
The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

Using OpenCL to Increase SCA Application Portability

Steve Bernier (NordiaSoft, Gatineau, Qc, Canada; Steve.Bernier@NordiaSoft.com);

François Lévesque (NordiaSoft, Gatineau, Qc, Canada; Francois.Levesque@NordiaSoft.com);

Martin Phisel (NordiaSoft, Gatineau, Qc, Canada; Martin.Phisel@NordiaSoft.com);

Dmitry Zvernik (NordiaSoft, Gatineau, Qc, Canada; Dmitry.Zvernik@NordiaSoft.com);

David Hagood (Cobham, Wichita, KS, USA; David.Hagood@Cobham.com);

ABSTRACT

 The Software Communications Architecture has

become the de facto standard to build Software Defined

Radio radios. Over one hundred thousand SCA military

radios have been deployed worldwide by several nations.

The SCA offers a component-based operating environment

for the creation of portable applications. SCA applications

are portable across different heterogeneous embedded

distributed system.

 For performance reasons, application software gets

optimized using specialized instructions sets supported by

General Purpose Processors, Digital Signal Processors

Graphical Processing Units. As a result, the level of

portability of the source code can decrease significantly.

Moreover, portability is considered to be a major challenge

when Field Programmable Gate Arrays are used.

 Specialized instruction sets are widely used for high

performance military radio platforms. Consequently,

finding a solution to increase portability of SCA

applications across different operating environments could

provide significant cost reductions. This paper describes

how the Open Computing Language (OpenCL™) can be

used in conjunction with the SCA to increase the portability

of applications that need to perform intensive signal

processing.

1. INTRODUCTION

 The Software Communications Architecture (SCA)

was created to standardize the software architecture of real-

time embedded systems. The SCA is mainly used to build

Software-Defined Radios (SDRs). The standard was

created for the Joint Tactical Radio System (JTRS)

program, a US DoD program that funded the development

of military SDRs. The JTRS program started by funding

the definition of the SCA and concluded with the

acquisition of SCA-compliant SDR military radios. The

main goal of the JTRS program was to allow applications

1 www.wirelessinnovation.org

that implement communications standards, called

waveform applications, to easily be ported from one radio

platform to another.

 The SCA is a software architecture that makes

applications very portable across different heterogeneous

systems. The SCA standardizes how applications are

launched and how they interact with hardware. It also

defines how applications are packaged, installed, deployed,

and controlled. In its current state, the SCA standard allows

manufacturers to reach a high level of portability for

applications that have been implemented for General

Purpose Processors (GPPs) and Digital Signal Processors

(DSPs). SCA components can easily be ported to various

operating environments. An Operating environment is

defined as being made of an operating system, a specific

processor, and a one-to-many communication buses. The

SCA even makes the GPP/DSP software that interacts with

a Field Programmable Gate Array (FPGA) more portable.

 Software-Defined Radios are embedded systems that

process a very large quantity of data in real-time. As such,

in addition to embedded GPPs, SDR platforms often use

DSPs and FPGAs. Implementing optimized source code

for DSPs and FPGAs is well-known to be challenging and

time-consuming. It also reduces the level of portability of

source code [1]. It should therefore come as no surprise that

application portability is the number one innovation on the

top ten list of the most wanted wireless innovations as

compiled by the Wireless Innovation Forum (WInnF1).

 OpenCL is a standard for writing signal processing

intensive applications that are portable. OpenCL was

initially designed by Apple and it is now widely embraced

by major chip manufacturers such as Intel, AMD, IBM,

QualComm, Samsung, and NVIDIA [2]. The standard is

open and royalty-free. It is maintained by a non-profit

technology consortium called the Khronos Group [3].

 OpenCL allows a developer to implement a signal

processing function in source code that can be cross-

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

compiled for GPPs, DSPs, GPUs, FPGAs and other

specialized processors or hardware accelerators.

Combining the OpenCL with the SCA holds the promise of

making SCA applications much more portable across

different platforms. The remainder of this paper explains

how OpenCL can be used with the SCA. Section 2

describes the structure of SCA applications. Section 3

provides a short introduction to OpenCL. Section 4

describes how SCA components can be built using

OpenCL while section 5 provides performance metrics.

The paper concludes on how the SCA could be improved

to offer better support for OpenCL.

2. SCA APPLICATION PORTABILITY

 SCA applications are made of several software

components interconnected with each other. For instance,

the SCA FM Transmitter waveform application shown in

figure 1 is made of 3 components: a voice filter, a squelch

injector, and a FM modulator. The application is also

connected to an audio device component and a RF device

component. The audio device component represents a

sound card that provides microphone voice samples. The

RF device represents a transceiver which transmits

modulated voice signals over the air.

