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ABSTRACT 
 
Software Communications Architecture (SCA) compliant 
radios typically contain a large number of software 
components. Some software components provide access to 
hardware devices while others perform signal processing. 
By interacting with each other, the software components 
implement a radio communications standard. To interact, 
the software components use a middleware called Common 
Object Request Broker Architecture (CORBA).  
 
Using CORBA, each interaction is carried out as an 
exchange of messages between two components. CORBA 
supports two main types of messaging: one-way and two-
way. This paper explores the differences between the two 
types of messaging and provides performance metrics. The 
paper also describes design approaches that can be used to 
avoid common pitfalls associated with the use of both types 
of messaging.  
 

1. INTRODUCTION 
 
SCA waveform applications are typically composed of a 
number of software components through which voice or 
digital data samples travel. Typically the software 
components get data samples from a device, transform the 
data via signal processing, and send the modified data to 
another device. In short, SCA waveform applications are 
structured as a pipeline of components processing data 
samples. 
 
Each software component performs a specific 
transformation on the data samples it receives via an input 
port and sends the modified data to another component via 
an output port. The more software components an 
application has, the more connections between components 
will be required which will lead to more interactions via the 
middleware. CORBA offers two main types of interactions. 
This paper describes both messaging types in section 2. 
Section 3 describes the very common empty pipeline 
problem which is related to the use of two-way messaging. 
Section 4 describes how one-way messaging can address the 
empty pipeline problem issue. It also describes the 

drawback of one-way messaging with respect to order of 
interactions. Section 5 presents two solutions that can 
preserve the order of interaction which is important for 
waveform applications. Finally, section 6 provides 
performance metrics for different types of messaging. The 
conclusion of the paper is provided in section 7. 
 

2. CORBA MESSAGING 
 
Using CORBA, the invocation of a member function 
implemented by an object is carried out as a message sent 
from a client object to a server object. When the invocation 
of the member function produces a result, a second message 
is used to communicate the result back from the server to 
the client object. This type of interaction is called two-way 
messaging, and is used by the Joint Tactical Radio System 
(JTRS) in its application programming interfaces. With two-
way messaging, the client thread used to make the 
invocation is blocked until the return message is delivered. 
This means the client’s execution thread is suspended while 
the message travels through the transport to the server, and 
remains suspended while the server member function is 
invoked and the result is returned to the client via the 
transport. 
 
The second type of messaging supported by CORBA is 
called one-way messaging. It is used when the client does 
not require a result back from the server. With one-way 
messaging, the execution thread of the client resumes before 
the member function is invoked on the server side. One-way 
messaging is often mistakenly thought to be the same as an 
invocation to a C/C++ function defined as having a void 
return value. When a client invokes a C/C++ void function, 
its execution is suspended until the function is executed and 
returns. And such a behavior actually corresponds to a two-
way invocation.  
 
The CORBA specification [1, 2, 3] actually defines four 
types of one-way messaging. They differ in the level of 
synchronization for interactions between clients and servers. 
The desired level of synchronization can be selected by 
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changing a property of the Object Request Broker (ORB) 
called SyncScopePolicy to one of the following values: 
 
• SYNC_NONE: The client’s invocation thread only 

blocks until the request message is created and pushed to 
the ORB. The invocation thread resumes before the ORB 
sends the request message to the transport protocol (see 
Figure 1). The client has no guarantee the ORB has been 
successful in transferring the request to the transport 
protocol stack on the client side. 

 
Figure 1. SYNC_NONE CORBA Request. 

• SYNC_WITH_TRANSPORT: The client’s invocation 
thread blocks until the ORB request message is accepted 
by the transport protocol stack (see Figure 2). The 
invocation thread is unblocked without any guarantee the 
request message has been received by the server.  

 
Figure 2. SYNC_WITH_TRANSPORT CORBA Request. 

• SYNC_WITH_SERVER: The client’s invocation thread 
blocks until the request is accepted and validated by the 
ORB on the server side (see Figure 3). The server-side 
ORB makes sure the request is for a valid function of an 
existing object. If the request is invalid, the 
acknowledgment message sent by the server will cause an 
exception to be raised on the client-side which will 
unblock the invocation thread. 

 
Figure 3.SYNC_WITH_SERVER CORBA Request. 

• SYNC_WITH_TARGET: The client’s invocation thread 
blocks until the function is executed on the server side 
(see Figure 4). The sever-side ORB returns an 
acknowledgment message which contains no data if 
everything went well. The return message contains an 
exception otherwise. This level of synchronization 
provides a messaging semantic that is equivalent to two-
way messaging. The difference is that two-way messaging 
can return a user-defined response or exception while 
one-way messaging cannot. 

 
Figure 4.SYNC_WITH_TARGET CORBA Request. 

Note that the default for one-way messaging is set to 
SYNC_WITH_TARGET for many ORBs. In fact, some 
ORBs don’t implement SYNC_NONE and define it to be 
the same as SYNC_WITH_TARGET [2].  Also note that 
the characteristics of a transport protocol can influence the 
synchronization scope. For instance, The INTEGRITY® 
operating system offers an Inter-Process Communication 
(IPC) messaging framework called “integrity connections” 
[4]. This IPC works in a way that the client sending a 
message is blocked until the server accepts the message. 
With such a transport, SYNC_WITH_TRANSPORT 
behaves the same way as SYNC_WITH_SERVER does. 
Another example is with the use of a UDP-like transport. 
With such a transport, there might not be a significant 
difference between SYNC_NONE and 
SYNC_WITH_TRANSPORT since messages can be lost 
over the network. 
 
