

NordiaSoft

An Innovator for Software Defined Systems

Performance of SCAv4.1 vs SCAv2.2.2

Presented by Dr. Juan Pablo Zamora Zapata

WInnComm Europe 2017

Oulu, Finland. May 17, 2017.

Copyright © 2017 NordiaSoft. All rights reserved. This presentation or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations.

Outline

About NordiaSoft

SCA v4.1 vs. SCA v2.2.2 metrics

New SCA v4.1 features

Who is NordiaSoft?

- A strategic partner for the development of complex heterogeneous embedded distributed systems (HEDS)
- Located in Gatineau, Québec, Canada
 - All started at the Communications Research Centre Canada (CRC)
 - NordiaSoft was launched in 2013
 - Team with over 15 years of R&D in embedded system software

Specialises in high-end HEDS products

- Military and public safety radios
- Test and Instrumentation equipment
- Radar, Electronic Warfare, SigInt
- Robotics, Control rooms
- Transport (Automobile, Avionics, Train, Ship)

NordiaSoft Technology Around the World

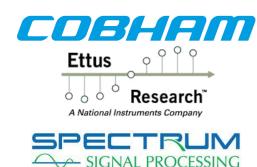
- Americas, Europe, Middle-east, Asia
- Over 10 waveforms deployed on thousands of SCA radios

NordiaSoft

NordiaSoft

NordiaSoft Partners

Platforms Partners


- Cobham AvComm
- Ettus Research
- Spectrum Signal Processing by Vecima
- More coming...

Real Time Software Partners

- Wind River
- Green Hills Software
- Objective Interface Systems
- More coming...

Certification Testing Partners

- Reservoir Labs
- More coming...

by Vecima

NordiaSoft's Team: List of Industry Firsts...

2017	1 st Embedded Components (eCo) Suite for SCAv4.1
2016	 1st SCA Test Instrument: Cobham Modular Platform(CMP)
2015	 1st SCA OpenCL demonstration (GPP, GPU, FPGA)
2013	- 1 st SCA on Android Handheld demonstration (AM, FM, APCO Project 25)
2011	 1st Android-based SCA waveform implementations
2010	 1st SCA-based Virtual Front Panel
2008	 SCARI-GT: New generation Core Framework for small form factors
2007	1 st SCA Radio demo using the world's smallest computer (Gumstix)
2007	Added support for LynxOS
2006	✓ SCA Architect [™] Eclipse-based integrated modeling tool
2000	Added support for VxWorks and QNX
2005	 1st to introduce XML validation and code generation
	_ Added support for ORBexpress, INTEGRITY, and YellowDog
2004	SCARI++, full C++ SCAv2.2 CF for Linux/TAO
	Open Source SCARI2, JTeL Tested (97.39%) SCAv2.2 CF
2003	 SCARI-Hybrid, CRC's 1st commercial solution with modeling tools
2002	✓ 1 st demo of a commercial SCA application (DAB [™])
2002	1 st SCA Reference Implementation (SCA – RI)
2001	 Introduced the concept of "Ports" and "connections" for SCAv1.0
2000	 Implemented SCAv0.3 FM-LoS demo for DND.
1998	 Designed proprietary SDR architecture

About NordiaSoft

SCA v4.1 vs. SCA v2.2.2 metrics

New SCA v4.1 features

Test bench characteristics

Processor

- NXP iMX.6Quad 1GHz (ARM Cortex-A9 Quad Core)

Memory

- DDR3-1066, 2GByte 533Mhz, 64 bit bus

Storage

- SDHC, speed 10, 32GByte
- OS
 - Linux 3.14 (IMX6 QD)

• OE

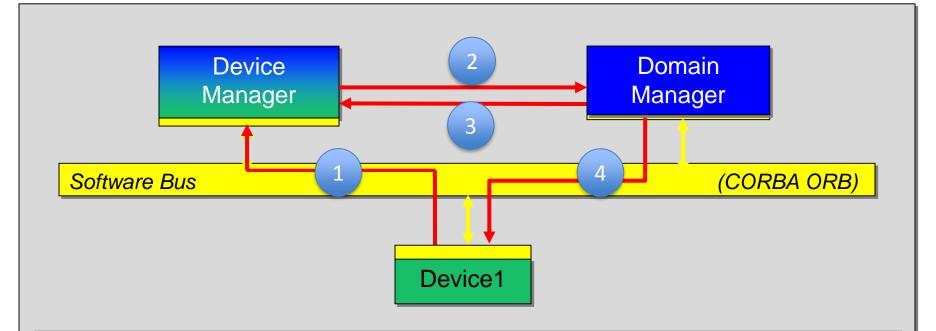
 NordiaSoft 3rd generation SCARI CF v2.2.2 vs NordiaSoft 1st generation Embedded Components (eCo) Hub CF v4.1