Figure 1. SCA FM Transmitter waveform application

 Much like a chip in electronics, a SCA software

component performs a simple task that can be used in many

applications. Each software component has a number of

ports to which other components can connect to exchange

data or perform control.

 SCA components are made of metadata and a number

of binaries. The metadata depicts the characteristics of a

component. It describes each property and port of the

component in details. It also defines for which operating

environment this component has been implemented. For

instance, assume a SCA Frequency Modulator component

can run on the following three operating environments:

PPC/VxWorks, ARM/INTEGRITY, and x86/Linux. Such

a component would come with three executable binary

files; One for each operating environment. With the SCA,

each of the three executable binaries is called a component

“implementation”.

 Launching a SCA component involves choosing an

implementation that matches the characteristics of the

desired target operating environment. The SCA Core

Framework is responsible for picking the appropriate

implementation of a component based on the capabilities

of the hardware platform. The launching process results in

executing the binary file associated with the selected

implementation. The SCA mandates that every

implementation of a SCA component offer the same

behavior, ports, and properties. Thus, once a component is

launched, it will behave the same way no matter which

implementation has been selected. The concept of

implementations is how the SCA guaranties components

are portable. An SCA application is only portable if its

components contain more than one implementation each.

Consequently, the level of portability of an SCA

application is proportional to the number of

implementations its components contain.

 Porting a component to a new operating environment

involves adding a new implementation to the component

and creating a new executable binary file. The binary file

is produced from the appropriate source code for the new

operating environment. Nothing in the SCA requires the

new binary file to be produced from the same source code

as for the existing implementation binaries. Application

portability means the application can run, unchanged, on

many different platforms which is the case even when all

the implementations of its components are produced from

different source code. Ideally, to reduce cost and time-to-

market, it would be better to use the same source code to

address different operating environments. However, in the

case a SCA component needs to support very different

operating environments, it is perfectly valid to use different

source code. Of course, the source code can be produced

by any tool chain or manually.

The source code for each implementation of an SCA

component is made of two main pieces: control source code

and signal processing source code. The control source code

takes care of routing input data to the proper signal

processing functions. It also takes care of routing the

processed data to other components. The control source

code handles a number of additional things including what

happens when a component is started, stopped, connected,

disconnected, and more. The SCA operating environment

rules make the control source code very portable.

 As for the signal processing source code, the second

piece of an SCA component, it is responsible for handling

the data. It transforms input data and produces output data.

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

The transformation of data can be influenced by a number

of properties the component offers. For instance, changing

the value of a property called “Code Rate” could change

the behavior of the signal processing source code located

inside a Vocoder component.

 Signal processing can greatly benefit in performances

from the use of special accelerators such as SSE with Intel

processors, AltiVec with PowerPC processors, NEON with

ARM processors, MAPLE-B with Freescale processors,

and more. Even though each of the above accelerators are

designed to accelerate signal processing, they differ from

one another. It is therefore difficult to make signal

processing source code portable across different

accelerators.

 Furthermore, the use of FPGAs to implement signal

processing is very common with Software Defined Radios.

However, FPGA software (called firmware) is notorious

for not being portable. Firmware is designed to use specific

resources (e.g. block RAMs, FIFOs, DSP blocks,

multipliers) that vary from one FPGA manufacturer to

another. In fact, FPGAs can vary significantly within the

same family of products from the same manufacturer.

Portability of FPGA firmware is a research topic that has

received a lot of attention over the years. Many solutions

have been proposed [4, 5, 6, 7, 8], but none have gained

broad acceptance.

 Over time, the SCA has improved some aspects of

portability for applications that use FPGAs. It did so by

standardizing how software components running on DSPs

and GPPs can interact with signal processing algorithms

that run on FPGAs [9, 10]. With such an approach,

firmware can be adapted or rewritten for new FPGAs

without having a serious impact on the software that runs

on GPPs or DSPs. Nevertheless, the SCA does not help the

signal processing source code become more portable.

Instead, the SCA concentrates on the portability of SCA

components and applications.

 Improving the portability of source code is the holy

grail of the signal processing industry. One of the popular

approaches to improve portability of signal processing

source code is to use libraries that abstract domain-specific

accelerators. Microsoft uses this approach with DirectX

which offers a large number of functions that can be

optimized to run on GPPs and GPUs [11]. Different

frameworks have also been used with FPGAs [12, 13].

However, most approaches are limited to specific types of

accelerators or to specific operating systems.

 The most recent attempt to solve the problem of source

code portability across different types of accelerators is

OpenCL. This approach is very promising since it has been

adopted by a large number of companies that manufacture

different types of accelerators.

