

ACCELERATING SCA COMPLIANCE TESTING WITH ADVANCED

DEVELOPMENT TOOLS

Jonathan Springer (Reservoir Labs, New York, NY, USA; springer@reservoir.com)

Steve Bernier (NordiaSoft, Gatineau, Québec, Canada; steve.bernier@nordiasoft.com)
James Ezick (Reservoir Labs, New York, NY, USA; ezick@reservoir.com)

Juan Pablo Zamora Zapata (NordiaSoft, Gatineau, Québec, Canada;
juan.zamora@nordiasoft.com)

ABSTRACT

In this paper, we explore the potential for combining model-

based development environments supporting automatic code

generation with novel static testing technology to accelerate

the SCA compliance testing process. Model-based

development and automated testing yield higher regularity

and predictability, reducing testing complexity and

sidestepping some issues for software intended for

deployment on multiple hardware platforms. Further,

integrating test tools into the development environment can

provide immediate feedback on compliance issues during the

development process. As testing moves upstream, the load on

certification entities is reduced, and correction of issues

becomes more straightforward. Pushing the testing upstream

also opens the door to increased customization. We introduce

Pitchfork, a language technology that allows users to define

specifications as sequences of patterns that can be identified

in source code. With Pitchfork, it becomes possible to

encapsulate both SCA and API properties in a precise,

automatically checkable way and distribute them across the

SDR community for immediate integration. A natural

evolution of this concept is self-certification, in which a

robust set of test tools provides a capability for a developer

to offer strong evidence of compliance without a formal

certification process. Conclusions in this paper are supported

with experiences from the use of the NordiaSoft™ SCA

Architect IDE and Reservoir Labs’ R-Check® SCA

compliance test tool.

1. INTRODUCTION

The Software Communications Architecture (SCA) has

provided proven benefits to the defense communications

community, including reduced risk, cost and time-to-market,

enhanced communications interoperability and simplified

insertion of new communications capabilities. Based on this

success, governments worldwide are mandating the adoption

of SCA standards in their own defense communications

infrastructure and forward-looking stakeholders in electronic

warfare [1], radar, and robotics are evaluating the SCA for its

potential to accelerate their own projects. This pattern of

adoption is leading to a proliferation of developers being

introduced to the SCA, growth in the SCA tools marketplace

and increased interdependencies and opportunities for

sharing among nations and project groups. As the stamp of

“SCA Compliant” transitions from desirable to essential,

there must be credible tools and processes for efficiently

demonstrating SCA compliance. If the SCA is to survive as a

respected international standard, it is essential that the SCA

community be able to defend against free-riders who would

erode the reputation of the SCA by claiming compliance not

backed by any outside validation.

 Both the prevailing SCA 2.2.2 and emerging SCA 4.1

specifications pose difficult compliance testing challenges.

For SCA 2.2.2 testing in the US, more than 100 separate

application requirements and more than 500 separate

operating environment requirements have been enumerated

[2][3]. Thorough testing requires the application of both static

and dynamic tools. Although the trend in SCA 4.1 has been

toward greater platform abstraction and therefore an

increased need for static testing tools, both specifications

include requirements that can, at best, be only approximately

tested [4]. Nations adopting the SCA for their defense

communications infrastructure should expect to make a

considerable investment in compliance testing facilities, and

contractors outsourcing SCA development should plan to

include specific provisions for verification of SCA

compliance in their agreements.

 In this paper we illustrate, using technologies that are

being developed today, ways in which SCA certification can

be accelerated with advanced development tools. By

integrating testing with model-based development

environments, testing can be focused on business logic and

compliance issues can be caught earlier in the development

process. In this model, it becomes possible to catch errors as

they are introduced and offer instructive remedies that

prevent similar errors from being introduced throughout the

code base. By providing compliance tools directly to the

developer, possibilities are created for allowing limited self-

testing that would reduce the time and cost of ultimate

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

154

mailto:springer@reservoir.com
mailto:steve.bernier@nordiasoft.com
mailto:ezick@reservoir.com
mailto:juan.zamora@nordiasoft.com

compliance verification. Tools that permit new rules to be

defined allow for knowledge capture and sharing across

projects and teams. Languages for defining these rules

provide a guiding path toward writing new, automatically

testable, requirements.

 The remainder of this paper is organized as follows.

Section 2 introduces the concept of a model-based

development environment as the foundation of an advanced

development platform. Section 3 discusses how model-based

environments can accelerate testing for a developer and

references a recent illustrative success in which advanced

tools played a pivotal role for GateHouse to achieve SCA-

compliance for the BGAN SDR waveform. Section 4

describes the role of advanced development tools in the

context of a test lab and discusses the potential for

accelerating compliance through pre-testing. Section 5

introduces Pitchfork, a language technology that allows users

to capture testable requirements as sequences of patterns that

can be identified in source code. Section 6 outlines future

prospects for evolving pre-testing to self-certification.

Finally, Section 7 summarizes conclusions and highlights

subjects for future work.

