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ABSTRACT 

 

 The Software Communications Architecture has 

become the de facto standard to build Software Defined 

Radio radios. Over one hundred thousand SCA military 

radios have been deployed worldwide by several nations. 

The SCA offers a component-based operating environment 

for the creation of portable applications. SCA applications 

are portable across different heterogeneous embedded 

distributed system. 

 

 For performance reasons, application software gets 

optimized using specialized instructions sets supported by 

General Purpose Processors, Digital Signal Processors 

Graphical Processing Units. As a result, the level of 

portability of the source code can decrease significantly.  

Moreover, portability is considered to be a major challenge 

when Field Programmable Gate Arrays are used.  

 

 Specialized instruction sets are widely used for high 

performance military radio platforms. Consequently, 

finding a solution to increase portability of SCA 

applications across different operating environments could 

provide significant cost reductions. This paper describes 

how the Open Computing Language (OpenCL™) can be 

used in conjunction with the SCA to increase the portability 

of applications that need to perform intensive signal 

processing.  

 

1. INTRODUCTION 

 

 The Software Communications Architecture (SCA) 

was created to standardize the software architecture of real-

time embedded systems. The SCA is mainly used to build 

Software-Defined Radios (SDRs). The standard was 

created for the Joint Tactical Radio System (JTRS) 

program, a US DoD program that funded the development 

of military SDRs. The JTRS program started by funding 

the definition of the SCA and concluded with the 

acquisition of SCA-compliant SDR military radios. The 

main goal of the JTRS program was to allow applications 
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that implement communications standards, called 

waveform applications, to easily be ported from one radio 

platform to another. 

 

 The SCA is a software architecture that makes 

applications very portable across different heterogeneous 

systems. The SCA standardizes how applications are 

launched and how they interact with hardware. It also 

defines how applications are packaged, installed, deployed, 

and controlled. In its current state, the SCA standard allows 

manufacturers to reach a high level of portability for 

applications that have been implemented for General 

Purpose Processors (GPPs) and Digital Signal Processors 

(DSPs). SCA components can easily be ported to various 

operating environments. An Operating environment is 

defined as being made of an operating system, a specific 

processor, and a one-to-many communication buses. The 

SCA even makes the GPP/DSP software that interacts with 

a Field Programmable Gate Array (FPGA) more portable.  

 

 Software-Defined Radios are embedded systems that 

process a very large quantity of data in real-time. As such, 

in addition to embedded GPPs, SDR platforms often use 

DSPs and FPGAs. Implementing optimized source code 

for DSPs and FPGAs is well-known to be challenging and 

time-consuming. It also reduces the level of portability of 

source code [1]. It should therefore come as no surprise that 

application portability is the number one innovation on the 

top ten list of the most wanted wireless innovations as 

compiled by the Wireless Innovation Forum (WInnF1).  

 

 OpenCL is a standard for writing signal processing 

intensive applications that are portable. OpenCL was 

initially designed by Apple and it is now widely embraced 

by major chip manufacturers such as Intel, AMD, IBM, 

QualComm, Samsung, and NVIDIA [2]. The standard is 

open and royalty-free. It is maintained by a non-profit 

technology consortium called the Khronos Group [3].  

 

 OpenCL allows a developer to implement a signal 

processing function in source code that can be cross-
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compiled for GPPs, DSPs, GPUs, FPGAs and other 

specialized processors or hardware accelerators. 

Combining the OpenCL with the SCA holds the promise of 

making SCA applications much more portable across 

different platforms. The remainder of this paper explains 

how OpenCL can be used with the SCA. Section 2 

describes the structure of SCA applications. Section 3 

provides a short introduction to OpenCL. Section 4 

describes how SCA components can be built using 

OpenCL while section 5 provides performance metrics. 

The paper concludes on how the SCA could be improved 

to offer better support for OpenCL. 

 

2. SCA APPLICATION PORTABILITY 

  

 SCA applications are made of several software 

components interconnected with each other. For instance, 

the SCA FM Transmitter waveform application shown in 

figure 1 is made of 3 components: a voice filter, a squelch 

injector, and a FM modulator. The application is also 

connected to an audio device component and a RF device 

component. The audio device component represents a 

sound card that provides microphone voice samples. The 

RF device represents a transceiver which transmits 

modulated voice signals over the air. 