 

3. THE EMPTY PIPELINE PROBLEM 
 
Most SCA Applications [5, 6] are made of several software 
components. And often those components are 
interconnected in a sequence much like a pipeline where the 
output of the first SCA component is fed to the input of the 
next component and so on. Figure 5 illustrates a pipeline 
with four components named R1, R2, R3, and R4. The 
components represent the stages of the pipeline. 

 
Figure 5. Processing Pipeline. 



Figure 6 provides a sequence diagram of two-way 
interactions between the four same components processing 
two packets of data samples. Message number 1 shows that 
component R2 receives the first data packet from R1. 
Messages number 2 and 3 indicate that R2 performs a 
transformation of the input data and produces output data 
which is then sent to R3. Component R3 does the same and 
the modified data eventually reaches R4. The same 
sequence of interaction happens again starting at message 
number 10 for data packet number 2. 
 

 
Figure 6. Two-way Messaging. 

This sequence diagram clearly illustrates the pipeline of 
components is only working on 1 packet at a time. That’s 
because R1 waits for all other components to be done before 
it can push a new data packet in the pipeline. Because of the 
two-way messaging, R2 sits idle waiting for R3 to return 
control. And the same is true between R3 and R4. At any 
one time, only one component is processing data samples. 
This type of interaction between the components is called 
the empty pipeline problem and leads to a very inefficient 
use of the computational elements of a platform (GPP, DSP, 
FPGA). This problem is the same as with multi-stage 
pipeline micro-processors; every functional unit in the 
pipeline (i.e. stage) must stay busy to maximize the usage of 
the processor.  
 

4. USING ONE-WAY MESSAGING TO AVOID  
THE EMPTY PIPE LINE PROBLEM 

 
To avoid the empty pipeline problem, each individual 
component must be able to work in parallel. In the context 
of an SCA Application, the solution is to make each 
component work on a different data packet at the same time. 
One approach to achieve this consists in using one-way 
messaging. Figure 7 illustrates a sequence diagram where 
the components are using one-way messaging.  

 
Figure 7. One-way Messaging. 

This sequence diagram shows that using one-way 
messaging; the different components are working in parallel 
on three different data packets. While R4 is working on 
packet number 1 (message 12), R3 is working on packet 
number 2 (message 10), and R2 is working on packet 
number 3 (message 11). This approach leads to a better 
usage of the computational elements provided by a platform. 
However, the pipeline will be fully occupied only if each 
component takes about the same time to perform its signal 
processing. If one component takes more time to process its 
input data, it becomes a bottleneck and the remaining 
components in the pipeline will spend more time waiting for 
input data. This illustrates how crucial it is to perform a 
good functional decomposition of a waveform into 
individual components.  
   

4.1 THE IMPACT OF ADDRESS SPACE 
COLLOCATION ON ONE-WAY MESSAGING 

 
It is important to note that one-way messaging can behave 
like two-way messaging under special circumstances. And 
in such a case, it will lead to the empty pipeline problem.  
 
For a client to invoke a function implemented by a CORBA 
server, it must use the local stub that represents the remote 
server. The client invokes the function on a local stub which 
generates a request message and tells the ORB core to 
transmit the message to the targeted server using the 
appropriate transport layer. The stub is generated from the 
CORBA Interface Definition Language (IDL) [7] definition 
of the remote function being invoked.  
 
However, real-time ORBs use several optimizations to 
accelerate interactions. One common optimization allows a 
client and a server to transparently interact with each other 
directly when they are located in the same address space. 
This means the interaction will not cause a request to be sent 



over a transport, but it will result in a direct call to the 
function implemented by the server. The performance 
improvement with such an approach is significant [8]. In the 
context of the SCA, address space collocation can be 
achieved via the use of a ResourceFactory.  
 
The direct function call optimization is implemented in the 
stub. The stub is in a position to recognize that the remote 
object it represents is in the same address space as the client, 
and therefore perform a direction function call. This is 
thought to be transparent to the client since the client always 
uses a stub to make invocations.  
 
However, when the stub makes a direct method invocation 
instead of asking the ORB to go through the transport, it 
does so using the client’s thread. The execution of the 
client’s thread making the invocation ends up waiting until 
the function returns, which is the semantic of two-way 
messaging. Since the ORB core is by-passed with direct 
function calls, the resulting messaging semantic will always 
be two-way even if the IDL definition specifies one-way.  
 
In most cases, the use of a single address space and direct 
function calls will provide better performance than the use 
of multiple address spaces with function calls that go over a 
transport. That is true even if the single address space calls 
are done in a way that produces the empty pipeline problem. 
And as discussed in section 5.2, there is a solution to avoid 
the empty pipeline problem even with two-way messaging 
and it applies to the use of a single address space. 
 

4.2 THE PACKET REORDERING PROBLEM 
 
Using one-way messaging in a pipeline configuration can 
however lead to packet reordering. In other words, data 
packets being sent by the first component in the pipeline 
might be reordered before they reach the last component of 
the pipeline. This is not the case when the pipeline is 
implemented using two-way calls. With two-way calls, if 
component R1 sends packet number 1 before packet number 
2, component R2 will always receive the packets in that 
same order. This is very important to most waveform 
applications since they use signal processing algorithms that 
are sequential in nature. That is, the algorithms transform 
data samples using information gathered from previous data 
samples. With one-way messaging, the reordering of 
CORBA interactions can happen for a number of reasons.  
 
Transport reordering: The transport used between 
components can have an influence over packet reordering. 
Using a UDP-like transport can cause data packets to travel 
via different paths between a client and a server. But in the 
context of the SCA, embedded platforms are used. 
Transports on such platforms are usually more reliable, 
which makes this type of reordering less likely. 
 