2. MODEL-BASED DEVELOPMENT

ENVIRONMENTS

In spite of the projected gains associated with object-oriented

programming languages, evidence has shown that Java only

yields approximately 20% better productivity than BASIC [5]

and barely 10% better than C++ [5][6]. Further, very small

productivity gains have been achieved since the latest object-

oriented languages like Java and C# have been introduced.

Recent gains are mostly associated with the broader use of

design patterns and agile methods [7]. Software projects are

becoming more complex as their size keeps increasing. A

recent study made by the Standish Group [8] shows that in

2012 only 39% of projects were delivered on time and on

budget. The Standish study also shows that the larger the

project is, the less chance it has of succeeding. Projects

costing less than $1 million USD in labor costs had a 76%

success rate, while projects over $10 million USD only had a

10% success rate. This reality led to a recognition of the need

to raise the level of abstraction above object-oriented

programming.

 The SCA is an exemplar of Component-Based

Development (CBD), a fairly new paradigm that raises the

level of abstraction above fourth-generation programming

languages and Unified Modeling Language (UML). While

the majority of fourth-generation programming languages are

aimed at addressing specific domains such as database

management, mathematical optimization, GUI/HCI

development, or web development, CBD can be used for a

wider range of domains. In fact, CBD is considered by many

as the paradigm that can lead to the industrialization of

software [7][9][10][11][12].

 The salient feature of CBD is that it shifts the emphasis

from programming software to composing software systems

[12]. Using CBD, the smallest unit of functionality is called

a software component. CBD applications are assembled by

wiring together several software components. This

composition process takes place well after the compilation

and linking phases. Just as it is not possible to add new pins

to a chip post-manufacturing, software components are not

meant to be modified by third-party users. Consequently,

software components are designed to be as reusable as

possible. Components offer a well-defined and concise

functionality that is controlled via pre-defined interfaces.

Associated metadata describes the characteristics of each

component so that they can be used by third-party developers.

The metadata also contains information about the operating

environment requirements, the runtime capacity

requirements, and other information relevant to the use of the

component in composition. The metadata for software

components is the equivalent of the technical specification

sheet for a chip. The goal of adopting CBD as the basis of the

SCA was to replicate the success of the electronic

components market, which relies on reusability and third-

party composition.

From SCA Components to Model-Based Development

While the CBD paradigm defines the manner in which

systems are organized and deployed, it does not dictate the

manner in which systems are developed. Model-Based

Development Environments (MBDEs) extend the level of

abstraction defined by the CBD paradigm all the way to the

developer. MBDEs allow developers to build complex

systems using high-level model concepts that treat

components as first-class citizens. MBDEs can represent

software components graphically, based on their associated

metadata. Application developers, assisted by modeling

tools, access and use the metadata to discover the interfaces

and properties a component implements. Since it is the

modeling tools that maintain the metadata in sync with the

implementation of a component, developers need not

manually create or modify it. MBDEs significantly improve

productivity [6] by allowing developers to craft whole

systems using models from which source code is then

automatically generated. This frees developers to focus on

writing the most valuable part of the SCA component, the

business logic, which implements the algorithm for a filter or

error correction code or any other functionality of their

waveform application. Developers thus work in an

environment where they graphically drag-and-drop SCA

components onto a canvas, and later establish connections

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

155

between them. In essence, SCA development using MBDEs

raises the level of abstraction above programming languages.

 The SCA is the first CBD standard that is targeted at

heterogeneous embedded distributed systems. It mandates the

use of standard POSIX APIs for things such as thread

creation, thread synchronization, timers, file access, and other

core facilities. At the heart of the SCA is a Core Framework

(CF) that enables third-party composition and component

deployment. At runtime, the SCA CF is tasked with the

deployment of the SCA application, which consists of the

deployment and interconnection of individual components.

 Advanced SCA modeling tools generate source code and

metadata for SCA components that a) might run on different

operating systems, b) run on different processors, c) are able

to interact with third-party components that may or may not

run in the same address space and d) are either local or

remote. Generated source code handles the component life-

cycle, from instantiation to termination, including the

handling of runtime composition. SCA modeling tools can

also generate source code that adapts to different runtime

environments, which is not an easy task for heterogeneous

embedded distributed systems. This level of independence is

critical to increasing productivity by allowing third-party

developers to reuse components. Implementing platform

independence requires intricate infrastructure source code,

and that type of source code constitutes a large proportion of

any heterogeneous distributed embedded system. Using

MBDEs, the infrastructure source code can be automatically

generated. A recent study conducted with car producers,

suppliers and technology consulting companies found that,

although the amount of generated code varied substantially

between companies and projects, 40% of participants

reported generated code above 95% levels [13].

 Over the last decade, the SCA has led to demonstrated

productivity gains [14][15][16]. SCA MBDEs with graphical

modeling of components and automatic code generation

represent the future of software development. Companies can

now build complex SCA-based systems by assembling

software components that originate from different sources.

The resulting development process extends well beyond

company borders, which increases the importance of quality

assurance and certification testing [17].