Figure 1. SCA FM Transmitter waveform application 

 

 Much like a chip in electronics, a SCA software 

component performs a simple task that can be used in many 

applications. Each software component has a number of 

ports to which other components can connect to exchange 

data or perform control.  

 

 SCA components are made of metadata and a number 

of binaries. The metadata depicts the characteristics of a 

component. It describes each property and port of the 

component in details. It also defines for which operating 

environment this component has been implemented. For 

instance, assume a SCA Frequency Modulator component 

can run on the following three operating environments: 

PPC/VxWorks, ARM/INTEGRITY, and x86/Linux. Such 

a component would come with three executable binary 

files; One for each operating environment. With the SCA, 

each of the three executable binaries is called a component 

“implementation”.  

 

 Launching a SCA component involves choosing an 

implementation that matches the characteristics of the 

desired target operating environment. The SCA Core 

Framework is responsible for picking the appropriate 

implementation of a component based on the capabilities 

of the hardware platform. The launching process results in 

executing the binary file associated with the selected 

implementation. The SCA mandates that every 

implementation of a SCA component offer the same 

behavior, ports, and properties. Thus, once a component is 

launched, it will behave the same way no matter which 

implementation has been selected. The concept of 

implementations is how the SCA guaranties components 

are portable. An SCA application is only portable if its 

components contain more than one implementation each. 

Consequently, the level of portability of an SCA 

application is proportional to the number of 

implementations its components contain.  

 

 Porting a component to a new operating environment 

involves adding a new implementation to the component 

and creating a new executable binary file. The binary file 

is produced from the appropriate source code for the new 

operating environment. Nothing in the SCA requires the 

new binary file to be produced from the same source code 

as for the existing implementation binaries. Application 

portability means the application can run, unchanged, on 

many different platforms which is the case even when all 

the implementations of its components are produced from 

different source code. Ideally, to reduce cost and time-to-

market, it would be better to use the same source code to 

address different operating environments. However, in the 

case a SCA component needs to support very different 

operating environments, it is perfectly valid to use different 

source code. Of course, the source code can be produced 

by any tool chain or manually. 

 

The source code for each implementation of an SCA 

component is made of two main pieces: control source code 

and signal processing source code. The control source code 

takes care of routing input data to the proper signal 

processing functions. It also takes care of routing the 

processed data to other components. The control source 

code handles a number of additional things including what 

happens when a component is started, stopped, connected, 

disconnected, and more. The SCA operating environment 

rules make the control source code very portable.  

 

 As for the signal processing source code, the second 

piece of an SCA component, it is responsible for handling 

the data. It transforms input data and produces output data. 

 

http://dx.doi.org/10.1007/s11265-017-1225-y


The final publication is available at Springer via http://dx.doi.org/10.1007/s11265-017-1225-y 

 

The transformation of data can be influenced by a number 

of properties the component offers. For instance, changing 

the value of a property called “Code Rate” could change 

the behavior of the signal processing source code located 

inside a Vocoder component.  

 

 Signal processing can greatly benefit in performances 

from the use of special accelerators such as SSE with Intel 

processors, AltiVec with PowerPC processors, NEON with 

ARM processors, MAPLE-B with Freescale processors, 

and more. Even though each of the above accelerators are 

designed to accelerate signal processing, they differ from 

one another. It is therefore difficult to make signal 

processing source code portable across different 

accelerators.  

 

 Furthermore, the use of FPGAs to implement signal 

processing is very common with Software Defined Radios. 

However, FPGA software (called firmware) is notorious 

for not being portable. Firmware is designed to use specific 

resources (e.g. block RAMs, FIFOs, DSP blocks, 

multipliers) that vary from one FPGA manufacturer to 

another. In fact, FPGAs can vary significantly within the 

same family of products from the same manufacturer. 

Portability of FPGA firmware is a research topic that has 

received a lot of attention over the years. Many solutions 

have been proposed [4, 5, 6, 7, 8], but none have gained 

broad acceptance.  