Client-side reordering: packet reordering is mostly due to 
multi-threading. It can be caused when a client uses multiple 
threads to invoke the same server-side function; there is no 
guarantee the client threads will run in the order they have 
been started. Furthermore, using a multi-core processor can 
actually cause reordering even with a fair scheduler and 
signal processing algorithms that use a constant amount of 
time to process data. In a multi-core processor, each thread 
can run on a different core and be affected by how busy 
each core is. Thus, once more, there is no guarantee client 
threads will run in a specific order. 
 
The ORB can also cause packets order to be changed if it 
uses a thread to decouple the invocation to a stub from the 
introduction of the function call request on the transport. 
This approach can be used by ORB-generated stubs to 
implement the SYNC_NONE policy. However it allows a 
client to quickly invoke the same function which will cause 
several threads to be created in the client-side ORB. And as 
explained earlier, there is no guarantee the operating system 
scheduler will preserve the order of execution of the threads. 
 
Server-side reordering: The most common problem of 
packet reordering is caused by servers that use multiple 
threads to execute the function that is invoked to transform 
data packets. As described above, the operating system 
scheduler can skew the packets order by allowing some 
threads to get more time slices than others.  
 
In fact, even with a fair scheduler from a good real-time 
operating system, the use of multiple threads can lead to 
packet reordering. For instance, packets order can be 
changed when the amount of time necessary to perform the 
signal processing is not constant. This time is related to the 
input data. Some algorithms use dictionaries to compress or 
encode data and the amount of time used to perform their 
task depends on the correlation between the input data and 
the dictionary. This means that in a multithread 
environment, the threads used to encode the data that finds 
the most matches in the dictionary will finish before the 
other threads, and thus the order of packets cannot be 
preserved.  
 
Finally, it is important to note that most ORBs use multiple 
threads. CORBA objects are serviced by multiple threads 
unless explicitly configured otherwise. Different ORBs use 
different multithreading algorithms to read a message 
request and perform the requested invocation. Most ORBs 
will allow several threads to run in parallel after they have 
read a request from the transport. This allows multiple 
threads to be performing the same invocation at the same 
time which introduces the risk for threads to be reordered 
which translates to packet reordering.  
 
With CORBA, it is possible to specify that an object must 
be served by only one thread at a time. This can be achieved 



using a specific threading policy [1, 2, 9]. This policy means 
the server-side ORB cannot invoke the functions of an 
object using multiple threads at the same time. It provides 
multi-thread safety for the target object. One might think 
that using the single thread policy would preserve the packet 
order by not allowing more than one thread at once to run 
the data processing function. But it is not the case. The ORB 
can still use several threads to read from the transport. The 
single thread policy only guarantees that the ORB threads 
trying to invoke the requested function will run one after the 
other.  And the operating system scheduler can still reorder 
the waiting ORB threads and cause packet reordering. 
 
 

5. AVOIDING DATA PACKET REORDERING  
 
In the end, there are solutions to preserve the order of data 
packets. First, a client needs to make sure it does not reorder 
packets right from the beginning. The easiest way to do this 
is to use a single thread to make invocations to a same 
server-side function. This solution is independent of the type 
of messaging being used. However, on the server-side, the 
solution can be more or less difficult to implement. It 
depends on the type of messaging being used. 
 

5.1 ONE-WAY MESSAGING  
Since one-way messaging can always cause packet 
reordering, one solution involves stamping each packet with 
a sequential number as they are produced and introduced 
into the pipeline of components. This must be implemented 
at the application-level. With this solution, each component 
must store the packet(s) that are out of sequence in a buffer 
and process them in order. The components also have to 
deal with the possibility of having to skip packets when they 
don’t arrive within a specific amount of time or risk 
delaying the processing for too long. Determining the 
appropriate buffer sizes and time delays is not easy and is 
platform-specific. 
 
Flow control is also very important with one-way 
messaging. The producer of data packets can outpace the 
pipeline of processing components. And since buffers 
cannot be of unlimited capacity, flow control is required. 
Flow control must provide APIs that deal with both buffer 
overflow and buffer underflow. The APIs must allow a 
server component to tell a client component to stop sending 
data packets when the server-side buffer is near full. The 
APIs also need to allow the server to tell the client to 
resume sending packets when the buffer is near empty. 
Calibrating flow control can be difficult; it involves finding 
the appropriate low and high buffer thresholds for each 
component of the pipeline. This thresholds can change with 
different operating environments.  
Note that flow control alone generally cannot be used to 
avoid packet reordering. This is related to the fact that even 
when the flow of packets is under control, it is possible for a 

server-side ORB to use multiple threads and cause 
reordering. The only way to avoid packet reordering with 
flow control is to only allow a packet to be delivered to a 
component after it is done processing the previous packet. 
This kind of flow control would increase the amount of 
signaling required for each packet which would most 
certainly have a negative impact on performance. 
 
An alternative approach considers the usage of worker-
threads in one-way messaging. Unfortunately, worker 
threads alone cannot guarantee the absence of packet 
reordering as later illustrated in experiment 3 of section 6. 
Worker threads are further discussed in the next section as a 
solution to the empty pipeline problem earlier described in 
section 3. 
 