3. SCA COMPLIANCE TESTING IN

MODEL-BASED DEVELOPMENT

ENVIRONMENTS

The SCA defines a set of conventions that provides a means

for components to be deployed and interconnected in a

standard manner. The conventions are defined via a number

of standard Application Programming Interfaces (APIs),

behavioral requirements, and metadata structures.

 Compliance testing encompasses hundreds of

requirements that span the proper presentation and

implementation of interfaces, the proper execution of

components within those interfaces, and the overall

consistency of the component implementation with the

associated metadata. In practical terms, 100% assurance of

SCA compliance is not achievable, owing to the existence of

requirements that are worst-case undecidable and thus simply

not exhaustively testable. In categorizing a test for a

requirement, it is important to be clear about what

“guarantee” the test really provides. In some cases, “pass”

simply means “no obvious error.” In other cases, “pass” is an

exhaustive proof. Understanding the quality of the result

provided by a test is an important discriminator in selecting

tests to cover requirements. For some requirements,

completeness requires a test process that spans multiple,

independent tests – both static and dynamic.

 SCA Modeling tools can generate component source

code and metadata from high-level SCA models. Using

modeling tools, developers can concentrate on writing

domain-specific source code (also referred to as business

logic). When implemented correctly, modeling tools thus

have the potential to simplify the testing process by reducing

the amount of code to be tested. This considerably decreases

the development time required to create proper components

by driving the focus of development and testing

predominantly to the business logic. The remainder of this

section describes methods of testing that can be applied and

potentially accelerated, or not, in the context of a MBDE.

Components: Static Analysis

Static analysis refers to analysis performed by inspecting a

program source or binary code without requiring the code to

be executed. For source code static analysis, this also implies

that the code does not need to be compiled to machine-

dependent object code or linked. Static analysis methods

provide several advantages that make them a useful

complement to traditional dynamic (runtime) testing [4].

 Static methods are not influenced by common vs.

exceptional case behavior and analyze all program paths

without bias.

 Since they do not require the code to be compiled or

executed, static methods can be applied to code in an

intermediate (potentially incomplete) state.

 Static methods can be integrated into development

environments and provide a foundation for automated,

reproducible tests that link errors directly to violating

code.

 For the SCA, these advantages translate to a system of

analysis methods that can be used to automate, and thus

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

156

accelerate, testing of several specification requirements.

Through integration with a MBDE, analysis can be fast and

transparent enough to execute concurrent with each source

file save operation. The advantage to the SCA developer is

near instantaneous feedback when a potential violation is

introduced. Even while the code is not yet ready for

compilation and runtime testing, and without the need to

construct any unit or regression test cases or specialized test

harness, any introduction of an SCA violation can be found

and reported. Again, through integration with a development

environment, errors can be directly linked to SCA reference

material that provides a concise and up-to-date description of

each reported issue. Taken together, these capabilities allow

potential bugs to be found and corrected at the soonest

possible point in the development cycle through direct action

by the responsible developer.

Components: Automated Unit Testing

When adding business logic, developers can mistakenly

introduce non-compliant behavior or structures. Perfectly

compliant generated components can become non-compliant,

negatively affecting their potential for reuse and therefore

reducing productivity. While modeling tools cannot prevent

developers from adding source code that violates the

specification, they can automatically generate unit tests to

catch deviations from the specification. Models are used to

generate the specific unit tests a component must pass in

order to adhere to the specification. Unit tests can be used to

verify a very large portion of the behavioral requirements for

a component. The automatically generated unit tests provide

a safety net for the developers in terms of conformance. They

also provide the opportunity to test early and test often, a best

practice to help contain development costs, as well as to keep

the project schedule under control.

Framework Testing

While modeling tools can help test a large portion of the

requirements related to a) the structure of components, b)

their metadata, and c) the way they use the operating

environment, modeling tools are of limited help in testing the

component framework itself. The Component Framework is

a key element of the overall CBD approach. It serves as the

virtual backbone, allowing components to be deployed and to

communicate with each other. Using Model Based Testing

(MBT) for the validation of the SCA CF only helps generate

a small proportion of the tests needed to validate all of the

requirements. However, an SCA MBDE can be used to

generate the bulk of the source code used to validate the

framework requirements.

 As described in [18], using MBT, test source code can be

generated based on models of the requirements of a

specification. For instance, a harness can be generated to test

if an SCA FileManager refuses mount-points with an invalid

name. This can be done because there is a one-to-one

relationship between the invalid parameter and an expected

failure code. However, most framework requirements are not

as straightforward to validate. A component framework is

used to deploy an application made of several components

with one simple API call. With such an API, it is not

sufficient to simply test a return code to validate all of the

requirements. Verifying deployment requirements involves

interacting with components that have been deployed on

remote processors. This implies creating a number of

components and applications that will be deployed by a test

harness to create different use cases that will help validate the

long list of deployment requirements.

