The Essentials of Ethernet Service Activation

Webinar #1
Y.1564, RFC 2544 and J-QuickCheck
Ethernet Service Activation Webinar Series

3 Webinars covering five Ethernet tests:

1. **J-QuickCheck**: Basic Connectivity and Throughput Test

2. **Single-Service**: Enhanced RFC 2544

3. **Multi-Service**: Y.1564 SAMComplete For Ethernet KPI Verification

4. **J-Proof**: Layer 2 Control Plane Transparency Test

5. **RFC 6349 TrueSpeed**: Layer 4 TCP Throughput
The Essentials of Ethernet Service Activation Series

JUNE 14 2:00 PM EST
Y.1564, RFC 2544, and QuickCheck

JUNE 28 2:00 PM EST
Layer 2 Control Plane J-Proof

JULY 12 2:00 PM EST
RFC 6349 TrueSpeed Testing
Agenda for Today’s Webinar

• Carrier Ethernet SLA’s and KPI’s
• Y.1564 and RFC 2544
• Where to test
• Demo of Y.1564
• QuickCheck and non-SLA services
• Demo QuickCheck
• Additional Resources and Q&A
Business Class Ethernet Services
Business Class Ethernet Services What they Are

The Metro Ethernet Forum defines 5 types of carrier Ethernet services

<table>
<thead>
<tr>
<th>Retail Service Types</th>
<th>Wholesale Service Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Line</td>
<td>E-Access</td>
</tr>
<tr>
<td>E-LAN</td>
<td>E-Transit</td>
</tr>
<tr>
<td>E-Tree</td>
<td></td>
</tr>
</tbody>
</table>

E-Access
- Multipoint to Multipoint (EVPN)
- E-Line Virtual Private LAN (E-LVPL)
- E-Tree Virtual Private LAN (E-TVPL)

Source: Metro Ethernet Forum
Service Level Agreements - SLAs

SLA Example

<table>
<thead>
<tr>
<th>CIR (Mbps)</th>
<th>CBS (Kbytes)</th>
<th>One-Way Delay (msec)</th>
<th>One-Way Jitter (msec)</th>
<th>Frame Loss Ratio</th>
<th>MTTR (hours) for services</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>128</td>
<td><25</td>
<td><1.5</td>
<td><10^{-6}</td>
<td><3</td>
<td>>99.999%</td>
</tr>
</tbody>
</table>
Sample SLA Values for Ethernet – MEF 23.1

<table>
<thead>
<tr>
<th>Characteristics (one way)</th>
<th>Mobile Backhaul services</th>
<th>EPL/EVP</th>
<th>Voice Trunking Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (CIR)</td>
<td>1 Mbps to 10 Gbps</td>
<td>1 Mbps to 10 Gbps</td>
<td>80 Kbps per call (2 Mbps per PRI)</td>
</tr>
<tr>
<td>Committed Burst Size</td>
<td>256 KBytes</td>
<td>64 KBytes</td>
<td>n/a</td>
</tr>
<tr>
<td>Frame Delay</td>
<td>< 10 ms</td>
<td>< 25 ms</td>
<td>< 40 ms</td>
</tr>
<tr>
<td>Frame Delay Variation (Jitter)</td>
<td>< 2 ms</td>
<td>< 25 ms</td>
<td>< 20 ms</td>
</tr>
<tr>
<td>Frame Loss</td>
<td>< .001 %</td>
<td>< .01%</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Throughput</td>
<td>99.995 %</td>
<td>99.99 %</td>
<td>n/a</td>
</tr>
<tr>
<td>Availability</td>
<td>99.999 %</td>
<td>99.99 %</td>
<td>99.99 %</td>
</tr>
<tr>
<td>Mean-time to repair</td>
<td>2 hours</td>
<td>4 hours</td>
<td>4 hours</td>
</tr>
</tbody>
</table>
Generic Key Performance Indicators (KPIs)

Latency – Round Trip Delay
- Voice: over-talk, echo, dropped calls
- Video: choppiness and delays
- Data: long download times

Packet Jitter – Delay Variation
- Voice: clicking and popping noises
- Video: pixelization or blue screens
- Data: minimal affect

Frame Loss
- Voice: clicks/fuzziness, dropped calls
- Video: pixelization or blue screens
- Data: long download times
What to do when things go wrong?

120 - Passed - 1st test
7 - Failed - revisit
91 - passed after work wth carrier

Failed – requires retest 1
Passed – after work with the carrier 2
Passed 3

45% of all tests fail the first time

Top problems:
• Auto-Negotiation set incorrectly
• 802.3 versus DIX framing
• Misconfigured CIR
• VLAN configuration problems
• Jitter
• Fail-Over Failures
Quick Survey

What service activation test methods do you use today?