5.2 TWO-WAY MESSAGING WITH WORKER-
THREAD 

Another approach to avoid packet reordering is to use two-
way messaging. But as discussed earlier, this solution can 
cause a pipeline to remain empty and lead to performance 
issues. There is however a solution to the empty pipeline 
problem. The solution consists in using a thread within each 
component to decouple the reception of a packet from the 
processing of a packet. That is, instead of processing the 
data packet on the ORB thread making the invocation, the 
processing can be done on a worker-thread that will also 
forward the packet to the next component. This approach 
allows the pipeline to fill in with more than one data packet 
at the same time. As shown in Figure 8, this approach leads 
to a pipeline usage that is very similar to one-way 
messaging when it is synchronized with the server as shown 
in Figure 3. The main difference is that two-way messaging 
implicitly preserves the order of packets. 
 
Under this approach, packet ordering is preserved 
independently of the characteristics of the transport being 
used. Two-way messaging makes a client wait for the 
invocation to terminate before it can make a new invocation. 
As a result, the client is not able to send a new packet to the 
server before the server actually stores the current packet in 
a buffer. There is only one packet in transit between the 
moment a client invokes a function and the moment at 
which the execution of the server function is terminated. It 
is thus not possible to cause the reordering of packets. And 
this approach is independent of the transport characteristics 
and of the ORB’s multithreading strategy. 
 
Naturally, since a buffer is used to store packets within each 
component of the pipeline, flow control is still required. 
Consequently, the server needs to be able to tell the client 
when to stop sending new packets to avoid buffer overflow. 
However, with two-way messaging, the client and the server 
are synchronized. Therefore, if the client only regains 
control when the server has room to accept a new packet, 
the client cannot cause buffer overflow. And since the 



server never tells the client to stop producing packets, there 
is no need for an API to control buffer underflow. This 
solution still requires that appropriate buffer sizes be 
determined. However, it does not require the use of explicit 
APIs for high and low watermarks.  

 
Figure 8. Two-way messaging with a worker-thread 

The other main difference with one-way messaging lies in 
the bundling of components into a single address space. As 
explained earlier, if components using one-way messaging 
are co-located in an address space, the messaging semantic 
changes to two-way messaging and leads to the empty 
pipeline problem.  That is not the case with components that 
use two-way messaging with a worker-thread in each 
component. When combined together, those components 
will still have a worker-thread per component to perform the 
packet processing. And that allows different packets to be 
processed in parallel by different component worker-
threads.  
 
 

6. METRICS 
 
This section provides metrics used to make a performance 
comparison between the different types of messaging.  
 
 
Definition of the experiments 
Tests were executed on a system using a Intel Q9300 quad 
processor, clocked at 2.5GHz, with 6 gigabytes of RAM, 
and ran Linux FC12. The ORB used was ORBexpress RT 
version 2.8.2 with the IIOP transport. The system was setup 
in two different configurations: the first configuration used 
the four cores of the processor, while the second only used 
one core. The second setup was used to eliminate any 
parallel processing among the multiple cores of the 
processor.  
 
In all experiments, 3 SCA components on a pipeline 
performed a certain amount of signal processing that took 5 
ms.  The pipeline was fed by a fourth SCA component 
called the packet producer.  Based on the theory, it can be 
calculated that at least 5010 ms is needed before the 1000th 
packet comes out of the last stage of the pipeline. It should 
take 5 ms for each packet to go through the first stage and 
the last packet should take an extra 10 ms to go through the 
last 2 stages. The assumption behind this reasoning is that 
each stage is supported by only one thread. In other words, 
each stage only deals with one packet at a time. 
 
In a single core processor, using multiple threads cannot 
significantly increase the throughput since the threads run in 
time sharing mode. Nevertheless, according to [10], multi-
threading can be used to minimize the waste of processing 
cycles in a single core when many requests are made to 
access external memory. And this being the case, 
throughput can be increased. In the experiments conducted 
for this paper, there was no explicit limit imposed in the 
number of threads used in each stage. The number of 
threads used was defined by processor workload, and the 
default settings of the operating system and the CORBA 
ORB 
 
With a pipeline configuration, each stage must be able to 
perform in less time than it takes for the next packet to 
arrive. Buffers can be used to accommodate the potential 
bursty-ness of the traffic. Using multiple cores, different 
stages of a pipeline can run concurrently. If each stage is 
assigned to a different core, the packet budget is effectively 
multiplied by the number of cores [10].  
 
During the tests, two different measurements were 
employed for packet reordering. The first, labeled as 
"reordered from previous", indicates the number of 
instances in which a packet was out of sequence when 
compared with the previous packet. The second, labeled 
"reordered from original", indicates packets that were out of 



sequence considering the original sequential sending order. 
In an example where packets 1 through 10 arrive in the 
following sequence: 1, 2, 4, 5, 6, 7, 8, 9, 3, 10, under the 
"reordered from previous" rule, packets 4, 3 and 10 are 
considered reordered. That is because packet 4 arrived after 
packet 2, packet 3 arrived after packet 9, and packet 10 
arrived after packet 3. Under the "reordered from original" 
rule, packets 3, 4, 5, 6, 7, 8, and 9 are considered reordered. 
That is because packet 3 arrived at original order 9, packet 4 
arrived at original order 3, etc. 
 
All experiments consisted in pushing 1000 packets through 
the pipeline of three SCA components. Each packet was 
made of 1024 elements of type double, requiring eight bytes 
per element on the Intel Q9300 quad processor used for 
testing. 
 
For this paper, six different experiments were conducted 
that considered three variations. The first variation involved 
changing the CORBA messaging semantics  from one-way 
to two-way. During this test, the one-way synchronization 
level was set to SYNC_WITH_TRANSPORT. The second 
variation consisted in making the packet producer wait 5ms 
or not between each packet being pushed in the pipeline. 
The 5ms wait time represents a typical amount of time 
allocated to processing a packet for waveform applications. 
The third variation consisted in making each stage of the 
pipeline use a separate worker thread to process the 
incoming packets or not. An example of using a worker 
thread can be seen in figure Figure 8, where the client’s 
invocation thread unblocks in messages 3, 8 and 11, while a 
worker thread retrieves and process packets starting in 
message 4.  
  