 

 Over time, the SCA has improved some aspects of 

portability for applications that use FPGAs. It did so by 

standardizing how software components running on DSPs 

and GPPs can interact with signal processing algorithms 

that run on FPGAs [9, 10]. With such an approach, 

firmware can be adapted or rewritten for new FPGAs 

without having a serious impact on the software that runs 

on GPPs or DSPs. Nevertheless, the SCA does not help the 

signal processing source code become more portable. 

Instead, the SCA concentrates on the portability of SCA 

components and applications. 

 

 Improving the portability of source code is the holy 

grail of the signal processing industry. One of the popular 

approaches to improve portability of signal processing 

source code is to use libraries that abstract domain-specific 

accelerators. Microsoft uses this approach with DirectX 

which offers a large number of functions that can be 

optimized to run on GPPs and GPUs [11]. Different 

frameworks have also been used with FPGAs [12, 13]. 

However, most approaches are limited to specific types of 

accelerators or to specific operating systems.  

 

 The most recent attempt to solve the problem of source 

code portability across different types of accelerators is 

OpenCL. This approach is very promising since it has been 

adopted by a large number of companies that manufacture 

different types of accelerators. 

 

3. THE OPEN COMPUTING LANGUAGE 

 

The Open Computing Language (OpenCL™) offers the 

possibility of implementing signal processing software that 

can execute across different types of accelerators. OpenCL 

has been created to allow high-performance signal 

processing source code to execute on GPPs, DSPs, GPUs, 

FPGAs and other specialized processors or hardware 

accelerators. OpenCL allows a developer to implement 

source code that can be cross-compiled for different types 

of accelerators. It can be used for a wide range of task-

based and data-based parallel programming.  

 

 The standard defines a programming language that is 

largely based on the C language (C99) and adds a number 

of built-in functions for scalar and vector operations [14]. 

The language also allows source code to handle both the 

host memory and the accelerator memory. Third-party 

mappings exist for different programming languages [15, 

16, 17]. OpenCL also provides APIs for a host program to 

select and control any accelerator, called a compute device 

in OpenCL. The APIs are used by host programs to run 

signal processing functions, called kernels, on a compute 

device. 

Figure 2. OpenCL platform model 

 

 With OpenCL, a system is viewed as being made of a 

number of compute devices (e.g. GPPs, GPUs, DSPs, 

FPGAs) connected to a host processor (i.e. GPP). A single 

compute device can be made of several compute units each 

of which contain multiple processing elements (Figure 2). 

The execution of a single kernel can run on all or many of 

the processing elements in parallel. How a compute device 

is subdivided into compute units and processing elements 

is defined by the hardware manufacturer as it adds support 

for OpenCL.  
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 OpenCL provides portability by allowing the same 

source code to be cross-compiled for different compute 

devices. Host programs are compiled using the C/C++ 

compiler and the appropriate library for host APIs. The 

kernels need to be compiled and linked using the tools 

provided by the manufacturer of the accelerator. Those 

tools typically come with the OpenCL drivers. A kernel 

must be compiled for each accelerator it needs to be 

executed on. The compilation typically happens before 

run-time. However, in some cases, the kernels can also be 

compiled programmatically during run-time. As indicated 

before, no changes are needed to the source code of the 

kernels to be compiled for various accelerators. 

 

 One of the first things a host program does is use 

OpenCL APIs to discover which compute devices are 

available. Compute devices become available to a GPP 

processor by installing the required OpenCL device 

drivers. Intel provides OpenCL drivers that exploit the SSE 

and AVX accelerators in most Intel processors. OpenCL 

drivers also exist for many GPUs. Most System-on-Chip 

(SoC) solutions combine a number of GPP and GPU cores 

which are supported by OpenCL. In fact, OpenCL drivers 

even exist for a number of DSP [18] and FPGA processors 

[19, 20, 21].  