 In the context of the SCA, the artifacts (i.e., components,

applications, and metadata) required for testing the

deployment engine inside the CF represents many times more

source code than the test harnesses. One way to significantly

accelerate the development of a CF test tool is to use an SCA

MBDE to generate all of the test artifacts. The majority of the

SCA CF requirements are related to the deployment of

components on heterogeneous embedded distributed

systems. MBT tools cannot generate the required framework

test artifacts. MBT tools have been shown [18], however, be

useful for generating test harnesses for strictly component-

level requirements.

SCA Architect and R-Check SCA

NordiaSoft’s SCA Architect™, an SCA MBDE, provides a

deterministic graphical modeling language that supports

every concept of the SCA. It performs full behavioral and

structural code generation. Beyond the traditional skeletal

code generation, SCA components generated by SCA

Architect are fully functional and can be built and executed

without adding a single line of source code. SCA Architect

supports component-level model-based testing. Starting from

the models, SCA Architect produces source code for unit

tests that can instantiate the component-under-test to

dynamically verify several aspects of runtime compliance.

For instance, automatically generated unit tests can verify

whether a component does indeed support all of the

configuration properties it has declared. They can also

validate that each provided interface implements the

specified APIs.

 SCA Architect integrates seamlessly with Reservoir

Labs’ R-Check® SCA, a sophisticated static source code

analysis tool. R-Check SCA is capable of testing whole SCA

applications and operating environments, but when integrated

with SCA Architect, it provides continuous coverage of

business logic. This capability complements the presumed

(but still verified) correctness of the code automatically

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

157

generated by the SCA Architect MBDE by providing

compliance testing for correct AEP and CF interface usage,

the presence of exception and error case handling, and the

completeness of component memory reclamation at tear

down. By focusing on the business logic and linking directly

to each save operation in SCA Architect, source code errors

can be caught and explained as soon as they are introduced.

This helps eliminate misunderstandings about non-compliant

constructs, mitigates the likelihood of the same error being

propagated throughout the source code tree, and ultimately

accelerates testing by making it possible to catch and fix

errors at the earliest possible point in the development

process. The integration of SCA Architect and R-Check SCA

provides a very high level of confidence regarding

compliance throughout the development life-cycle.

GateHouse Case Study

As a recent illustrative success, SCA Architect with

integrated R-Check SCA support, played a pivotal role for the

Danish firm GateHouse to achieve SCA-compliance from the

Joint Tactical Radio System Test and Evaluation Laboratory

(JTRS JTEL) for its BGAN SDR waveform designed in

cooperation with Inmarsat [19]. BGAN SDR allows the

global government market to support the full suite of BGAN

bearers, such as packet switched data, circuit switched data

and Integrated Services for Digital Network (ISDN) and is

the first SCA-compliant commercial satellite

communications waveform. SCA Architect was used to

create software models of the components. Using

automatically generated code, automatic unit test support and

continuous R-Check SCA static analysis of business logic

during the development process, the entire SCA and API

implementation verification was reduced to only four days.

When the waveform was submitted for certification, the

effort benefited from the fact that the certification authority

had already assessed and verified compliance of the SCA

Architect generated code. By having pre-tested their business

logic with R-Check SCA, GateHouse was able to submit their

waveform with a high degree of confidence that the final

certification process would not yield any major surprises.

This success demonstrates not only the capability of MBDEs

to support developers in writing compliant code, but also the

potential for advanced tools to accelerate the compliance

certification process itself.

4. IMPACT OF MODEL-BASED

DEVELOPMENT ENVIRONMENTS ON AN

SCA TEST LAB

In an ecosystem such as the SCA's, with multiple software

producers distinct from the software consumers, a model that

has proven effective is to have a designated, accredited test

organization whose primary purpose is to ensure that

software adheres to the specification. Organizationally

separating the process of writing software from that of

certifying it for compliance greatly increases confidence in

the validity of the compliance assessment. Within the SCA

ecosystem, an SCA Test Laboratory is an independent facility

that provides controlled conditions to achieve reproducible

test results [20]. With an independent test lab, both vendors

and procurement entities have a neutral authority for ensuring

that all software adheres to the specification. Vendors submit

software source code to the test lab, which checks it against

the specification. If software does not pass inspection, the test

lab communicates back to the vendor the specific parts of the

specification that were not met.

 In considering the impact of MBDEs on an SCA Test

Lab, we identify three progressively more advanced forms of

compliance testing:

1. Pre-Testing: A vendor uses tools known to, and used by,

the Test Lab to develop and test their software. Test

results are thus, presumably, known to the vendor prior

to submission for formal compliance certification.

2. Pre-Certification: The vendor uses tools accredited by

the Test Lab and submits the output of those tools for

review by the Test Lab as proof of compliance.

3. Self-Certification: The vendor uses tools accredited by

the certification authority and directly publishes the

product and test results from those tools as proof of

compliance.