The experiments can be summarized in Table 1. Each 
experiment was run under both the multi-core and single 
core configurations. 
  

Experiment 
# 

Message 
mechanism 

Producer 
wait 
time 

Worker 
thread 

1 one-way 0 no 
2 one-way 5 ms no 
3 one-way 0 yes 
4 one-way 5ms yes 
5 two-way 0 no 
6 two-way 0 yes 

Table 1: Experiment configurations 

Experiment 1 
Table 2 shows metrics produced for the Multi-core setup, 
with a test where the packets are exchanged between the 
pipeline components using a one-way producer, used a one-
way API to send packets to the pipeline, and without 
waiting before sending each packet. The table shows how 

much time it took for the last packet (i.e. the 1000th packet) 
to leave each stage of the pipeline.  
 

 Packet 
Producer 

Stage 1 Stage 2 Stage 3 

Time of last Pkt 
sent/processed 4330.24ms 4458.38ms 4477.53ms 4498.38ms 

# of Pkt reordered     
with previous - 252 363 487 
with original - 358 564 694 

Table 2: One-way messaging with a no-wait producer (4 cores) 

Results from Table 2 provide several interesting facts: First, 
it can be observed that the packet producer sent the last 
packet after only 4330.24ms, well before the expected 5s 
mark.  That was because the test allowed for packets to be 
sent faster than they could be processed, and as a result, the 
ORB within the first stage component used more than one 
thread to invoke the processing function. Second, all 1000 
packets were processed in less than the theoretical 5010ms.  
The third stage completed processing of the last packet after 
only 4498.38ms. The reduced time can be explained by the 
fact that all four cores of the processor were used for 
processing packets. The core that hosted the packet producer 
was periodically idle and the 3 stages were able to share the 
4th core to run extra threads concurrently. On a single core 
processor, this did not happen. 
 
Table 2 also provides the number of packets that were 
received out-of-sequence in each stage of the pipeline. It 
shows that packet reordering was substantial, and it only 
increased with each processing stage. At the last stage of the 
pipeline, out of 1000 packets, over 487 were out of 
sequence with respect to the previous packet number, and 
694 did so when compared with the original sequential 
order. One-way messaging, coupled with the use of multiple 
threads at the server-side ORB, is responsible for the 
significant amount of packet reordering.  Under both 
reordering measurements, the largest amount of reordering 
happened at stage 1. This is because the packet producer 
introduced as many packets as the transport allowed causing 
many threads from stage 1 to process packets concurrently. 
The stage 1 threads were scheduled in a way that some 
threads finished before others that had started earlier. This is 
the reason several packets were processed out of sequence.  
 
Table 2 finally shows that the packet producer was actually 
paced by the transport since the last packet was sent after 
4330.24ms. Even if the producer did not sleep before 
sending each packet, it periodically was blocked by the 
transport. Every time the transport buffers became full, the 
transport blocked the producer to prevent overflow. In 
CORBA terminology, the client stub used by the producer 
component to send packets to the stage 1 component had to 
wait for the ORB to push the packets to the transport which 
was periodically blocking. The producer was blocked by the 
transport until the transport buffers had enough space to 



accept new packets. During our tests, the default buffer size 
for the TCP/IP stack was difficult to determine because the 
stack used buffer auto-tuning. This means the buffers 
increased in size as needed. Nevertheless, the test caused the 
TCP/IP stack to reach a maximum buffer size. Figure 9 
shows how much time it took for the producer to send 
packets to the first stage of the pipeline. When the transport 
buffers were not full, the producer was able to send some 
packets in as little as 6 µsec. In fact, 80% of the packets 
were sent in less than  15 µsec, while 90% of the packets 
were sent in less than 35 µsec. The average for the lowest 
90% of the cases was 9.67 µsec. But the transport buffers 
reached full capacity quite often (10% of the cases) because 
the producer was very aggressive. For the highest 10% of 
the cases, the average wait was 42,787 µsec including one 
case with a maximum of 108,710 µsec  
 

 
Figure 9. Time measurements for the no-wait producer to send 

each packet using one-way messaging (4 cores) 

 
Table 3 presents a similar test as the one conducted for one-
way messaging with a no-wait producer (Table 2), but it was 
obtained under the single core setup. 
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15236.05ms 15261.42ms 15280.76ms 

# of Pkt reordered    
with previous 442 565 608 
with original 941 936 927 

Table 3: One-way messaging with a no-wait producer (1 core) 

Considering that this test ran using a single core, the 
theoretical floor was set at 15 seconds (each stage taking 5 
seconds to process its 1000 packets). Table 3 shows that the 
test was executed in a time above the theoretical floor. That 
is due to the overhead associated with moving the packets 
across the pipeline using the transport.  
 
Figure 10 shows how much time it took for the producer to 
send packets to the first stage of the pipeline. In this 
scenario, the producer was also able to send some packets in 
as little as 6 µsec. 81% of the packets were sent in less than  
12 µsec, while 89% of the packets were sent in less than 26 
µsec. The average for the lowest 89% of the cases was 8.11 
µsec. When the transport buffers reached full capacity (11% 
of the cases) the average wait was 132,475 µsec including 
seven cases above 200,000 µsec. 

 
Figure 10. Time measurements No-Wait SingleCore OneWay 

Packet reordering under the single core test was greater than 
in the multi-core test. Again, the message mechanism 
allowed packets to be introduced into the transport without 
synchronization and the multi-threading allowed individual 
component threads to process packets out of sequence. 
 
