commands specific to the Test Set HPD® Option.

To establish a baseline, the first `<burst>` definition in the XML file should include `<type>`, `<modulation>`, `<mhbk>` and `<mdbk>` information.

4.4.1 `<burst> </burst>`

This command indicates the beginning and end of each burst.

The following configuration rules must be followed or the burst is not transmitted:
- If `<type>` or `<modulation>` appear in the `<burst>` definition, `<mhbk>` and `<mdbk>` must also be included in the `<burst>` definition.
- If `<type>` is INBOUND RANDOM, `<modulation>` must be defined as QPSK.

4.4.2 `<type> </type>`

This command specifies the mode of the signal being transmitted or received:
- INBOUND RESERVED
- INBOUND RANDOM
- OUTBOUND

4.4.3 `<modulation> </modulation>`

This command specifies the type of modulation being transmitted or received:
- QPSK
- 16QAM
- 64QAM

4.4.4 `<timestamp> </timestamp>`

The timestamp field is optional for each burst transmission. This value can be user defined as an ASCII hex string with a maximum of 8 characters. The burst is sent immediately if this field is FFFFFFFF.

4.4.5 `<mhbk> </mhbk>`

The field is comprised of a stream of ASCII hex characters which compile the MAC Header Block of the burst.

MHBK data should be input as a ASCII hex string. Bit lengths are defined in the following table according to specified modulation and signal type:

<table>
<thead>
<tr>
<th>SIGNAL TYPE</th>
<th>MODULATION TYPE</th>
<th>BIT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound</td>
<td>QPSK</td>
<td>120 bits</td>
</tr>
<tr>
<td>Outbound</td>
<td>16 QAM</td>
<td>120 bits</td>
</tr>
<tr>
<td>Outbound</td>
<td>64 QAM</td>
<td>120 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>QPSK</td>
<td>96 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>16 QAM</td>
<td>96 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>64 QAM</td>
<td>96 bits</td>
</tr>
<tr>
<td>Inbound Random</td>
<td>QPSK</td>
<td>Does not contain a MHBK.</td>
</tr>
</tbody>
</table>
4.4.6 <mdbk> </mdbk>

The field is comprised of a stream of ASCII hex characters which compile the MAC Data Block of the burst.

MDBK data should be input as a ASCII hex string. Bit lengths are defined in the following table according to specified modulation and signal type:

<table>
<thead>
<tr>
<th>SIGNAL TYPE</th>
<th>MODULATION TYPE</th>
<th>BIT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound</td>
<td>QPSK</td>
<td>696 bits</td>
</tr>
<tr>
<td>Outbound</td>
<td>16 QAM</td>
<td>1392 bits</td>
</tr>
<tr>
<td>Outbound</td>
<td>64 QAM</td>
<td>2088 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>QPSK</td>
<td>648 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>16 QAM</td>
<td>1296 bits</td>
</tr>
<tr>
<td>Inbound Reserved</td>
<td>64 QAM</td>
<td>1944 bits</td>
</tr>
<tr>
<td>Inbound Random</td>
<td>QPSK</td>
<td>164 bits</td>
</tr>
</tbody>
</table>

4.4.7 <skip> </skip>

When <skip> is used in the command structure the burst is not transmitted for that time slot.

4.4.8 <sync> </sync>

Sync indicates the external sync pulse is not transmitted at the beginning of the burst.
THIS PAGE INTENTIONALLY LEFT BLANK.
5.1 INTRODUCTION

The HPD® Acceptance Test procedure is used to verify that 3900 HPD® software is functioning within factory specifications. Before beginning this procedure, complete the Installation Instructions described in section titled Installation in Chapter 2 of the 3900 Series Operation Manual. Refer to the section titled Test Set Operation in the 3900 Series Operation Manual for information on use and operation of the Test Set. The HPD® Acceptance Test procedure utilizes the Test Set’s internal loopback feature, allowing the unit to generate and receive an HPD® signal.