 As they exist today, MBDEs known to a Test Lab offer

the potential to accelerate pre-testing in multiple ways:

 The visual layout provided by a MBDE can be used to

generate a test plan and makes plain what needs to be

tested

 Automatically generated code should be correct by

construction

 MBDEs can support integration of static test tools

equivalent to those used by the Test Lab

 Automatically generated unit tests increase confidence in

the performance of components

 MBDEs encapsulate knowledge about the existence and

structure of components that can be used to

automatically select, inform and initiate dynamic tests

 The move from pre-testing to the possibility of pre-

certification, and ultimately self-certification, requires the

certification of tools and the means to establish trust that the

certified tools have been configured and executed in

accordance with published test procedures. The nature of how

this trust might be established is discussed in Section 6.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

158

 A key step toward enhancing support in MBDEs for pre-

testing and bridging the gap between pre-testing and pre-

certification and self-certification is providing a way to

express and distribute testable requirements in a format that

can be automatically executed within a MBDE. In the next

section, we describe a novel extension to R-Check SCA for

formally defining automatically checkable SCA and API

requirements.

5. PITCHFORK

As specification-checking software is promoted more widely,

both across test labs responsible for differing specifications

and across vendors, its brittleness becomes more of an issue.

Typical checking software builds in checks for specific

aspects of the specification, and these checks are not able to

be changed without significant development effort. Thus,

when a specification is modified, new versions of the

checking software must be developed and distributed

throughout the ecosystem. Even if specification change is

infrequent, the simple existence of multiple varying

specifications (such as SCA, ESSOR, and SVFuA) means

that there is a development burden on the maintainers of the

checking software. Furthermore, vendors may find it

convenient to be able to adjust or augment the checks that are

done in areas unrelated to the ecosystem-level specification,

and to share these adjustments with others.

 To address this issue requires adding a level of

configurability or programmability to the checking tool in the

form of a specification language that the tool understands.

Specification languages such as Larch [21] that are designed

to express program invariants at a specific program point

(e.g., method entry) do not fit this need. We are interested in

expressing more flexible properties, which may span a larger

region of code. A few specification languages such as Metal

[22][23] have been designed to express general-purpose static

analyses. However, expressing the desired specification is

complex in those languages, requiring advanced

programming skills.

 To fill this gap, we propose a language, Pitchfork, based

on the matching of code patterns, which allows most static

properties to be expressed in a more straightforward manner.

The Pitchfork rule language is a pattern-matching language

over C and C++ source syntax. The concept is to allow the

user to write the C/C++ source code that needs to be matched

and reported. To make it convenient to match sets of

structurally similar programs, Pitchfork augments the base

C/C++ syntax with a metalanguage, providing regular

expression syntax, pattern-match variables, wildcards, and

other helpful features.

 A prototype of Pitchfork has been implemented in

R-Check SCA. For clarity of presentation, we have elided a

few details that are not central to the language concept.

Syntax

A Pitchfork specification consists of a sequence of rules, each

of which describes an independent property to be checked. A

rule consists of a left-hand side (LHS), describing the

property to be checked, and a right-hand side (RHS),

describing what to do in the event that the LHS is triggered.

The LHS is called the “pattern,” while the RHS is the

“action.”

 Some rules are “positive,” by which we mean that they

activate when the LHS pattern matches a specific code

region. Other rules are “negative,” meaning they only trigger

if the property expressed is not found in the code. Rule

polarity is implied by the action: incident actions create

positive rules, while API actions create negative rules.

exp goto @label; @stmt

 => incident “Found dead code”;

Figure 1 Example Pitchfork rule

 Figure 1 shows a very simple example rule, which has

the form “LHS => RHS.” Here, the leading exp indicates the

LHS is an expression pattern; the rest of the LHS is the

pattern itself. In the RHS, the “incident” keyword indicates a

positive pattern, and the quoted text is a message that will be

reported (along with the location of the matched code). The

net effect is a rule that reports when there is code directly

following an unconditional branch in the program. We

discuss the parts of a rule in more detail below.

Patterns

The pattern on the LHS is the heart of Pitchfork. It describes

syntactic constructs that should be recognized and acted

upon. Patterns cover statement and expression syntax as well

as variable and function declarations.

 As mentioned above, pattern syntax is C-like, however it

is not specifically C or C++, as these languages (particularly

the latter) are quite large and contain many details that are not

relevant. Instead, an abstraction of C is used that captures the

relevant algorithmic constructs without the clutter of

isomorphic syntax (like for vs. while). The focus is on the

essential core of the statement and expression parts of the

syntax. Most expression syntax is supported, such as function

calls, dereferencing, and primitive numeric operations.

Statement syntax is more abstracted: conditionals are elided

(our framework is flow-insensitive) and there is a single loop

construct for any form of iteration.

 Function calls are a special case. Calls to libraries or

APIs are modeled, but calls to locally defined functions need

not be written into a pattern. The checker, where possible,

implicitly traces through function calls for which the callee

body is known. The program is thus modeled in principle as

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

159

a Control Flow Graph (CFG) of statements. In practice, not

all calls within the program text will be seeable, due to

indirect calls or efficiency considerations, so the actual result

may be a pessimization (in the direction of false negatives for

positive rules and false positives for negative rules) of the

ideal.