Outline

Node Boot Up: Device Registration

Assembly Deployment: Mass Connections Application Deployment: Application Creation

Feature: Registration



SCAv4.1 uses push only registration

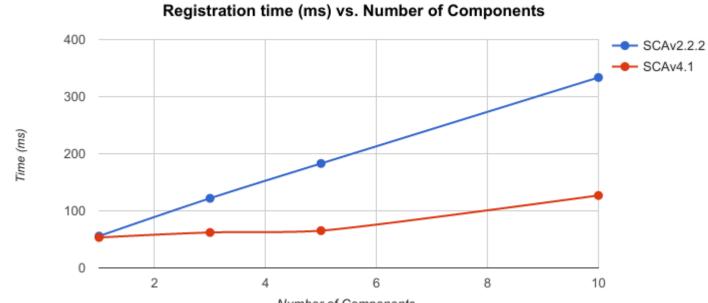
- SCAv2.2.2 was mostly implemented by letting key components pull the information they needed
- SCAv4.1 is focused on allowing components to provide more information at registration to avoid pulling
- This feature can save several interactions to copy metadata files over embedded file systems (major concern for radios with slow file systems)
- It can also help avoid reparsing of some XML information
- The result is a faster boot sequence

Feature: Registration SCAv2.2.2



- 1. Device registers with its DeviceManager
- 2. DeviceManager registers Device with DomainManager
- 3. DomainManager requests Device info from DeviceManager
- 4. *DomainManager* requests from *Device* Software Profile (SPD/PRF) to extract advertised capabilities

Feature: Registration SCAv4.1



- 1. Device registers with its DeviceManager
- 2. DeviceManager registers Device with DomainManager

NordiaSoft

Feature: Registration

Number of Components

# Components	Time (ms)	Time (ms)	Improvement %
	SCAv2.2.2	SCAv4.1	
1	55.705	53.263	4.38%
3	121.93	62.075	49.09%
5	182.928	65.246	64.33%
10	333.542	126.867	61.96%

Node Boot Up: Device Registration

Assembly Deployment: Mass Connections

Application Deployment: Application Creation

Feature: Mass Connections

SCAv4.1 also supports the push approach to establish connections between components

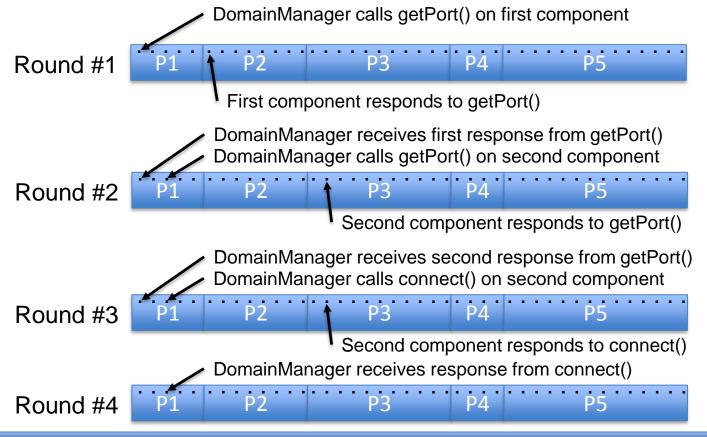
- Components can register all their ports during registration
- Connections can be established in bulk
- The result is a shorter connection sequence

Mass connections can provide substantial improvements for secure radios

- Secure radios need to keep red and black information separated
- The Multiple Independents Levels of Security (MILS) is often used
- MILS relies on RTOS with separate partitions (like ARINC 653)

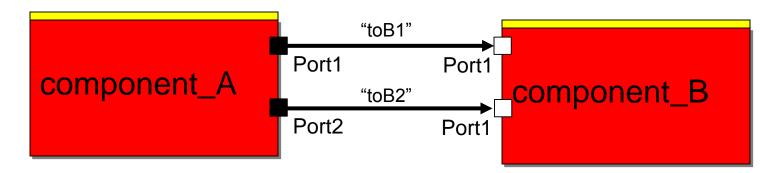
- ...