- No Testing or Testing with Ping
- RFC 2544
- Y.1564
- RFC 6349
- Layer 2 Control Plane
Reduce OpEx with Ethernet Service Activation Testing

- TrueSAM
- RFC-6349
- TrueSpeed
 Validates TCP Throughput and User Experience
- J-Proof
 Validates Layer 2 Control plane Transparency – CDP, SDP, etc.
- RFC-2544
 Validates KPI for single stream
 No control-plane or user experience validation
- Y.1564 SAMCompete
 Validates KPI for multiple Class of Service (COS) applications
 No CP or user experience validation
- Not Testing Ethernet or Testing with L1 or Ethernet BERT
 No way to validate KPI or auto-negotiation settings
- Testing with Just a Ping
 No way to validate KPI or auto-negotiation settings

More thorough testing now → fewer truck rolls later
Key Measurements and the Benefits of Service Activation Testing
Y.1564
Summary
Y.1564 SAMComplete

• Newer industry standard for single and **multiple service** Ethernet and IP service activation test
• Measure Key Performance Indicators and Bandwidth Profile
 • CIR, EIR (Throughput)
 • Frame Delay – FD (Latency)
 • Frame Delay Variation – FDV (Jitter)
 • Frame Loss Rate - FLR
 • Committed Burst Size – CBS
 • Policing
• Fully automated with report generation
Y.1564 Part 1: Service Configuration Test (Ramp Test)

- Validates network traffic profile configuration – one service (stream) at a time
 - First stage, X steps to CIR, 1 to 60 seconds each
 - Verifies SLA parameters are met for rates lower and equal to CIR
 - SLA parameters: Throughput, Delay (FD), Jitter (FDV) and Frame Loss (FL)
 - Then step to EIR and MIR line rate
 - Verifies throughput – errors allowed in excess of CIR
 - Verifies Max Throughput does not go over the maximum allowed

![Diagram showing network traffic profile configuration](image-url)
Y.1564 Part 2: Service Performance Test (Multi-Service)

- Part 2 validates quality of service for each service and proves SLA conformance
 - All services generated **simultaneously** at their CIR and KPIs measured for each
 - This phase is a single measurement done over a mid to long-term time period
 - This procedure allows the characterization of each service and its influence on others and ensures that they all comply to their respective SLA
RFC 2544
Summary
Enhanced RFC 2544

- Widely used service activation test for Ethernet and IP services
- **Single service** test
- Measure Key Performance Indicators and Bandwidth Profile
 - Throughput
 - Latency
 - Frame Loss
 - Packet Jitter
 - Committed Burst Size - CBS
- Fully automated with report generation

![RFC 2544 Test](image)
Comparison of Measurements in RFC 2544 vs. Y.1564

<table>
<thead>
<tr>
<th>RFC 2544</th>
<th>Y.1564</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>Committed Information Rate (CIR)</td>
<td>The speed in Mbps of traffic that can be transmitted</td>
</tr>
<tr>
<td>Latency</td>
<td>Frame Delay (FD)</td>
<td>The time in ms or µs it takes traffic to be transmitted</td>
</tr>
<tr>
<td>Frame Loss</td>
<td>Frame Loss Ratio (FLR)</td>
<td>The rate that frames are lost as they are transmitted</td>
</tr>
<tr>
<td>Jitter*</td>
<td>Frame Delay Variation (FDV)</td>
<td>The difference in latency from one packet to the next</td>
</tr>
<tr>
<td>Burst*</td>
<td>Committed Burst Size (CBS)</td>
<td>The number of bytes that can be transmitted at line rate without losing packets</td>
</tr>
<tr>
<td>N/A</td>
<td>Policing</td>
<td>Tests that policers are configured properly so that customers cannot get more than they paid for</td>
</tr>
</tbody>
</table>

*added to Viavi Enhanced RFC 2544
Testing Scenarios and Demos
Logical Ethernet Business Service Topology
Network is Gigabit end-end, but policed to 100 Mbps in the direction of the Local to Remote TBERD
Non-SLA services

• Sometimes techs need to test Ethernet services and circuits without an SLA

• Examples:
 - Internal network connections such as transport circuits
 - Installation of network equipment or replacement of line cards
 - Low cost “Best Efforts” internet access services

• A simpler test is often the right solution
QuickCheck

- Pre-test in RFC 2544 or Y.1564
- Standalone test for non-sla services
- Checks
 - Near-end connectivity and auto negotiation
 - Connectivity to far end and loopback detection
- Measures
 - Throughput
 - Frame loss
QuickCheck Demo

Provider Edge Router

Emulated Network (40 ms RT delay)

Operator Network

T-BERD 5800

Cisco ME-3400

Network is Gigabit end-end, with no policing
Wrap-up and Q&A

Stay tuned for a follow-up email with links to a whitepaper series with more details on the topics covered today.