 Several kinds of declarations are needed: functions,

variables, exceptions, and structs. Each matches if the source

code contains a file-level, class, or namespace definition of

the corresponding construct. The identifiers naming the

declarations must be C++-style qualified names indicating

the specific class or namespace it must be defined in (if any).

It is expected that declaration patterns will usually be used

with API actions on the RHS, but they are valid for incident

actions as well.

Metalanguage

On top of the core syntax, Pitchfork layers a regular-

expression capability. Since regular expression syntax

overlaps with the source language syntax, it is necessary to

make it syntactically distinct. Pitchfork does this by prefixing

an "@" character to all metalanguage constructs. Such

constructs include grouping (“@{“ and “@}”), zero-or-more

iteration (“@*”), one-or-more iteration (“@+”), optionality

(“@?”), disjunction (“@|”), and conjunction (“@@”). All are

straightforward, although conjunction merits further

explanation. Pattern conjunction means the first pattern and

the second pattern are found, in that order in the code,

possibly with intervening source code. Patterns that are

simply juxtaposed (without the @@ connective) match only

without any intervening code. Another way to think of @@

is as a wildcard pattern that matches any amount of code.

Note that @@ is a may-follow relation; it is only necessary to

have some path that connects the two constructs. The @!@

syntax can be used for the must-follow relation, in which all

paths from the first construct must lead to the second one

(again, with possible intervening code).

 Pattern variables comprise another component of the

metalanguage. A pattern variable is just an identifier

distinguished by a leading “@” character. Where used, a

pattern variable matches an arbitrary block of code.

Furthermore, if the same pattern variable is used elsewhere in

the LHS, it is required to match the same source construct as

the first instance, or the match fails. This pattern variable can

also be used on the RHS of a rule, where it is replaced by the

matched program code.

 A subtlety that has been so far elided concerns how to

handle program variables, meaning normal C/C++

identifiers. Note that these are distinct from pattern variables

in syntax (not being preceded by @) and in meaning (not

matching code blocks). We treat program variables as unique

up to alpha-renaming, as is standard. This avoids

unintentional variable capture, where a script variable that is

intended to be free (unbound) takes on some meaning due to

a coincidental choice in the program being analyzed.

However, in our case, such variable names are intended to

match program variables, as for example when referencing

system call names. Thus, the convention is established that

program variables written into the pattern (unless declared

otherwise in the script) match bound program variables

appropriate to the scope where matching is being done.

Actions

There are two kinds of built-in actions in Pitchfork: incident

and API. An incident action simply indicates that if the LHS

matches, then that fact must be reported as an incident. An

API action indicates that the construct specified in the LHS

must be found in the program, or else the property is violated

and the fact must be reported.

Declarations

In addition to the rules, a Pitchfork specification can include

a set of declarations. Declarations take two forms. First, a

declaration @id: type can be used to restrict a pattern variable

to a particular type or type pattern. As with expressions, the

syntax for a type pattern uses a tag character to escape from

the concrete syntax. Additionally, there is a small set of

“wildcard” tokens that allow some common groups of types

to be expressed, such as “all pointer types.” The second form

of a declaration id = val assigns an identifier to a value. This

value is then simply used in place of the identifier wherever

it appears in subsequent declarations and rules.

Example Specifications

To get a better sense for Pitchfork in practice, we give some

examples that exercise a number of different features of the

language. The first shows an incident rule involving

statement sequencing. The second extends the concept of

sequencing to include checking for the absence of preceding

or following code. The third illustrates checking that software

properly implements an API.

Sequencing and Shared Variables

exp scanf(@buf, @str) @@

 strcat(@filename, @buf) @@

 open(@filename)

 => incident "User input in filename";

Figure 2 Taint tracking example

A common security problem with user-facing software is the

use of unsanitized user input in system calls. The rule in

Figure 2 looks for a particular example of this in which a

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

160

scanf() call is used to fill a buffer, which is then appended to

a path prefix using strcat() before being passed to open(). In

this example, the three calls are sequenced using @@,

indicating they need not be adjacent. The calls are tied

together, however, through their shared use of the

metavariables. The pattern only matches if the target of the

scanf(), represented by @buf, is the same as the suffix given

to strcat(), and the target of the strcat(), represented by

@filename, is the same as the argument of open().

Constraining API Usage

exp @! pthread_attr_setdetachstate

 (@att, PTHREAD_CREATE_DETACHED)

 @@ pthread_create

 (@thread, @att, @start, @arg)

 => incident "Thread not detatched";

Figure 3 API usage example

Sometimes an API needs to be used in a certain way, either

to honor the API contract or for reasons unique to the client

software. This kind of constraint can be modeled in Pitchfork

using the negation metasyntax (@!), which matches if its

expression is not found. In the example in Figure 3, the

pattern matches, and an incident is generated, if a

pthread_create() call is found that is not preceded by a

pthread_attr_setdetatchstate() call with the appropriate

argument.