Feature: Mass Connections


- Mass connections can provide tremendous improvements for secure radios (...)
 - Using SCAv2.2.2, making a connection requires 2 calls to getPort() and 1 call to connect()
 - CORBA is fast, on normal systems, many connections can be performed in milliseconds
 - However, establishing connections between components hosted in different partitions can require up to 4 rounds of the secure scheduler
 - Can be very slow for several connections
 - Typical systems has minimum of 20 connections, some have over 100

May 2017

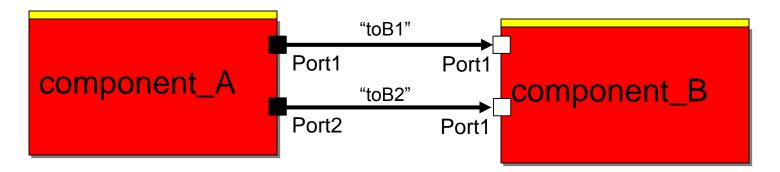
Feature: Mass Connections


 Mass connections can provide tremendous improvements for secure radios (...)

Feature: Mass Connections

- SCAv2.2.2

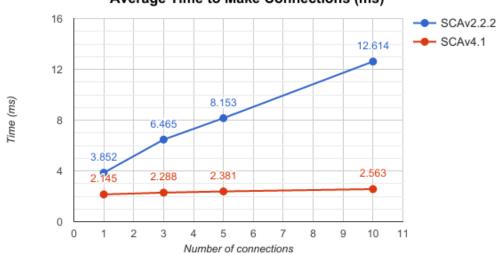
- Connections


portA1 = component_A.getPort("Port1")
portB1 = component_B.getPort("Port1")
portA1.connectPort(portB1, "toB1")
portA2 = component_A.getPort("Port2")
portB2 = component_B.getPort("Port2")
portA2.connectPort(portB2, "toB2")

NordiaSoft

Feature: Mass Connections

• SCAv4.1



- Connection

All provides port references are obtained at registration component_A.connectUsesPorts("Port1", "toB1", "Port2", "toB2"...)

Feature: Mass Connections

Average Time to Make Connections (ms)

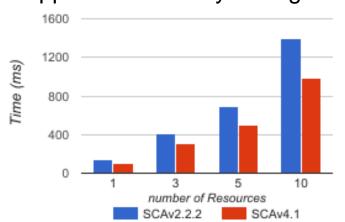
# of connections		SCAv.2.2.2	Average time per connection	SCAv4.1	Average time per connection	Improvement
1 connection	1	3.852	1.118	2.145	0.133	44.31%
3 connections	3	6.465	1.307	2.288	0.071	64.61%
5 connections	5	8.153	1.075	2.381	0.118	70.80%
10 connections	10	12.614	0.974	2.563	0.209	79.68%
		Base Cost	2.734		2.012	

Node Boot Up: Device Registration

Assembly Deployment: Mass Connections

Application Deployment: Application Creation

Feature: Application Creation



Application Deployment Time is Paramount

- SCAv4.1 utilizes less component interactions to launch SCA Applications
- SCAv4.1 reduces footprint while preserving equivalent functionality
- The result is a faster application creation

Feature: Application Creation

Application Factory calling Create

Number of Resources	SCAv2.2.2	SCAv4.1	Improvement
1	136.661	104.147	23.79%
3	408.392	304.178	25.52%
5	685.381	495.727	27.67%
10	1392.28	989.534	28.93%

About NordiaSoft SCA v4.1 vs. SCA v2.2.2 metrics

New SCA v4.1 features

Outline

- Core Assignment
- Component Factories
- Process Allocation
- Backwards Compatibility
- Optional Composition