5.2 REQUIRED EQUIPMENT

The following equipment is needed to complete the HPD® Acceptance Test:
• MBNC to MBNC cable

5.3 TEST PROCEDURE

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power on Test Set. Verify no error messages are displayed during the boot-up process.</td>
</tr>
<tr>
<td>2.</td>
<td>Connect one end of MBNC to MBNC cable to Test Set GEN (Generator) Connector. Connect other end to Test Set ANT (Antenna) Connector.</td>
</tr>
<tr>
<td>3.</td>
<td>Select Systems, HPD from the Systems Floating menu. When HPD® is first selected, HPD® Default System Tiles appears. If HPD® has previously been used Tile layout may vary.</td>
</tr>
</tbody>
</table>

![Fig. 5-1 HPD® Factory Default Display Tile](image-url)

Fig. 5-1 HPD® Factory Default Display Tile
4. Maximize the RF Control Settings Tile and configure the following fields:
 - Set the RF Gen Freq and RF Rcvr Freq to 851.0625 MHz.
 - Set the RF Gen Level to -40 dBm.
 - Offset in Unlock state.
 - Set to Cabled.
 - Set the Tx and Rx PSC to 1.
 - Set Receive Mode to Auto.
 - Set Tx and Rx Burst Type to Outbound.
 - Set Tx Modulation to QPSK (32 kbps).
 - Set Tx and Rx Sync Mode to Free Run.
 - Set Pattern to O.153 Std.
 - Set TDM Syn to Disable.
 - Set Max Freq Drift to 0.000000 Hz/sec.
 - Set Freq Profile Period to 1.000000 sec.

Fig. 5-2 HPD® Measurement Tiles
5. Minimize RF Control Settings Tile. Select the Constellation, Error Vector Magnitude and Trajectory Tiles on three of the Measurement Tiles. Invalid is displayed in the upper left hand corner of these three display Tiles until a channel is enabled.

![Fig. 5-3 RF Control Settings Soft Keys Enabled](image)

6. Select RF Control Settings Tile. Set RF Out Soft Key to GEN.
7. Set RF In Soft Key to ANT.
8. Set Transmit Soft Key to Enable.
9. Set RF Gen Soft Key to ON.
10. Wait while Test Set acquires signal and accumulates data. Press Reset Acquire Soft Key if needed.
12. Maximize Rx Meter Display Tile to view measurement readings.
13. Record the following readings from the Rx Meter Display Tile:
 - Signal Power: avg and max.
 - Frequency Error: min, avg and max.
 - EVM: avg and max.
 - Rx BER: avg and max.
14. Minimize the Rx Meter Display Tile. Verify the average readings recorded in Step 13 match the following data fields on the RF Control Settings Tile:
 - Signal Power = RF Gen Level (± 1 dBm plus cable loss).
 - Freq Error = RF Gen Offset (± 1 Hz).
 - Rx BER is 0.0 (± < 1%).
15. Select and maximize the Constellation Tile. Enable CH1 through CH4.
STEP 16. Verify the Constellation Tile displays a QPSK signal.

Fig. 5-4 Constellation Tile - QPSK Signal

17. Minimize the Constellation Tile and maximize the Trajectory Tile. Enable CH1 through CH4.

18. Verify the following measurements match the readings recorded in Step 13:
 • EVM: avg and max.
 • Rx BER: avg and max.
 • Freq Error: min, avg and max.

20. Minimize the Constellation Tile and maximize the Trajectory Tile. Enable CH1 through CH4.

21. Verify the following measurements match the readings recorded in Step 13:
 • EVM: avg and max.
 • Rx BER: avg and max.
 • Freq Error: min, avg and max.

22. Minimize Trajectory Tile and maximize Error Vector Magnitude Tile. Enable CH1 through CH4.

23. Verify the following measurements match the readings recorded in Step 13:
 • EVM: avg and max.
 • Rx BER: avg and max.
 • Freq Error: min, avg and max.

24. Minimize Error Vector Magnitude Tile and maximize the RF Control Settings Tile. Change Transmit Modulation to 16 QAM (64 kbps). Press Reset Acquire Soft Key if needed.
25. Minimize RF Control Settings Tile and verify Constellation Tile displays a 16 QAM signal as shown in example below.

![Fig. 5-5 Constellation Tile - 16 QAM Signal](image)

26. Maximize RF Control Settings Tile and change Transmit Modulation to 64 QAM (96 kbps). Press Reset Acquire Soft Key if needed.

27. Minimize RF Control Settings Tile and verify Constellation Tile displays a 64 QAM signal as shown in example below.

![Fig. 5-6 Constellation Tile - 64 QAM Signal](image)
STEP PROCEDURE

28. Maximize the RF Control Settings Tile and change the Pattern to O.153 Std w/1% Err. Press Reset Acquire Soft Key if needed.