Exp

 pthread_mutex_init(@mutex, @att)

 @@

 @! @(pthread_mutexattr_setprotocol

 (@att, PTHREAD_PRIO_INHERIT)

 @|

 pthread_mutexattr_setprotocol

 (@att, PTHREAD_PRIO_PROTECT) @)

 @@

 pthread_mutex_lock(@mutex)

 => incident "Bad mutex attributes";

Figure 4 Complex API usage example

 Figure 4 shows a more complex constraint on API usage.

Here, we require that a particular mutex used for locking a

thread must have either one of two different attributes. At the

outermost level, the pattern is a sequence of three

expressions. The “@att” variable is used to link the attribute

setting (second sub-pattern) to the mutex (first sub-pattern),

while the “mutex” variable links it to the thread lock

statement (third sub-pattern). The negation syntax (@!) is

used as before, but it modifies a group (@(and @)) in which

there is a disjunction operator (@|). The net effect is to match

a mutex created and then used for locking without having its

protocol set to one of the two approved values.

API Implementation

exc Audible::InvalidToneId(

 msg : string)

 => api "Audible API";

str Audible::SimpleToneProfile(

 frequencyInHz : uint4,

 durationPerBurstInMs : uint4,

 repeatIntervalInMs : uint4)

 => api "Audible API";

fun Audible::createTone(

 SimpleToneProfile)

 : uint4 raises InvalidToneProfile

 => api "Audible API";

fun Audible::startTone(

 uint4)

 raises InvalidToneId

 => api "Audible API";

fun Audible::stopTone(

 uint4)

 raises InvalidToneId

 => api "Audible API";

Figure 5 API implementation example

When writing software that is supposed to conform to a

published API, a Pitchfork specification can be written to

ensure that this API is implemented properly. Figure 5 shows

Pitchfork rules for a small extract of the AudioPort API

(AudibleAlertsAndAlarms has been renamed for brevity).

Three different kinds of declarations are illustrated: an

exception (introduced with the “exc” keyword), a struct

(“str”), and three functions (“fun”). In each case, the structure

of the declaration is represented, including fields of the

exception and the struct, the arguments of the methods, and

the exceptions thrown by the methods (via the “raises”

keyword). To match, a compatible implementation must use

the same entity names and types. Any that are not found will

generate a report from the Pitchfork checker.

Pitchfork in Practice

We have implemented a prototype of Pitchfork as a part of

R-Check SCA. Pitchfork specifications are written into a

“.pf” file and passed to the tool through a command-line

argument. R-Check SCA uses this specification as it

processes the submitted software suite, generating negative

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

161

reports only after the whole program has been analyzed.

Pitchfork reports can be included alongside SCA incidents,

allowing a unified vendor testing process.

 Using Pitchfork specifications, certification authorities

can independently extend API-based testing to include APIs

that are proprietary (i.e., not-public) to each national

program, without having to divulge sensitive information to

the testing tools vendors. This added independence should be

useful for national programs that need to enhance the public

APIs (SCA, JTRS, ESSOR, WInnF, etc.) with their own

national or regional requirements.

Future Directions

We have defined Pitchfork patterns in terms of an abstracted

procedural syntax, which works well for C-like languages,

but this could be augmented for other kinds of structured

syntax such as XML. To support this, the LHS would need a

tag indicating the kind of syntax intended for the pattern. It

may also be useful to establish constraints on when rules

could be applied, for example only within particular files.

 Constraining the application of rules in the above and

other ways could be handled conveniently through the

addition of side-condition syntax to the LHS. A side

condition is an expression, referring to variables bound in the

pattern, that evaluates to true or false. The LHS is considered

to match only if the expression evaluates to true.

 Pitchfork adopts regular expressions as its central idiom

for describing patterns of code to be matched. This has two

main advantages: the descriptions are straightforward for the

user and they are efficient for R-Check SCA to implement.

Some code patterns, however, require a more powerful

language (e.g., some form of grammar). A fully-general way

to enhance matching is through extension of the action part

of the language. An “event” action could be defined that has

the effect of setting a named event state. A corresponding

named event pattern would be defined for use on the LHS,

allowing the match only when the event state is set. The net

effect would be to allow meta-rules to be defined, comprised

of groups of rules linked by named event states.

6. TOWARD PRE-CERTIFICATION AND

SELF-CERTIFICATION

While pre-testing eases the task of certifying vendor software

against the specification, the Test Lab nevertheless remains a

bottleneck in the SCA compliance testing process because it

must test from scratch. A natural idea for addressing this

bottleneck is to enlist the aid of the software producers

themselves to do pre-certification. Software producers are

already motivated to check their own software in order to

prevent costly delays due to certification failures. Having the

software producer actually perform the checking and deliver

the results to the Test Lab would effectively parallelize part

of the testing workload. In this scenario, the Test Lab would

simply need to perform a check on the results themselves,

which could be done much more quickly.