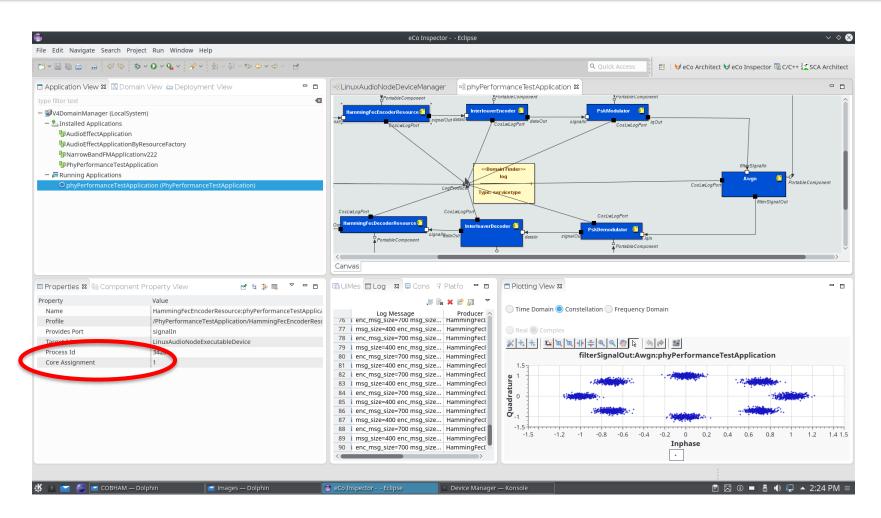
Core Assignment

SCAv2.2.2 does not support Core Assignment

SCAv4.1 leverages full capabilities of multicore platforms

- Deterministic control over component deployment
- Override core allocation control from the OS

Component Core Assignment


- Optimize throughput (core collocation)
- Maximize parallel processing (core separation)

Overall gains

- Enhance performance by distributing execution across multiple cores
- Reduce costs by fully utilizing existing computing infrastructure
- Save power by requiring fewer processors

Core Assignment

Component Factories

SCAv2.2.2 only supported factories for application components

- Allows several components to be co-located in a same program space
- Provides foot print savings
- Provides better throughput

SCAv4.1 generalizes the Factory concepts to both node and application components

- Node components can now be co-located together as well

Component Factories

 The feature can also drastically accelerate communications between components with good real time ORBs

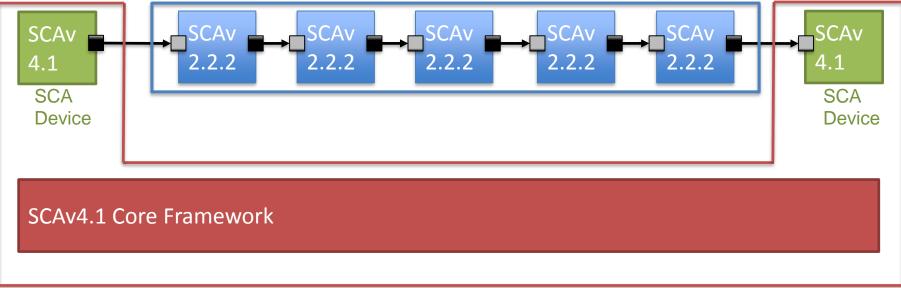
Average Round Trip Time in usec for PPC405GPr (400MHz) running	Double Sequence		Octet Sequence	
INTEGRITY RTOS and ORBexpress		2048	1024	2048
using TCP/IP	3334	7272	1428	1767
using INTCONN	2215	4728	1042	1273
using direct method invocation thanks to a ResourceFactory that yielded 40% smaller footprint	244	492	155	231

Process Allocation

Allows developers to define within which process a component must be launched

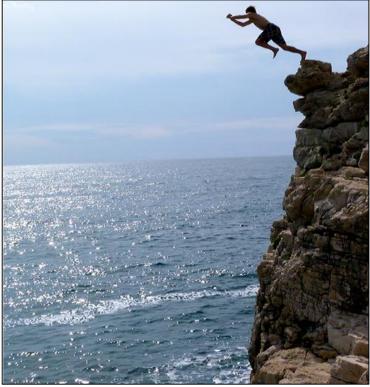
- Create any number of program spaces to co-locate any number of components
- Creation of program processes is completely dynamic
- Allows application components to be co-located with node components
 - Allows a high-data rate node component to feed an application within a same program space
- Overall: Offers substantial potential for performance optimization

Process Allocation



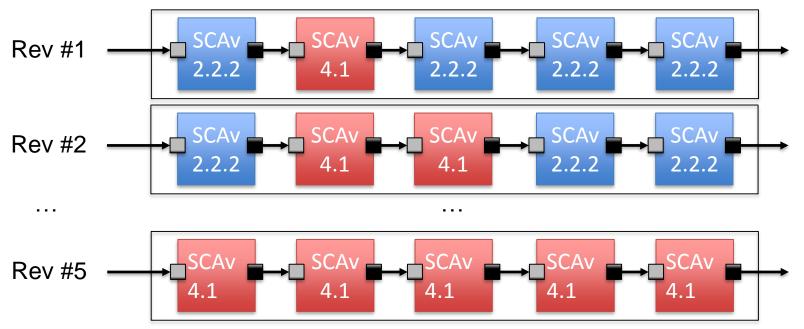
- Launch SCAv2.2.2 applications on a SCAv4.1 platform