29. Minimize RF Control Settings Tile. Verify Rx BER reading on Rx Meter Display Tile is ~1.00e-02.

This completes the HPD® Acceptance Test. If the Test Set did not pass any of these verification steps contact VIAVI Customer Service.
Chapter 6 - HPD® Test Applications

6.1 INTRODUCTION

This chapter provides instructions on configuring the Test Set to perform basic measurements on the HPD® BR and MSU. Test Setup may vary according to the hardware configuration of the BR and MSU being tested.

6.2 HPD® BR FUNCTIONALITY TEST PROCEDURE

This chapter provides instructions on configuring the Test Set to perform basic measurements on the HPD® BR and MSU. Test Setup may vary according to the hardware configuration of the BR and MSU being tested.

6.2.1 BR Functionality Test Setup

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Connect BR Output to Test Set T/R Connector. Connect Test Set 10 MHz reference to BR Ext Freq Ref.</td>
</tr>
<tr>
<td>2.</td>
<td>Configure BR parameters to transmit to the Test Set.</td>
</tr>
</tbody>
</table>

6.2.2 BR Functionality Test Set Configuration

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power on Test Set. Select Systems, HPD from the floating menu.</td>
</tr>
</tbody>
</table>
| 2. | Maximize the RF Control Settings screen and configure the following RF Rcvr (Receiver) fields:

- Set RF Rcvr Freq to match BR frequency.
- Set Offset to UNLOCK.
- Set Receiver Bandwidth to Cabled/Off Air as desired.
- Set Receive PSC to match PSC of BR.
- Set Receive Mode to Auto.
- Set Burst Type to Outbound.
- Verify Sync Mode defaults to Free Run when Outbound Burst Type is selected.
- Verify Pre Amp Soft Key is OFF. |
| 3. | Set RF In Soft Key to T/R. |
| 4. | Set RF Gen Soft Key to OFF. |
| 5. | Set Transmit Soft Key to DISABLE. |
STEP PROCEDURE

6. Minimize the RF Control Settings Tile. Maximize the Rx Meter Display Tile.

7. Define the number of bursts over which the test should average readings for each desired measurement.

8. Key the BR to transmit signal from BR to Test Set. Record desired data from the Rx Meter Display Tile.
6.3 **HPD® MSU FUNCTIONALITY TEST PROCEDURE**

This procedure is used to measure RF Output Power, Frequency Accuracy and BER of the Mobile Subscriber Unit. This procedure also provides EVM, Symbol Clock Error and Occupied Bandwidth readings. The Test Set simulates BR functionality during this test and should be configured accordingly.

6.3.1 MSU Functionality Test Setup

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Connect MSU Tx Port to Test Set T/R Connector.</td>
</tr>
<tr>
<td>2.</td>
<td>Connect Test Set GEN (Generator) Connector to MSU Rx Port.</td>
</tr>
<tr>
<td>3.</td>
<td>Configure MSU to operate in Full Duplex Mode.</td>
</tr>
</tbody>
</table>

6.3.2 MSU Functionality Test Set Configuration

<table>
<thead>
<tr>
<th>STEP</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power on Test Set. Select Systems, then HPD from the floating menu.</td>
</tr>
<tr>
<td>2.</td>
<td>Maximize the RF Control Settings Tile and configure the following:</td>
</tr>
</tbody>
</table>

Transmit Fields:

- Set RF Gen Freq to match MSU frequency.
- Set RF Gen Level to desired value.
- Set the Receive PSC to match the PSC of the MSU.
- Set Burst Type to Outbound.
- Set Modulation to match MSU modulation type.
- Select desired Pattern.
- Set TDM Syn to Disable.

Receive Fields

- Set Offset to UNLOCK.
- Set RF Rcvr Freq to match MSU frequency.
- Set PSC to match MSU PSC.
- Set Receive Bandwidth to Cabled/Off Air as desired.
- Set Receive Mode to Auto.
- Set Burst Mode to Inbound (Reserved or Random to match MSU).
- Set Sync Mode to Free Run or TDO as desired.
Fig. 6-3 Configure RF Control Settings - MSU Functionality Test

3. Set RF In Soft Key to T/R.
4. Set RF Out Soft Key to GEN.
5. Set RF Gen Soft Key to ON.
6. Set Transmit Soft Key to ENABLE.
7. Minimize the RF Settings Control Tile. Maximize the Rx Meter Display Tile.
8. Define the number of bursts over which the test should average readings for each desired measurement.