 

 When the host program gets access to more than one 

compute device, it needs to decide which to use to run the 

kernels. It is important to remember that kernels are 

contained in separate files from the host program. The host 

program can execute kernels by getting access to the 

binaries created from the source code of the kernels. The 

host program needs to create a command queue to execute 

kernels on a specific compute device. It can create more 

than one command queue to execute kernels on different 

compute devices.  OpenCL offers a rich API to allow the 

host program to schedule the execution of kernels in a 

specific order. The host program can express very 

sophisticated dependencies that exist between different 

kernels.  

 

 Before the execution of a kernel can start, the host 

program must handle all the input buffers required by the 

kernel. The buffers must be copied from the host memory 

to the compute device memory where the kernel will 

execute. In the case the host program targets a local 

accelerator, OpenCL drivers don’t make unnecessary 

memory copies. For instance, if the host program runs on 

an Intel processor and targets the SSE/AVX accelerators, 

the OpenCL driver does not make copies of the buffers. 

The Intel OpenCL driver for the Intel processor knows the 

host processor and the accelerators have access to the same 

memory. But in the case the host program runs on an Intel 

processor and targets a GPU accelerator, the GPU OpenCL 

driver will copy the input buffers from host memory to the 

compute device memory. 

  

 When the host program schedules several kernels for 

execution on the same compute device, it is possible for the 

output data of one kernel to become the input of the next 

kernel. In such a case, the data remains in the compute 

device memory. The host program does not need to copy 

the data back and forth between the host and compute 

device memory. After the execution of the last scheduled 

kernel, the host program usually copies the output data of 

the kernel from the compute device back into the host 

memory. If the host program needs to re-execute the 

kernels, it must reschedule the execution and handle the 

input and output buffers accordingly. This is very common 

with SDR applications since they need to process the data 

that continuously flows through the radio.  

 

4. USING OPENCL TO INCREASE PORTABILITY 

OF SCA APPLICATIONS 

 

 As stated before, the source code that implements the 

control part of the component does not need to change 

much from one implementation to another. However, in 

many cases, the source code that performs signal 

processing needs to be optimized for specific accelerators. 

This is where OpenCL can help make SCA applications 

more portable.   

 

 Using OpenCL, a developer can create several 

component implementations without having to craft 

different source code for the signal processing. OpenCL 

can be used to reduce the development time required for a 

component to support multiple types of accelerators, 

including FPGAs. Since the signal processing source code 

does not need to change, using OpenCL allows SCA 

applications to quickly benefit from new and more 

powerful accelerators as they get released.  

 

 Creating a SCA component implementation using 

OpenCL requires that the implementation source code 

plays the role of the host program. The component 

implementation must initialize the OpenCL environment 

and select a compute device in order to create the 

appropriate command queues. It must also take care of 

scheduling the execution of the kernels it needs. The 

component implementation, as usual, must be compiled for 

a specific host processor. The kernels are however 

compiled using the appropriate OpenCL compiler. In short, 

a component implementation is made of a host program 

which is distinct from its kernels.  
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4.1. Loading the kernels 

 

 Launching the execution of a component 

implementation that uses OpenCL requires the SCA Core 

Framework selects a SCA Device that meets the 

requirements of both the component implementation and 

the kernels. For example, launching an x86/Linux 

component implementation that comes with OpenCL 

kernels requires a SCA Device that controls an 

x86/Linux/OpenCL operating environment.  

 

 Since, the kernel binaries are located in separate files 

from the component implementation, the authors propose 

to model the component implementation by defining a 

software dependency between the implementation and the 

OpenCL kernel files it needs. Also, the component 

implementation will need to define its usual requirements 

while the kernels need to declare a requirement for a 

specific OpenCL compute device. With such an approach, 

any standard SCA Core Framework will be able to load the 

kernel files on the same SCA Device as the one used to 

execute the SCA component implementation.  

  

 Once the component implementation gets launched, it 

will be able to schedule the execution of its kernels by 

getting access to them via the file system.  In the 

experiments conducted for this paper, the kernel creation 

was done during the initialization phase of the SCA 

application component. Kernel creation involves 

initializing OpenCL, listing and selecting compute devices, 

loading kernel files, and instantiating the kernels. This is 

all done using OpenCL APIs which makes calls to device 

drivers.  