3. THE OPEN COMPUTING LANGUAGE

The Open Computing Language (OpenCL™) offers the

possibility of implementing signal processing software that

can execute across different types of accelerators. OpenCL

has been created to allow high-performance signal

processing source code to execute on GPPs, DSPs, GPUs,

FPGAs and other specialized processors or hardware

accelerators. OpenCL allows a developer to implement

source code that can be cross-compiled for different types

of accelerators. It can be used for a wide range of task-

based and data-based parallel programming.

 The standard defines a programming language that is

largely based on the C language (C99) and adds a number

of built-in functions for scalar and vector operations [14].

The language also allows source code to handle both the

host memory and the accelerator memory. Third-party

mappings exist for different programming languages [15,

16, 17]. OpenCL also provides APIs for a host program to

select and control any accelerator, called a compute device

in OpenCL. The APIs are used by host programs to run

signal processing functions, called kernels, on a compute

device.

Figure 2. OpenCL platform model

 With OpenCL, a system is viewed as being made of a

number of compute devices (e.g. GPPs, GPUs, DSPs,

FPGAs) connected to a host processor (i.e. GPP). A single

compute device can be made of several compute units each

of which contain multiple processing elements (Figure 2).

The execution of a single kernel can run on all or many of

the processing elements in parallel. How a compute device

is subdivided into compute units and processing elements

is defined by the hardware manufacturer as it adds support

for OpenCL.

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

 OpenCL provides portability by allowing the same

source code to be cross-compiled for different compute

devices. Host programs are compiled using the C/C++

compiler and the appropriate library for host APIs. The

kernels need to be compiled and linked using the tools

provided by the manufacturer of the accelerator. Those

tools typically come with the OpenCL drivers. A kernel

must be compiled for each accelerator it needs to be

executed on. The compilation typically happens before

run-time. However, in some cases, the kernels can also be

compiled programmatically during run-time. As indicated

before, no changes are needed to the source code of the

kernels to be compiled for various accelerators.

 One of the first things a host program does is use

OpenCL APIs to discover which compute devices are

available. Compute devices become available to a GPP

processor by installing the required OpenCL device

drivers. Intel provides OpenCL drivers that exploit the SSE

and AVX accelerators in most Intel processors. OpenCL

drivers also exist for many GPUs. Most System-on-Chip

(SoC) solutions combine a number of GPP and GPU cores

which are supported by OpenCL. In fact, OpenCL drivers

even exist for a number of DSP [18] and FPGA processors

[19, 20, 21].

 When the host program gets access to more than one

compute device, it needs to decide which to use to run the

kernels. It is important to remember that kernels are

contained in separate files from the host program. The host

program can execute kernels by getting access to the

binaries created from the source code of the kernels. The

host program needs to create a command queue to execute

kernels on a specific compute device. It can create more

than one command queue to execute kernels on different

compute devices. OpenCL offers a rich API to allow the

host program to schedule the execution of kernels in a

specific order. The host program can express very

sophisticated dependencies that exist between different

kernels.

 Before the execution of a kernel can start, the host

program must handle all the input buffers required by the

kernel. The buffers must be copied from the host memory

to the compute device memory where the kernel will

execute. In the case the host program targets a local

accelerator, OpenCL drivers don’t make unnecessary

memory copies. For instance, if the host program runs on

an Intel processor and targets the SSE/AVX accelerators,

the OpenCL driver does not make copies of the buffers.

The Intel OpenCL driver for the Intel processor knows the

host processor and the accelerators have access to the same

memory. But in the case the host program runs on an Intel

processor and targets a GPU accelerator, the GPU OpenCL

driver will copy the input buffers from host memory to the

compute device memory.

 When the host program schedules several kernels for

execution on the same compute device, it is possible for the

output data of one kernel to become the input of the next

kernel. In such a case, the data remains in the compute

device memory. The host program does not need to copy

the data back and forth between the host and compute

device memory. After the execution of the last scheduled

kernel, the host program usually copies the output data of

the kernel from the compute device back into the host

memory. If the host program needs to re-execute the

kernels, it must reschedule the execution and handle the

input and output buffers accordingly. This is very common

with SDR applications since they need to process the data

that continuously flows through the radio.

4. USING OPENCL TO INCREASE PORTABILITY

OF SCA APPLICATIONS

 As stated before, the source code that implements the

control part of the component does not need to change

much from one implementation to another. However, in

many cases, the source code that performs signal

processing needs to be optimized for specific accelerators.

This is where OpenCL can help make SCA applications

more portable.

 Using OpenCL, a developer can create several

component implementations without having to craft

different source code for the signal processing. OpenCL

can be used to reduce the development time required for a

component to support multiple types of accelerators,

including FPGAs. Since the signal processing source code

does not need to change, using OpenCL allows SCA

applications to quickly benefit from new and more

powerful accelerators as they get released.