Fig. 6-4 Configure Rx Meter Fields - MSU Functionality Test

9. Transmit signal from MSU to Test Set. Record the desired data from the Rx Meter Display Tile.
Appendix A - HPD® Terms and Acronyms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQ</td>
<td>Acquire Status Indicator</td>
</tr>
<tr>
<td>avg</td>
<td>Average reading</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BKF</td>
<td>Block Format</td>
</tr>
<tr>
<td>BR</td>
<td>Base Radio</td>
</tr>
<tr>
<td>CH</td>
<td>Channel</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Configuration</td>
</tr>
<tr>
<td>COS</td>
<td>Coding Scheme</td>
</tr>
<tr>
<td>EXT</td>
<td>External</td>
</tr>
<tr>
<td>EVM</td>
<td>Error Vector Magnitude</td>
</tr>
<tr>
<td>freq</td>
<td>Frequency</td>
</tr>
<tr>
<td>GEN</td>
<td>Generate</td>
</tr>
<tr>
<td>GHz</td>
<td>Giga Hertz</td>
</tr>
<tr>
<td>HPD®</td>
<td>High Performance Data®</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Inbound</td>
<td>Burst type sent from Mobile Subscriber Unit to Base Radio</td>
</tr>
<tr>
<td>INT</td>
<td>Internal</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilo Hertz</td>
</tr>
<tr>
<td>LCM</td>
<td>Logical Channel Multiplexing</td>
</tr>
<tr>
<td>max</td>
<td>Maximum reading</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>min</td>
<td>Minimum reading</td>
</tr>
<tr>
<td>Mod</td>
<td>Modulation</td>
</tr>
<tr>
<td>ms</td>
<td>Millisecond</td>
</tr>
<tr>
<td>MSU</td>
<td>Mobile Subscriber Unit</td>
</tr>
<tr>
<td>Out</td>
<td>Outbound Signal</td>
</tr>
<tr>
<td>Outbound</td>
<td>Burst type sent from Base Radio to Mobile Subscriber Unit</td>
</tr>
<tr>
<td>PSC</td>
<td>Pilot Sync Code</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>Ran</td>
<td>Random Inbound Signal</td>
</tr>
<tr>
<td>Res</td>
<td>Reserved Inbound Signal</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>Rx/Rcvr</td>
<td>Receive</td>
</tr>
<tr>
<td>SAC</td>
<td>Subscriber Access Code</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SAM</td>
<td>Scalable Adaptive Modulation</td>
</tr>
<tr>
<td>TDO</td>
<td>Time Division Offset</td>
</tr>
<tr>
<td>TOS</td>
<td>Top of Scale</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
<tr>
<td>UTILS</td>
<td>Utilities</td>
</tr>
<tr>
<td>VNC</td>
<td>Virtual Network Client/Virtual Network Computing</td>
</tr>
</tbody>
</table>
Appendix B - HPD® Contact Information

For information on purchasing HPD® Software Option, contact Motorola:

<table>
<thead>
<tr>
<th>CONTACT:</th>
<th>Motorola Parts Call Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone:</td>
<td>(800) 422-4210, ext 6883</td>
</tr>
<tr>
<td>Hours of Operation</td>
<td>Monday through Friday 7 am to 7 pm CST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPD® Option Numbers</th>
<th>HPD® Testing Option</th>
<th>Motorola Part # R2091A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPD® Advanced Analysis Package</td>
<td>Motorola Part # R2092A</td>
<td></td>
</tr>
<tr>
<td>HPD® Testing Suite (R2091A and R2092A)</td>
<td>Motorola Part # R2093A</td>
<td></td>
</tr>
</tbody>
</table>

For technical support, contact Motorola:

<table>
<thead>
<tr>
<th>CONTACT:</th>
<th>Motorola System Support Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone:</td>
<td>(800) 221-7144</td>
</tr>
<tr>
<td>Hours of Operation</td>
<td>24 hours a day/7 days a week</td>
</tr>
</tbody>
</table>

For issues relating to use of the 3900, contact the VIAVI Sales Support Department:

<table>
<thead>
<tr>
<th>CONTACT:</th>
<th>VIAVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Support Department</td>
<td></td>
</tr>
<tr>
<td>10200 West York Street</td>
<td></td>
</tr>
<tr>
<td>Wichita, KS 67215</td>
<td></td>
</tr>
<tr>
<td>Telephone:</td>
<td>(800) 835-2350</td>
</tr>
<tr>
<td>FAX:</td>
<td>(316) 529-5330</td>
</tr>
<tr>
<td>email:</td>
<td>AvComm.Service@viavisolutions.com</td>
</tr>
</tbody>
</table>