 

 To maximize portability, it is forbidden for SCA 

application components to make calls to native device 

drivers. Therefore, making calls to the OpenCL drivers 

represents a problem. However, the authors believe the 

SCA specification could allow component implementation 

to use OpenCL APIs since the standard is broadly 

supported across different types of processing elements. 

This approach would be in line with the current approach 

to allow the use of CORBA and POSIX. A new Application 

Environment Profile (AEP) standard document would be 

required. Alternatively, it would be possible to create an 

API that SCA devices could implement for application 

components to use. This could theoretically prevent 

application component implementations from being 

compiled and linked directly against OpenCL drivers.  

 

4.2. The Data Flow 

  

 Figure 3 shows the distinction between the control 

source code and the signal processing code. For an 

OpenCL SCA component, the host program is part of the 

control source code, and the kernels represent the signal 

processing part. As stated before, the kernels can be 

executed on different compute devices. OpenCL kernels 

use compute device memory to get input data and to 

provide output data. The host program is responsible for 

creating compute device memory to be used by the kernels. 

The host program is also responsible for copying data from 

its host memory to the compute device memory and vice-

versa. 

 

 SCA components usually receive and send data 

through ports. This means the data is located in the memory 

of the host processor. Therefore, the implementation of an 

OpenCL-capable component needs to copy its input data 

into the OpenCL compute device memory (H2D) before 

executing a kernel. Likewise, the component 

implementation needs to copy the output data produced by 

a kernel from the compute device memory to the host 

memory (D2H). Figure 3 shows the data flows through an 

OpenCL SCA component. 

Figure 3. Data flow of data processed by an OpenCL SCA 

component.  

 

5. METRICS 

 

 Copying data between different memories affects the 

overall data processing performance. This section provides 

some metrics to help measure the impact of copying data 

across the different types of memory. Our experimentation 

was performed in two groups. The first group of 

experiments was performed with OpenCL on an Intel 

SSE/AVX engine and on a NVIDIA GPU. The second 

group of experiments was done using an Altera Cyclone V 

SoC.  

 

5.1. OpenCL for GPP and GPU 

 

 Our experiments were conducted on a desktop 

computer with an Intel i7-4770 CPU with 4 hyper-threaded 
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cores clocked at 3.40 GHz with 4GB of DDR3 memory. 

We used the 64-bit version of Fedora 20 with the Linux 

kernel version 3.11.10-301. As for OpenCL, we used two 

compute devices. The first compute device was the Intel 

processor running the drivers that come with the Intel® 

SDK for OpenCL™ Applications. These drivers offer 

OpenCL version 1.2 which exploits the SSE and AVX 

instructions. The second OpenCL device was the GPU of 

the PCI-E 3.0 NVIDIA GeForce GT 635 graphics board 

running the drivers that come as part of the NVIDIA 

OpenCL CUDA 7.0.41 platform with OpenCL version 1.1. 

 

5.1.1. OpenCL Program Format 

 Section 3 describes that OpenCL brings portability by 

allowing the same source code to be compiled and executed 

for various compute devices with different hardware 

architecture. Building every kernel and packaging the 

binaries with the application components is in line with 

common SCA practices. In such a case, each SCA 

application component would contain several 

implementations of the component. Using OpenCL means 

each SCA component implementation will come with 

kernel binaries targeting a specific compute device. The 

deployment of an SCA application leads to the choosing of 

the right implementations of each component and each 

kernels based on the hardware available in the SCA 

platform.  

 

 However, with the proper driver support, kernels can 

be built on the fly at the moment the SCA application gets 

deployed. In such a case, the application is packaged with 

the kernels either in source code format or in an 

intermediate binary format which is portable across 

different compute devices. Indeed, OpenCL supports a 

format called Standard Portable Intermediate 

Representation (SPIR) for kernel binaries. SPIR is cross-

platform and designed for heterogeneous parallel 

computing. It is based on LLVM IR [22]. 