Experiment 2 
Table 4 and Table 5 show the same metrics but for a test 
that used one-way messaging with a packet producer that 
waited 5 ms between each packet being pushed into the 
pipeline. Table 4 shows the test using the multi-core setup 
while Table 5 does so using the single core setup.  
 
The first thing to notice is that it took more than 5000 ms for 
the last packet to exit stage 1. That is because the producer 
was not introducing packets faster than the pipeline stages 
could handle. As a result, there were fewer threads created 
by the server-side ORB of the stage 1 component. Pacing 
the packet producer resulted in less reordering, but as stated 
earlier, to some waveform applications, even a small 
quantity of reordering can cause serious problems.  
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 5135.00ms 5194.61ms 5213.95ms 

# of Pkt reordered    
with previous 174 305 471 
with original 341 455 576 

Table 4. One-way messaging with a  
5ms wait producer (4 cores) 

Table 5 shows the results of experiment 2 using a single 
core. When compared with results from using a no-wait 
producer (Table 3) there is a slight increase in processing 
time associated with the pacing of the packet producer. In 
terms of reordering, pacing the packet producer caused a 
slight decrease in packet reordering. 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15099.51ms 15432.74ms 15456.94ms 

# of Pkt reordered    
with previous 367 425 436 
with original 753 747 747 

Table 5. One-way messaging with a 5ms wait producer (1 core) 

 



Experiment 3 
Table 6 and Table 7 present the results of a test using one-
way messaging with a worker-thread in each stage to 
decouple the reception of a packet from the processing and 
forwarding of the packet to the next stage. The test was 
executed with a producer that did not wait between the 
sending of each packet. Upon the reception of a new packet, 
instead of processing it before returning control to the ORB, 
each stage stored the packet in a buffer, notified a worker-
thread, and returned. The worker-thread would wake up 
when notified and take the oldest packet from the buffer, 
process it, and send it to the next stage. 
  

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 5146.50ms 5182.71ms 5720.99ms 

# of Pkt reordered    
with previous 11 11 11 
with original 524 524 524 

Table 6. One-way messaging with a no-wait producer and a 
worker-thread (4 cores) 

From Table 6 it can be seen that packet reordering behaved 
differently from previous experiments. It was observed that 
packets were only reordered upon arrival to stage 1, and 
after that, stage 2 and 3 received them in the exact order as 
they were processed by stage 1. The reason for such a 
behavior lies in the fact that the packet producer was able to 
use many cycles to produce and send packets. The producer 
produced more packets than the stage 1 component could 
handle. That caused several threads to be used by the stage 1 
component. However, since the stage 1, 2, and 3 used the 
same amount of time to process packets, there was no need 
for multiple threads to be used in stages 2 and 3 which 
reduced the risk for packet reordering.  
 
It is also worth highlighting that the introduction of a 
worker-thread resulted in increased total time for execution. 
In experiment 1 (Table 2) the last packet was processed by 
stage three after 4498.38ms, while the equivalent timing for 
experiment 3 resulted in 5720.99ms. That is due to the 
overhead associated with synchronization. 
 
Figure 11 shows how much time it took for the producer to 
send packets to the first stage of the pipeline. In this 
scenario, the producer was also able to send some packets in 
as little as 7 µsec. 81% of the packets were sent in less than  
19 µsec, while 89% of the packets were sent in less than 27 
µsec. The average for the lowest 89% of the cases was 
11.59 µsec. When the transport buffers reached full capacity 
(11% of the cases) the average wait was 1,005 µsec 
including one case with a maximum of 34,730 µsec. 
 

 
Figure 11. Time measurements No-Wait MultiCore OneWay 

UserThread 

For the single core results illustrated in Table 7, it can be 
seen that even though the packet producer was not paced, 
there was no packet reordering. It is very important to note 
however that under this configuration, there is no guarantee 
that packets will be in sequence. The scheduler can still lead 
to packet reordering since the producer can introduce a new 
packet before the old packet is stored in the queue of the 
next stage component as was the case for the multi-core test 
presented in Table 6.  
 
An additional interesting fact under the single core setup is 
that the total time per stage was only slightly increased from 
the one seen in Table 3. The latter indicates that the user-
created thread has a minimal impact under the single core 
setup.  
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15328.17ms 15299.67ms 15299.61ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 7. One-way messaging with a no-wait producer and a 
worker-thread (1 core) 

The final item to highlight from Table 7 is how the 
scheduler behaved under this experiment. The Linux kernel 
seemed to behave in a last-in-first-out (LIFO) mode. The 
normal set of sequential actions each stage has to execute is 
as follows: 

1) Receive packet 
2) Process packet 
3) Forward packet to next stage (stages 1 and 2) 
4) Take a time-stamp since the stage is finished with 

all activities pertaining to the current packet 
 
Times presented in Table 7 are those obtained at action 4. 
The data shows that stage 1 finished all activities for packet 
1000 after stage 2 did so and stage 2 finished after stage 3. 
This is the result of the scheduler switching to a new task 
immediately after the packet is introduced into the transport 
(action 3) and never switching back to the time stamping 
(action 4) before the packet was processed by the following 
stages. The actual sequence observed for packet 1000 is as 
follows: 

1) Stage 1 received message 
2) Stage 1 processed message 



3) Stage 1 introduced packet into the transport 
4) Scheduler switched tasks giving control to Stage 2 
5) Stage 2 received message 
6) Stage 2 processed message 
7) Stage 2 introduced packet into the transport 
8) Scheduler switched tasks giving control to Stage 3 
9) Stage 3 received message 
10) Stage 3 processed message 
11) With no one to forward the message to, stage 3 

obtains current time (time stamp) 
12) Scheduler switched tasks giving control to Stage 2 
13) Stage 2 obtains current time (time stamp) 
14) Scheduler switched tasks giving control to Stage 1 
15) Stage 1 obtains current time (time stamp) 

 
The same behavior was also observed in the single core 
configuration test for experiment 4 below. 
 