 Creating a SCA component implementation using

OpenCL requires that the implementation source code

plays the role of the host program. The component

implementation must initialize the OpenCL environment

and select a compute device in order to create the

appropriate command queues. It must also take care of

scheduling the execution of the kernels it needs. The

component implementation, as usual, must be compiled for

a specific host processor. The kernels are however

compiled using the appropriate OpenCL compiler. In short,

a component implementation is made of a host program

which is distinct from its kernels.

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

4.1. Loading the kernels

 Launching the execution of a component

implementation that uses OpenCL requires the SCA Core

Framework selects a SCA Device that meets the

requirements of both the component implementation and

the kernels. For example, launching an x86/Linux

component implementation that comes with OpenCL

kernels requires a SCA Device that controls an

x86/Linux/OpenCL operating environment.

 Since, the kernel binaries are located in separate files

from the component implementation, the authors propose

to model the component implementation by defining a

software dependency between the implementation and the

OpenCL kernel files it needs. Also, the component

implementation will need to define its usual requirements

while the kernels need to declare a requirement for a

specific OpenCL compute device. With such an approach,

any standard SCA Core Framework will be able to load the

kernel files on the same SCA Device as the one used to

execute the SCA component implementation.

 Once the component implementation gets launched, it

will be able to schedule the execution of its kernels by

getting access to them via the file system. In the

experiments conducted for this paper, the kernel creation

was done during the initialization phase of the SCA

application component. Kernel creation involves

initializing OpenCL, listing and selecting compute devices,

loading kernel files, and instantiating the kernels. This is

all done using OpenCL APIs which makes calls to device

drivers.

 To maximize portability, it is forbidden for SCA

application components to make calls to native device

drivers. Therefore, making calls to the OpenCL drivers

represents a problem. However, the authors believe the

SCA specification could allow component implementation

to use OpenCL APIs since the standard is broadly

supported across different types of processing elements.

This approach would be in line with the current approach

to allow the use of CORBA and POSIX. A new Application

Environment Profile (AEP) standard document would be

required. Alternatively, it would be possible to create an

API that SCA devices could implement for application

components to use. This could theoretically prevent

application component implementations from being

compiled and linked directly against OpenCL drivers.

4.2. The Data Flow

 Figure 3 shows the distinction between the control

source code and the signal processing code. For an

OpenCL SCA component, the host program is part of the

control source code, and the kernels represent the signal

processing part. As stated before, the kernels can be

executed on different compute devices. OpenCL kernels

use compute device memory to get input data and to

provide output data. The host program is responsible for

creating compute device memory to be used by the kernels.

The host program is also responsible for copying data from

its host memory to the compute device memory and vice-

versa.

 SCA components usually receive and send data

through ports. This means the data is located in the memory

of the host processor. Therefore, the implementation of an

OpenCL-capable component needs to copy its input data

into the OpenCL compute device memory (H2D) before

executing a kernel. Likewise, the component

implementation needs to copy the output data produced by

a kernel from the compute device memory to the host

memory (D2H). Figure 3 shows the data flows through an

OpenCL SCA component.

Figure 3. Data flow of data processed by an OpenCL SCA

component.

5. METRICS

 Copying data between different memories affects the

overall data processing performance. This section provides

some metrics to help measure the impact of copying data

across the different types of memory. Our experimentation

was performed in two groups. The first group of

experiments was performed with OpenCL on an Intel

SSE/AVX engine and on a NVIDIA GPU. The second

group of experiments was done using an Altera Cyclone V

SoC.

5.1. OpenCL for GPP and GPU

 Our experiments were conducted on a desktop

computer with an Intel i7-4770 CPU with 4 hyper-threaded

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

cores clocked at 3.40 GHz with 4GB of DDR3 memory.

We used the 64-bit version of Fedora 20 with the Linux

kernel version 3.11.10-301. As for OpenCL, we used two

compute devices. The first compute device was the Intel

processor running the drivers that come with the Intel®

SDK for OpenCL™ Applications. These drivers offer

OpenCL version 1.2 which exploits the SSE and AVX

instructions. The second OpenCL device was the GPU of

the PCI-E 3.0 NVIDIA GeForce GT 635 graphics board

running the drivers that come as part of the NVIDIA

OpenCL CUDA 7.0.41 platform with OpenCL version 1.1.

5.1.1. OpenCL Program Format

 Section 3 describes that OpenCL brings portability by

allowing the same source code to be compiled and executed

for various compute devices with different hardware

architecture. Building every kernel and packaging the

binaries with the application components is in line with

common SCA practices. In such a case, each SCA

application component would contain several

implementations of the component. Using OpenCL means

each SCA component implementation will come with

kernel binaries targeting a specific compute device. The

deployment of an SCA application leads to the choosing of

the right implementations of each component and each

kernels based on the hardware available in the SCA

platform.