 

 Using on-the-fly compilation eliminates the need for 

pre-compiling all the OpenCL kernels and as a result, it 

reduces the number of individual component 

implementations that are required. For example, assume a 

platform provides an ARM processor that has access to 

both a GPU and the ARM NEON accelerator. Also assume 

there is an application that is made of two SCA 

components, each having its own OpenCL kernel. Using 

the traditional approach with binary kernels, one kernel 

would need to be compiled for OpenCL/GPU while the 

other would need to be compiled for OpenCL/NEON. If all 

the flexibility is needed, both kernels would have to be 

compiled for both OpenCL compute devices. This would 

require that each SCA component be made of two 

implementations: one implementation for the ARM with a 

dependency to the OpenCL/GPU kernel binary and a 

second implementation for the ARM with a dependency to 

the OpenCL/NEON kernel binary. However, using the 

kernel source code instead would only require one 

component implementation for the ARM with a 

dependency to the source code file (or SPIR file). As the 

kernel source code would get loaded into the ARM (NEON 

accelerator) or the GPU, the OpenCL driver would 

dynamically compile the source code.  

Figure 4. Data flow of data processed by an OpenCL SCA 

component. 

 

 Using the source code approach enables the SCA 

application to be future-proof. Such an SCA application 

can support any compute device that might be released in 

the future for as long as it comes with the ability to compile 

on-the-fly (Figure 4). It also makes the SCA application 

more portable to different SCA platforms that use the same 

GPP but different OpenCL compute devices. However, 

using this approach incurs a runtime cost during the 

deployment of applications since the OpenCL builder is 

invoked on the fly  

 

Table 1. Average time in µs to create a kernel based on 

source code file size. 

 

 

 To evaluate the impact of an approach over the other, 

measurements have been made regarding the time it takes 

to instantiate a kernel from source code, SPIR format, and 

from native binaries prebuilt for specific compute devices. 

The tests have been executed ten times for each file format 

and file size (i.e. small vs large) of the source code. To 

represent a small source file, a kernel implemented in 16 

lines of code (LOC) was used. Another kernel implemented 

 Small Large 

Format in  

kernel file 

CPU GPU CPU GPU 

Source code 13149 391 142089 447 

Native binary 968 378 4381 396 

Binary in SPIR 923 -- 4187 -- 

Component 1

impl 1

Neon 
Kernel

impl 2

GPU 
Kernel

Component 1

impl 1

Neon 
Kernel

GPU 
Kernel
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with 398 LOC was used to represent a large source file. The 

SPIR binaries were created using the options “-x spir -spir-

std=1.2” with the OpenCL compiler.  Table 1 shows the 

average times it takes to instantiate a kernel that is ready to 

be executed starting with above-mentioned 3 types of 

kernel files. 

 

 As it can be seen from Table 1, instantiating a kernel 

from source code is surprisingly fast. Kernel instantiation 

involves compiling and linking the kernel source code for 

different compute devices. For a CPU compute device, it 

takes approximately 13 to 142ms to instantiate a kernel 

from source code. Doing the same for the GPU compute 

device only takes 0.3 to 0.5ms. Note that instantiating 

kernels only happens once each time an application is 

launched, no matter how long the application runs for.  

 

 The reason it takes a different amount of time to 

instantiate kernels for different compute devices is that 

different tool chains are used. Another surprising result is 

that instantiating a kernel for a GPU compute device takes 

about the same time whether from source code or from 

native binary. For a CPU compute device, instantiating a 

kernel from binary SPIR format takes about the same time 

as from native binary, even slightly faster. Since SPIR 

binaries are portable, this format represents the best 

solution for use with the SCA. The SPIR format also offers 

the side benefit of not exposing the kernel source code on 

the deployment platform.  

 

5.1.2. Buffer Size 

 As mentioned before, the input data must be moved 

from the host memory to the target compute device 

memory on which a kernel will be executed. Similarly, the 

output data produced by a kernel must be moved back to 

the host memory. The time spent copying data affects the 

overall time required for OpenCL kernels to process data. 