- Backwards compatibility with SCAv222

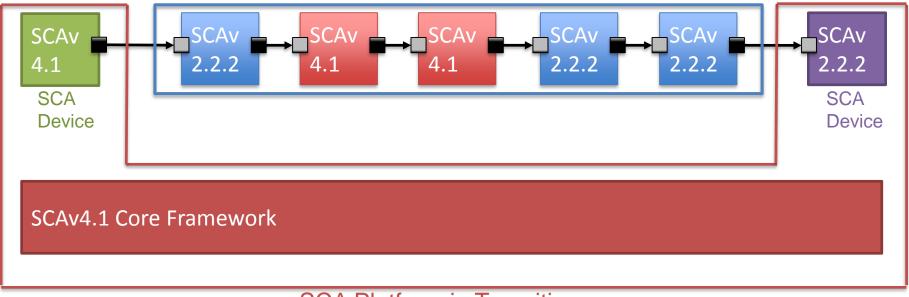

SCAv2.2.2 Waveform Application

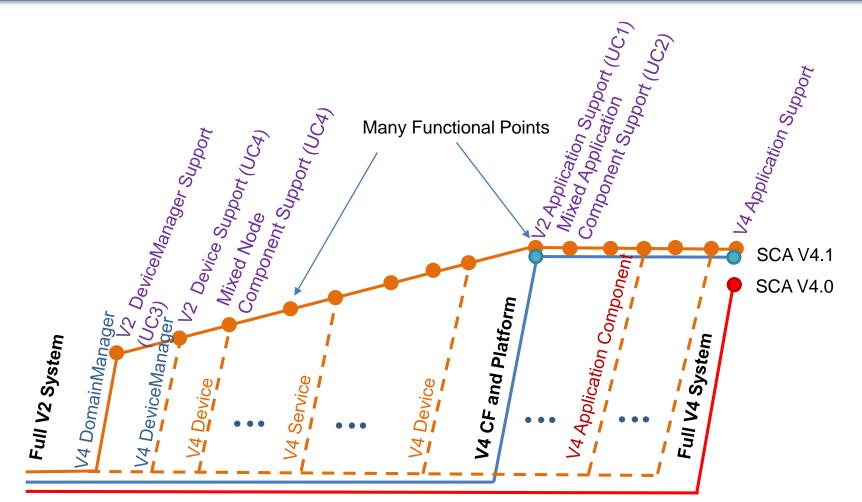
SCA V4.1 Platform

Launch SCAv2.2.2 application components as part of SCAv4.1 applications


- NordiaSoft extended feature to allow customers to make a progressive transition from SCAv222 to SCAv4
- Avoid the cliff jump approach

Launch SCAv2.2.2 application components as part of SCAv4.1 applications (...)


 Why force the port of all the application components before they can be tested? The eCo Core Framework supports application made of a mixture of SCAv2.2.2 and SCAv4.1 components


- The eCo Core Framework even supports a mixture of SCAv2.2.2 node and application components
 - You can reuse cards/boards from SCAv2.2.2 radios to transition towards a SCAv4.1 compliant radio

Waveform Application

SCA Platform in Transition

NordiaSoft

Optional Composition

- SCAv4.1 supports varying levels of granularity for components
- Components can implement only the standard interfaces that are required
 - Ex: a component with no properties doesn't have to implement the PropertySet interface
- This can also help address some Information Assurance (IA) requirements
 - No dead/stubbed code for unsupported APIs
 - No interface to provide information that should not be provided

Conclusion: why use SCAv2.2.2?

SCAv4.1 provides more features

- Adds support for multi-core processors that powers every recent consumer electronics devices
- Offers more control over information assurance

Offers better performances at smaller footprints

- Faster startup times thanks to bulk connections and push registration
- Smaller footprints and better performances thanks to component factories and process space allocation

Supports backwards compatibility

- SCAv2.2.2 applications can run on SCAv4.1 platforms

The End