 However, with the proper driver support, kernels can

be built on the fly at the moment the SCA application gets

deployed. In such a case, the application is packaged with

the kernels either in source code format or in an

intermediate binary format which is portable across

different compute devices. Indeed, OpenCL supports a

format called Standard Portable Intermediate

Representation (SPIR) for kernel binaries. SPIR is cross-

platform and designed for heterogeneous parallel

computing. It is based on LLVM IR [22].

 Using on-the-fly compilation eliminates the need for

pre-compiling all the OpenCL kernels and as a result, it

reduces the number of individual component

implementations that are required. For example, assume a

platform provides an ARM processor that has access to

both a GPU and the ARM NEON accelerator. Also assume

there is an application that is made of two SCA

components, each having its own OpenCL kernel. Using

the traditional approach with binary kernels, one kernel

would need to be compiled for OpenCL/GPU while the

other would need to be compiled for OpenCL/NEON. If all

the flexibility is needed, both kernels would have to be

compiled for both OpenCL compute devices. This would

require that each SCA component be made of two

implementations: one implementation for the ARM with a

dependency to the OpenCL/GPU kernel binary and a

second implementation for the ARM with a dependency to

the OpenCL/NEON kernel binary. However, using the

kernel source code instead would only require one

component implementation for the ARM with a

dependency to the source code file (or SPIR file). As the

kernel source code would get loaded into the ARM (NEON

accelerator) or the GPU, the OpenCL driver would

dynamically compile the source code.

Figure 4. Data flow of data processed by an OpenCL SCA

component.

 Using the source code approach enables the SCA

application to be future-proof. Such an SCA application

can support any compute device that might be released in

the future for as long as it comes with the ability to compile

on-the-fly (Figure 4). It also makes the SCA application

more portable to different SCA platforms that use the same

GPP but different OpenCL compute devices. However,

using this approach incurs a runtime cost during the

deployment of applications since the OpenCL builder is

invoked on the fly

Table 1. Average time in µs to create a kernel based on

source code file size.

 To evaluate the impact of an approach over the other,

measurements have been made regarding the time it takes

to instantiate a kernel from source code, SPIR format, and

from native binaries prebuilt for specific compute devices.

The tests have been executed ten times for each file format

and file size (i.e. small vs large) of the source code. To

represent a small source file, a kernel implemented in 16

lines of code (LOC) was used. Another kernel implemented

 Small Large

Format in

kernel file

CPU GPU CPU GPU

Source code 13149 391 142089 447

Native binary 968 378 4381 396

Binary in SPIR 923 -- 4187 --

Component 1

impl 1

Neon
Kernel

impl 2

GPU
Kernel

Component 1

impl 1

Neon
Kernel

GPU
Kernel

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

with 398 LOC was used to represent a large source file. The

SPIR binaries were created using the options “-x spir -spir-

std=1.2” with the OpenCL compiler. Table 1 shows the

average times it takes to instantiate a kernel that is ready to

be executed starting with above-mentioned 3 types of

kernel files.

 As it can be seen from Table 1, instantiating a kernel

from source code is surprisingly fast. Kernel instantiation

involves compiling and linking the kernel source code for

different compute devices. For a CPU compute device, it

takes approximately 13 to 142ms to instantiate a kernel

from source code. Doing the same for the GPU compute

device only takes 0.3 to 0.5ms. Note that instantiating

kernels only happens once each time an application is

launched, no matter how long the application runs for.

 The reason it takes a different amount of time to

instantiate kernels for different compute devices is that

different tool chains are used. Another surprising result is

that instantiating a kernel for a GPU compute device takes

about the same time whether from source code or from

native binary. For a CPU compute device, instantiating a

kernel from binary SPIR format takes about the same time

as from native binary, even slightly faster. Since SPIR

binaries are portable, this format represents the best

solution for use with the SCA. The SPIR format also offers

the side benefit of not exposing the kernel source code on

the deployment platform.

5.1.2. Buffer Size

 As mentioned before, the input data must be moved

from the host memory to the target compute device

memory on which a kernel will be executed. Similarly, the

output data produced by a kernel must be moved back to

the host memory. The time spent copying data affects the

overall time required for OpenCL kernels to process data.

Experiments have been conducted to measure the impact

of copying data across the bus that connects the host and

the target devices.

 The experiments used various buffer sizes, from 4KB

for the size of small buffers to 3.125 MB for the size of

large buffers (800 times the size of the small buffers). The

measurements were averaged over twenty tests in each

direction. Table 2 provides the averages in microseconds

and illustrates the difference in performance between

different types of compute devices. It also quantifies that

the cumulative cost of copying data across memory types

can be significant. Figure 5 shows the plotting of these

numbers. NordiaSoft is currently investigating, with good

success, different approaches to reduce the costs of moving

data. Results to be published in a follow up paper.