Experiments have been conducted to measure the impact 

of copying data across the bus that connects the host and 

the target devices. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 The experiments used various buffer sizes, from 4KB 

for the size of small buffers to 3.125 MB for the size of 

large buffers (800 times the size of the small buffers). The 

measurements were averaged over twenty tests in each 

direction. Table 2 provides the averages in microseconds 

and illustrates the difference in performance between 

different types of compute devices. It also quantifies that 

the cumulative cost of copying data across memory types 

can be significant. Figure 5 shows the plotting of these 

numbers. NordiaSoft is currently investigating, with good 

success, different approaches to reduce the costs of moving 

data. Results to be published in a follow up paper. 

Buffer 

size (KB) 

CPU GPU 

H2D 

(µs) 

D2H 

(µs) 

H2D 

(µs) 

D2H 

(µs) 

4 5 9 10 12 

32 7 12 19 19 

320 32 42 101 104 

640 67 75 191 312 

960 112 105 406 464 

1280 155 153 468 614 

1600 193 161 520 694 

1920 247 186 577 814 

2240 274 209 653 903 

2560 333 234 706 1020 

2880 608 296 746 1194 

3200 694 372 794 1307 
Table 2. Average time to copy buffers. 

 
 

 
Figure 5. Average time to copy buffers from H2D and D2H for CPU/ GPU. 
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 Traditional GPU cards are made to render 

sophisticated graphics based on massive amounts of data 

coming from the GPP [23]. Table 2 clearly illustrates the 

predisposition of the GPU to more efficiently copy data 

from the host to the device than the other way around. 

The table also shows a sharp increase in time for copying 

more than 2880 KB which is believed to be related to 

memory caching. Above a certain threshold, data can only 

be held in part by the low-level memory cache.  
 
5.2. OpenCL for Altera Cyclone V SoC 

 

 The previous experiments were performed with 

OpenCL on an Intel SSE/AVX engine and on a NVIDIA 

GPU. The following group of experiments was done using 

an Altera Cyclone V Terasic SoCKit board [24]. This 

development kit is one of the boards Altera recommends 

for OpenCL development. The kit’s hardware design 

platform is built around the Altera Cyclone V System-on-

Chip (SoC) FPGA2, which combines a Dual-Core ARM 

Cortex™-A9 MPCore™ processor clocked at 800MHz 

with 512KB of shared L2 cache and 64KB of scratch RAM, 

programmable logic with 110K logic elements (LEs). 

Altera’s SoC integrates an ARM-based hard processor 

system (HPS) consisting of processor, peripherals and 

memory interfaces tied with the FPGA fabric using an 

interconnect backbone. The board contains 2GB of 

DDR3L memory separated in halves between the HPS and 

the FPGA.  

 

 The ARM Linux BSP and Linux kernel image are 

supported by the Altera software developer community 

RocketBoards.org. User space and runtime OpenCL 

libraries are supplied by Altera as part of the AOCL SDK 

v14.0. The OpenCL kernels are built for Cyclone V FPGA 

by using Quartus 14.0 [25].  

 

5.2.1. OpenCL Program Format 

 In order to build OpenCL kernels for a FPGA, the 

kernels must be compiled with the OpenCL FPGA 

compiler that usually comes from the FPGA vendor. The 

compiler parses the source code of the kernels and 

performs some performance optimizations. In addition, it 

identifies which Intellectual Property (IP) Cores will be 

needed. Finally, it performs the place-and-route step in 

order to create a final FPGA image containing the OpenCL 

kernels. The image also contains necessary infrastructure 

like blocks for kernel memory clocks, host interface 

controller, kernel interface controller, and more [26, 27]. 

 

 It should be mentioned that it is not possible to 

dynamically compile individual OpenCL kernels for a 

                                                 
2 Altera part number 5CSXFC6D6F31C6N 

FPGA. All the kernels must be combined into a single 

FPGA image [26, 27, 28, 29]. This differs from the case of 

GPP and GPU accelerators that can be used to dynamically 

load new kernels during runtime. From an SCA standpoint, 

this difference is important. With a single image that 

contains all the kernels, the SCA components cannot load 

their individual kernels dynamically into the FPGA. 

Nevertheless, each SCA component can still instantiate the 

kernels contained in the FPGA image individually. 