Figure 12 shows how much time it took for the producer to 
send packets to the first stage of the pipeline. In this 
scenario, the producer was also able to send some packets in 
as little as 6 µsec. 92% of the packets were sent in less than 
17 µsec. The average for the lowest 92% of the cases was 
11.13 µsec. When the transport buffers reached full capacity 
(8% of the cases) the average wait was 1,110 µsec including 
one case with a maximum of 20,411 µsec, and a second case 
with a wait of 15,851 µsec. 
 
 

 
Figure 12. Time measurements No-Wait SingleCore OneWay 

UserThread 

Experiment 4 
Table 8 and Table 9 present the results of a test using one-
way messaging with a worker-thread. In the experiment the 
packet producer waited 5ms before sending each packet.  
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 5805.60ms 5810.69ms 5816.96ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 8. One-way messaging with 5ms wait producer and  
a worker-thread (4 cores) 

The first item to highlight from Table 8, is the fact that no 
reordering was observed during the experiment. The 
combination of explicitly pacing the packet producer 
combined with a user created thread at each of the stages 

has lowered the probability of packet reordering enough so 
that none of the 1000 packets were reordered. But as 
explained for Table 7 above, one-way messaging cannot 
guarantee packet ordering.  
 
The overhead observed, calculated as the total experiment 
time of 5816.96ms minus the theoretical processing time of 
5010ms, was of 806.96ms. This value will be compared 
against experiment 6 where two-way messaging is used 
coupled with a worker-thread.  
 
Table 9 presents experiment 4 using a single core 
configuration. No packet reordering was observed, and stage 
times were slightly increased when compared to those in 
Table 5. Notice that the task scheduler behavior is similar to 
the one observed in the single core test (experiment 3, Table 
5).  
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15511.86ms 15497.68ms 15483.59ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 9. One-way messaging with a 5ms wait producer and  
a worker-thread (1 core) 

Experiment 5 
Table 10 and Table 11 show metrics for a test that used two-
way messaging with a packet producer that did not wait 
between each packet being sent. With this test, the function 
invoked on each stage did the signal processing for 5 ms and 
then invoked the processing function of the next component 
in the pipeline. This caused the empty-pipeline problem as 
described in section 3 and illustrated in Figure 6.  
 
The first thing to notice about this test is that each packet 
went through the pipeline alone. In this configuration, each 
packet takes at least 5 ms to go through each stage which 
adds up to 15,000ms for 1000 packets. And since the test 
records the time at which each stage finished the packet 
processing, the timings are also in reverse order. It took 
more time to finish stage 1 than it took to finish stage 2. 
And the same is true for stages 2 and 3. Notice that this 
reversed order is associated with the two-way message 
semantics, and not with the task scheduler as seen in 
experiments 3 and 4 for the single core configuration. 
 
It is important to highlight that this two-way test did not 
cause any packet reordering. But it was done at the cost of a 
much lower throughput when compared to the one observed 
for the one-way messaging from Table 2.  
 



 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 18407.82ms 18393.48ms 18379.11ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 10. Two-way messaging with a  
no-wait producer (4 cores) 

Figure 13 shows how much time it took for the producer to 
send packets through the pipeline stages. The figure also 
shows the producer did not get blocked by the transport as 
often as for the one-way test (Figure 9). For the two-way 
test, in most cases, the producer waited for an average of 
18000 µsec between packets. In most cases, it waited 
between 16000 µsec and 20000 µsec. In a few cases, it 
waited for 22000 µsec. In this scenario, the fastest interval 
in which the producer was able to send two consecutive 
packets was 15,260 µsec. 99% of the packets were sent in 
less than  21,000 µsec, with an average of 18,000 µsec. The 
maximum wait in this case was 22,371 µsec. 
 

 
Figure 13. Time measurements No-Wait MultiCore TwoWay 

Table 11 shows the results of experiment 5 under the single 
core setup. The overhead observed at stage 3 for this single 
core setup was of 273.58ms. That is calculated as 
15283.58ms after stage 3 has finished all activities for 
packet 1000 minus the 15010 theoretical minimum for the 
test. It is interesting to notice how the overhead observed is 
substantially less than the one observed for the equivalent 
test under the multi-core setup (Table 10) which was of 
3369.11ms. The latter is calculated as 18379.11ms after 
stage 3 finished all activities for packet 1000 minus the 
15010 theoretical minimum for the test. The difference is 
caused by the underutilization of the processing cores. Tasks 
where repeatedly allocated to different cores and the data 
copied across the cores. For experiment 5 an overhead of 2 
sec was eliminated by forcing the CPU affinity of all 4 
components to their own core. For experiment consistency, 
all the data collected for the multi-core did not set CPU 
affinity for any components. In the case of the single core 
setup, as everything was performed in the same core, task 
switching and data movement was substantially reduced. 
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15312.17ms 15297.90ms 15283.58ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 11. Two-way messaging with a no-wait producer (1 core) 

Figure 14 shows how much time it took for the producer to 
send a packet to the first stage of the pipeline. In this 
scenario, the fastest interval in which the producer was able 
to send two consecutive packets was 15,220 µsec. 99% of 
the packets were sent in less than  15,773 µsec, with an 
average of 15,262 µsec. The maximum wait in this case was 
19,163 µsec. 
 