Buffer

size (KB)

CPU GPU

H2D

(µs)

D2H

(µs)

H2D

(µs)

D2H

(µs)

4 5 9 10 12

32 7 12 19 19

320 32 42 101 104

640 67 75 191 312

960 112 105 406 464

1280 155 153 468 614

1600 193 161 520 694

1920 247 186 577 814

2240 274 209 653 903

2560 333 234 706 1020

2880 608 296 746 1194

3200 694 372 794 1307
Table 2. Average time to copy buffers.

Figure 5. Average time to copy buffers from H2D and D2H for CPU/ GPU.

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

 Traditional GPU cards are made to render

sophisticated graphics based on massive amounts of data

coming from the GPP [23]. Table 2 clearly illustrates the

predisposition of the GPU to more efficiently copy data

from the host to the device than the other way around.

The table also shows a sharp increase in time for copying

more than 2880 KB which is believed to be related to

memory caching. Above a certain threshold, data can only

be held in part by the low-level memory cache.

5.2. OpenCL for Altera Cyclone V SoC

 The previous experiments were performed with

OpenCL on an Intel SSE/AVX engine and on a NVIDIA

GPU. The following group of experiments was done using

an Altera Cyclone V Terasic SoCKit board [24]. This

development kit is one of the boards Altera recommends

for OpenCL development. The kit’s hardware design

platform is built around the Altera Cyclone V System-on-

Chip (SoC) FPGA2, which combines a Dual-Core ARM

Cortex™-A9 MPCore™ processor clocked at 800MHz

with 512KB of shared L2 cache and 64KB of scratch RAM,

programmable logic with 110K logic elements (LEs).

Altera’s SoC integrates an ARM-based hard processor

system (HPS) consisting of processor, peripherals and

memory interfaces tied with the FPGA fabric using an

interconnect backbone. The board contains 2GB of

DDR3L memory separated in halves between the HPS and

the FPGA.

 The ARM Linux BSP and Linux kernel image are

supported by the Altera software developer community

RocketBoards.org. User space and runtime OpenCL

libraries are supplied by Altera as part of the AOCL SDK

v14.0. The OpenCL kernels are built for Cyclone V FPGA

by using Quartus 14.0 [25].

5.2.1. OpenCL Program Format

 In order to build OpenCL kernels for a FPGA, the

kernels must be compiled with the OpenCL FPGA

compiler that usually comes from the FPGA vendor. The

compiler parses the source code of the kernels and

performs some performance optimizations. In addition, it

identifies which Intellectual Property (IP) Cores will be

needed. Finally, it performs the place-and-route step in

order to create a final FPGA image containing the OpenCL

kernels. The image also contains necessary infrastructure

like blocks for kernel memory clocks, host interface

controller, kernel interface controller, and more [26, 27].

 It should be mentioned that it is not possible to

dynamically compile individual OpenCL kernels for a

2 Altera part number 5CSXFC6D6F31C6N

FPGA. All the kernels must be combined into a single

FPGA image [26, 27, 28, 29]. This differs from the case of

GPP and GPU accelerators that can be used to dynamically

load new kernels during runtime. From an SCA standpoint,

this difference is important. With a single image that

contains all the kernels, the SCA components cannot load

their individual kernels dynamically into the FPGA.

Nevertheless, each SCA component can still instantiate the

kernels contained in the FPGA image individually.

However, the instantiation is done using the FPGA image,

which means every SCA component must have access to

it. In SCA, this can be accomplished by using software

dependency to the FPGA image file.

5.1.2. Buffer size

Table 3. Average time to copy buffer to/from FPGA

 The case of OpenCL/FPGA is no different than any

other OpenCL accelerator, data buffers must be copied

across the bus that connects the host and target processors.

Table 3 presents average measurements that represent the

time it takes to copy buffers of various sizes from host

memory to compute device memory (H2D) and vice versa

(D2H). The measurements are in microseconds and

represent the average of ten experiments conducted for

each buffer size in each direction. All the experiments are

conducted using the Altera Cyclone V Terasic SoCKit

board [24]. To be more specific, Table 3 shows delays

associated with copying buffers from an ARM processor to

an FPGA and vice versa. Figure 6 shows the plotting of the

measurements provided in Table 3.

Buffer

size (KB)

FPGA

H2D

(µs)

D2H

(µs)

4 65 49

32 327 235

320 2961 2438

640 5858 4879

960 8836 7342

1280 11709 9790

1600 14623 12261

1920 17477 14753

2240 20463 17204

2560 23266 19654

2880 26166 22112

3200 28984 24587

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

Figure 6 - Average time to copy buffers from H2D and

D2H for CPU/FPGA.