However, the instantiation is done using the FPGA image, 

which means every SCA component must have access to 

it. In SCA, this can be accomplished by using software 

dependency to the FPGA image file.  

 

5.1.2. Buffer size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Average time to copy buffer to/from FPGA 

 

 The case of OpenCL/FPGA is no different than any 

other OpenCL accelerator, data buffers must be copied 

across the bus that connects the host and target processors. 

Table 3 presents average measurements that represent the 

time it takes to copy buffers of various sizes from host 

memory to compute device memory (H2D) and vice versa 

(D2H). The measurements are in microseconds and 

represent the average of ten experiments conducted for 

each buffer size in each direction. All the experiments are 

conducted using the Altera Cyclone V Terasic SoCKit 

board [24]. To be more specific, Table 3 shows delays 

associated with copying buffers from an ARM processor to 

an FPGA and vice versa. Figure 6 shows the plotting of the 

measurements provided in Table 3. 

Buffer 

size (KB) 

FPGA 

H2D 

(µs) 

D2H  

(µs) 

4 65 49 

32 327 235 

320 2961 2438 

640 5858 4879 

960 8836 7342 

1280 11709 9790 

1600 14623  12261 

1920 17477 14753 

2240 20463 17204 

2560 23266 19654 

2880 26166 22112 

3200 28984 24587 

http://dx.doi.org/10.1007/s11265-017-1225-y
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Figure 6 - Average time to copy buffers from H2D and 

D2H for CPU/FPGA. 

 

 The experiments conducted on the Altera Cyclone V 

Terasic SoCKit board (measurements listed Table 3) show 

data does not move as fast as with the experiments 

conducted on the desktop computer (measurements listed 

Table 2). This can be explained by the fact that the Altera 

Cyclone V Terasic SoCKit board is significantly slower 

than the hardware in the desktop computer. Altera Cyclone 

V contains an ARM processor that has 2 cores clocked at 

800MHz whereas the desktop i7 processor has 4 hyper-

threaded cores clocked at 3.4 GHz and GeForce GTX 

950M GPU cores are clocked at 993MHz each. The speed 

of the memory bus is also different between the two 

experiments. The SoCKit board has a 2GB of DDR3L 

clocked at 400MHz whereas the i7 processor has 4GB of 

DDR3 memory clocked at 1600 MHz, and 4GB of DDR3 

memory tied to GeForce GTX 950M GPU clocked at 

1800MHz. 

 

6. CONCLUSION 

 

This paper describes how OpenCL, combined with the 

SCA, can be used to address the number one innovation of 

the top 10 most wanted innovations as defined by the 

Wireless Innovation Forum.  

 

 The experiments performed for this paper clearly 

demonstrate that OpenCL kernels are fully portable across 

GPPs, GPUs, and FPGAs. During the experiments, not a 

single line of source code was changed in the kernels. The 

paper also describes how OpenCL kernels can be combined 

with SCA components for ultimate level of portability 

across heterogeneous embedded distributed systems. 

Furthermore, according to publicly available 

documentation [30], the authors of this paper have all the 

reasons to believe OpenCL would be as portable for DSPs. 

 

 The paper underlines the fact that portability for signal 

processing functions can be achieved at the source code 

level and at the binary level which offers more protection 

for intellectual property. Metrics have been presented to 

illustrate how fast it is to instantiate OpenCL kernels in the 

case of source compilation. The paper also provides 

metrics that show the performances associated with 

moving data across different types of memory.  

 

 A simple approach to support OpenCL with SCA is 

presented. It describes how an SCA Device must advertise 

its capabilities to execute OpenCL kernels. It also explains 

how SCA application components can integrate OpenCL 

kernels. It should be noted that since every version of the 

SCA specification allows binaries to be loaded and 

executed, the approach proposed in this paper to integrate 

OpenCL applies to all versions of the SCA up to the latest 

version (i.e. version 4.1). The paper identifies some areas 

of potential improvement for the SCA specification to 

better support OpenCL.  

 

 Finally, the paper shows how the copy of data between 

the OpenCL host processor and a target compute device 

can potentially affect real-time performances. More 

research can be performed on this topic to explore 

optimization possibilities. 
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