 
Figure 14. Time measurements No-Wait SingleCore TwoWay 

Experiment 6 
Table 12 and Table 13 show the result of a test that used 
two-way messaging with a worker-thread. In this 
experiment, the packet producer did not waiting between the 
sending of packets. 
 
As explained earlier, since the component sending the 
packet is blocked on the two-way call until the packet is 
accepted and stored in a buffer, there are never two packets 
in transit at the same time between two stages.  This means 
none of the components have more than one server-side 
ORB thread waiting to invoke the processing function. This 
prevents packets from being reordered. For as long as the 
worker-thread processes the packets in order and the 
transport does not reorder packets, no reordering is possible.  
 
This approach effectively preserves the order of packets and 
keeps the pipeline busy with different packets. It provides 
much better performance than the simple two-way approach 
which suffers from the empty-pipeline problem. In fact, the 
timing observed in Table 12 are close to those observed in 
the one-way messaging approach with a time-based paced 
producer (Table 6). That is because using two-way 
messaging with a worker-thread, each stage can introduce a 
new packet as soon as the next stage unblocks. The time 
between packets can be shorter than 5 ms when the stages 
benefit from multi-core processing. 
 



 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 5388.72ms 5394.15ms 5399.72ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 12. Two-way messaging with a no-wait producer and a 
worker-thread per stage (4 cores) 

 
Figure 15 describes the distribution of time required by the 
producer to send 1000 packets, under two-way messaging 
with a worker-thread. This test resulted in 92% of the 
packets being sent in less than 100µsec, and 99% sent in 
less than 120 µsec. From the 1000 packets, only in three 
cases the producer waited for as long as 5ms and one single 
case, the producer waited 66ms. This scenario did not cause 
significant long waits as observed in Figure 9 and Figure 13. 
 

 
Figure 15. Time measurements No-Wait MultiCore TwoWay 

User Thread 

Finally Table 13, presents the same execution test under the 
single core setup. As with the results of the multi-core setup, 
the two-way message semantics coupled with worker-thread 
produced comparable results as those produced for the one-
way semantics with a worker-thread shown in Table 9. 
 

 Stage 1 Stage 2 Stage 3 
Time of last Pkt 
processed 15358.32ms 15372.36ms 15344.16ms 

# of Pkt reordered    
with previous 0 0 0 
with original 0 0 0 

Table 13. Two-way messaging with a no-wait producer and a 
worker-thread per stage (1 core) 

Figure 16 shows how much time it took for the producer to 
send a packet to the first stage of the pipeline. This test 
resulted in wait times as low as 66 µsec. 80% of the packets 
being sent in less than 77µsec, and 99% sent in less than 91 
µsec. From the 1000 packets, only in one case the producer 
waited for as long as 65,198 µsec. 
 

 
Figure 16. Time measurements No-Wait SingleCore TwoWay 

User Thread 

 
7. CONCLUSION 

 
CORBA offers two types of messaging semantics: one-way 
and two-way. The main difference between the two resides 
in the level of synchronization between a client and a server 
which has an impact on the speed of interactions. One-way 
messaging is often considered a better approach than two-
way messaging from a throughput perspective. However, 
one-way messaging cannot preserve the order of interactions 
between components which translates into the reordering of 
data packets as they flow through a pipeline of components. 
The ordering of packets is very important for the type of 
signal processing performed by waveform applications. On 
the other hand, two-way messaging preserves the order of 
interactions but the messaging mechanism introduces an 
empty pipeline problem that substantially degrades 
troughput.  
 
Different approaches can be used to preserve the order of 
packets. If one-way messaging is used, the components of 
an application must implement extra functionality to 
preserve the packet order and to perform flow control. Each 
component must be prepared to receive packets out of order 
and to reorder them before performing the signal processing. 
Each component must also provide buffers to hold packets 
and implement a mechanism to pace the producer to avoid 
buffer overflow as well as buffer underflow. This requires 
the use of fairly sophisticated synchronization techniques 
(like low and high watermarks) that must be tuned for every 
different platform the waveform is be ported to. But this 
solution approach can provide better throughput than the 
plain two-way messaging. 
 
Another approach is to use two-way messaging with a 
worker-thread to decouple the reception of a packet from its 
processing and forwarding. The advantage of this approach 
is that it can preserve the order of packets without stamping 
each packet with a number and without having to sort the 
packets back in order after their reception. Table 14 shows 
that this approach yielded near-optimum throughput when 
compared to one-way messaging using a single core, with 
no reorder observed for any of the communication 
mechanisms. From Table 14, it would be tempting to infer 
that the worker thread solved the reordering issue, and to 
conclude that by presenting a better throughput (although 



only marginally), the one-way mechanism should be 
preferred. 
 

 
Table 14. One-way / Two way messaging with a no-wait 

producer and a worker-thread (1 core) 

 
Table 15 shows a similar comparison only this time, reorder 
was observed for the one-way messaging. From this, it can 
be concluded then that the worker-thread targets and solves  
the empty pipeline problem, and that it cannot guarantee to 
solve the reordering problem. The performance of the one-
way messaging was only marginally better than the two-way 
alternative. 
 
In all cases the metrics show that components were well 
synchronized with each other regarding the throughput of 
the data flow.  

 

 
Table 15. One-way / Two way messaging with a no-wait 

producer and a worker-thread (4 core) 

 
To conclude, among the number of things that can be done 
to improve the throughput of interactions between SCA 
components,-the type of messaging used can make a 
significant difference.  
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