 The experiments conducted on the Altera Cyclone V

Terasic SoCKit board (measurements listed Table 3) show

data does not move as fast as with the experiments

conducted on the desktop computer (measurements listed

Table 2). This can be explained by the fact that the Altera

Cyclone V Terasic SoCKit board is significantly slower

than the hardware in the desktop computer. Altera Cyclone

V contains an ARM processor that has 2 cores clocked at

800MHz whereas the desktop i7 processor has 4 hyper-

threaded cores clocked at 3.4 GHz and GeForce GTX

950M GPU cores are clocked at 993MHz each. The speed

of the memory bus is also different between the two

experiments. The SoCKit board has a 2GB of DDR3L

clocked at 400MHz whereas the i7 processor has 4GB of

DDR3 memory clocked at 1600 MHz, and 4GB of DDR3

memory tied to GeForce GTX 950M GPU clocked at

1800MHz.

6. CONCLUSION

This paper describes how OpenCL, combined with the

SCA, can be used to address the number one innovation of

the top 10 most wanted innovations as defined by the

Wireless Innovation Forum.

 The experiments performed for this paper clearly

demonstrate that OpenCL kernels are fully portable across

GPPs, GPUs, and FPGAs. During the experiments, not a

single line of source code was changed in the kernels. The

paper also describes how OpenCL kernels can be combined

with SCA components for ultimate level of portability

across heterogeneous embedded distributed systems.

Furthermore, according to publicly available

documentation [30], the authors of this paper have all the

reasons to believe OpenCL would be as portable for DSPs.

 The paper underlines the fact that portability for signal

processing functions can be achieved at the source code

level and at the binary level which offers more protection

for intellectual property. Metrics have been presented to

illustrate how fast it is to instantiate OpenCL kernels in the

case of source compilation. The paper also provides

metrics that show the performances associated with

moving data across different types of memory.

 A simple approach to support OpenCL with SCA is

presented. It describes how an SCA Device must advertise

its capabilities to execute OpenCL kernels. It also explains

how SCA application components can integrate OpenCL

kernels. It should be noted that since every version of the

SCA specification allows binaries to be loaded and

executed, the approach proposed in this paper to integrate

OpenCL applies to all versions of the SCA up to the latest

version (i.e. version 4.1). The paper identifies some areas

of potential improvement for the SCA specification to

better support OpenCL.

 Finally, the paper shows how the copy of data between

the OpenCL host processor and a target compute device

can potentially affect real-time performances. More

research can be performed on this topic to explore

optimization possibilities.

7. REFERENCES

[1] C. Baldwin, E. Mohsen, ASIC or FPGA: Why Not

Plan For Portability?, Chip Design Tools
Technologies & Methodologies

[2] http://en.wikipedia.org/wiki/OpenCL.
[31 The Khronos OpenCL Working Group, The OpenCL

Specification version 2.0, 2014,
https://www.khronos.org/opencl/.

[4] J.L. Tripp, P.A. Jackson, B. L. Hutchings, Sea Cucumber: A
Synthesizing Compiler for FPGAs, Field-Programmable
Logic and Applications: Reconfigurable Computing Is
Going Mainstream, Volume 2438 of the series Lecture Notes
in Computer Science, pp 875-885, August 2002, Springer-
Verlag

[5] Z. Guo, B. Buyukkurt, J. Cortes, A. Mitra, W. Najjar, A
Compiler Intermediate Representation for Reconfigurable
Fabrics, International Journal of Parallel Programming
October 2008, Volume 36, Issue 5, pp 493-520, Springer-
Verlag

[6] E.S. Chung, J.C. Hoe, K. Mai, CoRAM: an in-fabric
memory architecture for FPGA-based computing,
Proceeding FPGA '11 Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate
arrays, pp 97-106, February 2011, ACM

[7] R. Kirchgessner, G. Stitt, A. George, H. Lam, RC: A virtual
FPGA platform for applications and tools portability, Field-
Programmable Logic and Applications: Reconfigurable
Computing Is Going Mainstream, Conference: Proceedings
of the ACM/SIGDA 20th International Symposium on Field

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000

Ti
m

e
[u

se
c]

Buffer Size [KBytes]

H2D [usec] D2H [usec]

http://dx.doi.org/10.1007/s11265-017-1225-y

The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y

Programmable Gate Arrays, FPGA 2012, Monterey,
California, USA, February 22-24, 2012

[8] B. Klöpper, N. Cranston, M. Aleksy, M. Dix, Developing
portable FPGA applications - A literature review, Industrial
Informatics (INDIN), 2013 11th IEEE International
Conference, 29-31 July 2013, pp 123-128, IEEE

[9] Joint Tactical Networking Center Standard Modem
Hardware Abstraction Layer Application Program Interface,
Version 3.0.0, 02 Oct 2013, JTNC.

 http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs
/API_3.0_20131002_Mhal_withErrata.pdf

[10] Joint Tactical Radio System Standard MHAL on Chip Bus
Application Program Interface, Version 1.1.5, 26 June 2013,
JTNC.

 http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs
/API_1.1.5_20130626_Mocb.pdf

[11] F. D. Luna, Introduction to 3D Game Programming with
DirectX 10, WordWare Publishing Inc., Sudbury, MA,
USA, 2008.