Presenter Contact Information
Michael Bangert: michael.bangert@viavisolutions.com
Barry Constantine: barry.constantine@viavisolutions.com
Head to Head versus Loopback Testing

- Traffic can either be generated **Head to Head** between two test sets or to a **Loopback Device**.

- Testing to a **Loopback Device** offers the following advantages:
 - Less experienced technician can set up the loopback device.
 - Round Trip Delay measurement.
 - Faster initiation of automated tests (QuickCheck, Enhanced RFC-2544, etc.)
 - Single report containing bidirectional test results.
Loopback Devices

- Viavi Test equipment and some NIDs support Viavi proprietary loopbacks that swap Source and Destination MAC addresses and IP addresses.

- Some Carrier Ethernet switches and NIDs support **IEEE 802.11ag Loopback Messages**.

- Other switches and non-Viavi Test Sets may support “software” loopbacks that swap Source and Destination MAC addresses and IP addresses.

Hard loops generally cannot be used across Switches and Routers, but may be used across a “Layer 1” circuit, such as fiber link.
Viavi Recommended Best Practice Workflows

Single Service: Enhanced RFC 2544 Multi-Service Y.1564 SAMComplete
For Ethernet KPI Verification

J-Proof Layer 2 Control Plane Transparency Test:

RFC 6349 TrueSpeed Layer 4 TCP Throughput

Best Practice Workflow (Single and Multiple Services)

Multiple Class of Service (COS) Workflow

J-QuickCheck Basic Connectivity and Throughput Test

Y.1564 SAMComplete Ethernet KPI Verification for Multiple Services

J-Proof Layer 2 Control Plane Transparency Test:

RFC 6349 TrueSpeed Layer 4 TCP Throughput
Summary of the Various Standards Based Tests and Problem Solved

<table>
<thead>
<tr>
<th>Turn-up Related Problem</th>
<th>RFC2544</th>
<th>Y.1564</th>
<th>RFC 6349</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Service, Layer 2/3 SLA Issues (loss, jitter, etc.)</td>
<td>![Check Mark]</td>
<td>![Check Mark]</td>
<td>N/A</td>
</tr>
<tr>
<td>Multi-service, Layer 2/3 SLA Issues (service prioritization, loss, jitter, etc.)</td>
<td>![X Mark]</td>
<td>![Check Mark]</td>
<td>N/A</td>
</tr>
<tr>
<td>Demonstrate the effect of End customer TCP Window size on throughput (CPE issue).</td>
<td>![X Mark]</td>
<td>![X Mark]</td>
<td>![Check Mark]</td>
</tr>
<tr>
<td>Inadequate device buffers to handle bursty applications.</td>
<td>![X Mark]</td>
<td>![X Mark]</td>
<td>![Check Mark]</td>
</tr>
<tr>
<td>Policing effects to TCP performance.</td>
<td>![X Mark]</td>
<td>![X Mark]</td>
<td>![Check Mark]</td>
</tr>
</tbody>
</table>
JDSU RFC 2544 Test Parameters

- Configurable test times
 - 5 min – 6 hours
- Configurable frame sizes
 - Including Jumbo
- Packet Jitter included
 - Real-time services – voice and video
- Maximum Bandwidth
 - Committed throughput guaranteeing Key Performance Indicators (KPIs)
- Concurrent tests reduce test time by half
 - Measure Throughput, Delay, and Jitter simultaneously
J-QuickCheck

The Problems

• It takes too long to get the test set-up correctly before actually starting

• Users mis-configure the test set auto-negotiation and loopback settings

• It’s a waste of time to run the full test if throughput is way off from expected

The Solution

• Saves valuable time by performing quick end-to-end connectivity and configuration test

• Verifies test set auto-negotiation settings and connectivity to far end with proper loopback

• Quickly verifies end-to-end throughput
J-QuickCheck

Save test time if a major configuration problem exists

- Save time by automating the first few steps of the M&P
- Available as a standalone test or…
- Integrated into both RFC 2544 and Y.1564 tests
- One screen test setup determines:
 - Correct auto-negotiation settings
 - Connectivity and loopback with the far end and
 - Performs a quick throughput test

Feature	**Description**	**Benefit**
Identifies auto-negotiation settings | Automatically configures auto-negotiation settings to match local network | User error of auto-negotiation settings is eliminated
Verifies connectivity to the far end | Only need to configure far end IP address to connect | Users don’t need to know all the low level details of setup and configuration
Quick throughput test | Rapid throughput test to ensure that circuit is active | Saves valuable test time if some major configuration problem exists in the network or with the test sets