[12] W. Zhang, V. Betz, and J. Rose, Portable and Scalable
FPGA-Based Acceleration of a Direct Linear System Solver,
ACM Transactions on Reconfigurable Technology
and Systems, Vol. 5, No. 1, Article 6, March 2012.

[13] G. C. T. Chow, K. Eguro, W. Luk, and P. Leong, A
Karatsuba-based Montgomery Multiplier. FPL '10
Proceedings of the 2010 International Conference on Field
Programmable Logic and Applications. 2010.

[14] M. Scarpino, OpenCL in Action, Manning Publications Co.,
Shelter Island, 2012.

[15] OpenCL mapping for Python.
http://mathema.tician.de/software/pyopencl/

[16] OpenCL mapping for Java.
https://code.google.com/p/javacl/

[17] OpenCL mapping for Ruby.
https://github.com/Nanosim-LIG/opencl-ruby

[18] TI implementation of the Khronos OpenCL 1.1 specification
 http://downloads.ti.com/mctools/esd/docs/opencl
[19] R. Brueckner, How OpenCL Could Open the Gates for

FPGAs, 2015, http://insidehpc.com/2015/02/how-opencl-
could-open-the-gates-for-fpgas/.

[20] Implementing FPGA Design with the OpenCL Standard,
November 2013,
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/wp/wp-01173-
opencl.pdf.

[21] M. Parker, M. Jarvis, The Most Under-rated FPGA Design
Tool Ever, EE Times, 2015.

[22] The Khronos Group Inc., The SPIR™ Specification
version 1.2, 2014, https://www.khronos.org/registry/spir/

[23] Y. Fuji, T. Azumi, N. Nishio, S. Kato, M. Edahiro, Data

Transfer Matters for GPU Computing,
[24] SoCKit - the Development Kit for New SoC Device

http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo
=167&No=816

[25] Altera OpenCL for Arrow SoCkit Setup Instructions
v.14.0.01, 11/25/2014,
http://rocketboards.org/foswiki/pub/Documentation/Arrow
SoCKitOpenCL/SoCkit_OpenCL_Setup-v14.0--2014-11-
25.pdf?t=1457556033

[26] Altera SDK for OpenCL Programming Guide (UG-
OCL002) 2015.11.02, https://www.altera.com/opencl

[27] Altera RTE for OpenCL Getting Started Guide (UG-
OCL005) 2015.11.02, https://www.altera.com/opencl

[28] Altera SDK for OpenCL Best Practices Guide (UG-
OCL005) 2015.11.02, https://www.altera.com/opencl

[29] Altera SDK for OpenCL Custom Platform Toolkit User
Guide (UG-OCL007) 2015.11.02,
https://www.altera.com/opencl

[30] Texas Instrument OpenCL™ Runtime Documentation,

http://downloads.ti.com/mctools/esd/docs/opencl/index.htm

http://dx.doi.org/10.1007/s11265-017-1225-y
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_3.0_20131002_Mhal_withErrata.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_3.0_20131002_Mhal_withErrata.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.1.5_20130626_Mocb.pdf
http://www.public.navy.mil/jtnc/sca/Documents/SCA_APIs/API_1.1.5_20130626_Mocb.pdf
http://mathema.tician.de/software/pyopencl/
https://code.google.com/p/javacl/
https://github.com/Nanosim-LIG/opencl-ruby
http://downloads.ti.com/mctools/esd/docs/opencl
http://insidehpc.com/2015/02/how-opencl-could-open-the-gates-for-fpgas/
http://insidehpc.com/2015/02/how-opencl-could-open-the-gates-for-fpgas/
https://www.khronos.org/registry/spir/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=816
http://rocketboards.org/foswiki/pub/Documentation/ArrowSoCKitOpenCL/SoCkit_OpenCL_Setup-v14.0--2014-11-25.pdf?t=1457556033
http://rocketboards.org/foswiki/pub/Documentation/ArrowSoCKitOpenCL/SoCkit_OpenCL_Setup-v14.0--2014-11-25.pdf?t=1457556033
http://rocketboards.org/foswiki/pub/Documentation/ArrowSoCKitOpenCL/SoCkit_OpenCL_Setup-v14.0--2014-11-25.pdf?t=1457556033
https://www.altera.com/opencl
https://www.altera.com/opencl
https://www.altera.com/opencl
https://www.altera.com/opencl