 The prime difficulty of vendor-assisted pre-certification

is retaining the high confidence in the results that stems from

the use of an independent certification authority in the first

place. One possible way to increase this confidence is by

using code-signing techniques similar to those used for

cryptographic applications. The checking software would

produce a checksum as part of the report that is unique to the

combination of test software, test configuration, test

invocation options, SCA XML project files, IDL, source code

and test results. The vendor would deliver the test results,

with included checksum, which could then be quickly

checked for validity using a simple “result checker” utility

against the other artifacts. If the test results or any of the

artifacts are altered, the checksum will not match. If the

checksum matches, the result can be treated as authoritative

for those software artifacts and test configuration.

 Self-certification of compliance with automatically

testable SCA requirements would require that the “result

checker” be available to the software consumer. In cases

where the vendor is unwilling to make source code available

(such as for intellectual property reasons), the test result

would have to be linked to the binary image. A separate

assurance that the binary is the product of the tested source

code would then have to be held in escrow by a trusted entity.

We leave further discussion of such a scheme as future work.

 The security of the signing approach depends on the

integrity of the checksum. The vendor should not be able to

manually calculate the checksum for any given code base and

set of test results; only the test software approved by the Test

Lab should be able to do this. To achieve this, the test

software could have embedded a cryptographically secure

hash function, such as SHA-1 [24]. Subverting this checksum

would, however, still be possible by reverse-engineering the

test software. Preventing this kind of subversion would

require a client-server architecture, where vendor software is

submitted to a server running the checking software under the

control of the Test Lab or trusted tool vendor.

7. CONCLUSION

Reaping the benefits of the SCA – reduced risk, cost and

time-to-market, enhanced communications interoperability,

and simplified insertion of new communications capabilities

– depends on developing and deploying truly SCA-compliant

applications and core frameworks. The SCA spans

hundreds of requirements of varying complexity, and

assuring compliance requires investment in tools and

processes dedicated to the task. Fortunately, modern

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

162

development environments provide opportunities to simplify

and accelerate the compliance testing process.

 Manually implementing systems based on software

components can be very difficult. MBDEs automate the

generation of the code required for the deployment and

interoperation of components. For business logic, static

testing provides unbiased inspection of all software paths and

can be used to find latent issues that do not manifest on

particular platforms or in scripted test executions.

Component models admit automated unit tests that can be

used to verify proper execution. Dynamic, model-driven

methods use known examples and error conditions to check

for correctness. All of these methods can be run as code is

being developed, allowing non-compliant code to be fixed

earlier in the development cycle.

 When the testing tools used by the certification authority

are commercially available, vendors can engage in pre-

testing by applying to their SCA artifacts the same test

software that the certification authority uses. Figures indicate

that in the early days of the Joint Tactical Radio System

(JTRS) program, when most of the development was being

done manually, certifying an SCA system would take several

months at a cost of over $200,000 per radio platform product

release [25]. As demonstrated with the GateHouse

experience, pre-testing enabled by advanced development

tools has the potential to substantially accelerate the SCA

certification process.

The trend in both software development and compliance

testing is towards increased automation. We expect this trend

to continue and intensify. Advances in static analysis,

reflected through languages such as Pitchfork, will allow

more precise and flexible specifications spanning all artifacts

of MBDE-generated software (XML and IDL as well as C

and C++ source code). In addition, there will be increased

cooperation between and among software developers and

compliance testers, as they share knowledge expressed as

mechanically-checkable rules, share the certification task,

and share the benefits of interoperability.

8. REFERENCES

[1] W. Kishaba, Raytheon, “Testimonials – Combined
Presentation”, SCA 4.1 Standard Preview Workshop, October,
2014, pp 49-52.

[2] JPEO JTRS Test and Evaluation Laboratory (JTEL) SCA 2.2.2
Application Requirements List version 2.2 Release Notes, July
8, 2010.

[3] JPEO JTRS Test and Evaluation Laboratory (JTEL) SCA 2.2.2
OE Requirements List version 2.2 Release Notes, November 4,
2010.

[4] J. Ezick and J. Springer, “The Benefits of Static Compliance
Testing for SCA Next,” Proceedings of the SDR’11
WInnComm Technical Conference, November 2011.

[5] Caper Jones, “Programming Languages Table”, Software
Productivity Research, 1996.

[6] S. Kelly, “Improving Developer Productivity with Domain-
Specific Modeling Languages”, DeveloperDotStar.com, 2005.

[7] J. Greenfield and K. Short, “Software Factories: Assembling
Applications with Patterns, Models, Frameworks and Tools”,
from John Wiley and Sons. 2004.

[8] The Standish Group, “CHAOS Manifesto 2013”.
[9] B. Councill, G. T. Heineman, “Component-Based Software

Engineering: Putting the Pieces Together”, Addison-Wesley
Professional, 2001.

[10] D. S. Frankel, S. Cook, “Domain-Specific Modeling and
Model Driven Architecture”, MDA Journal, 2004.

[11] J. Dong, “Research on Heterogeneous Component Assembly
Problems Based on Software Product Line”, Proceedings of the
2nd International Conference On Systems Engineering and
Modeling (ICSEM-13), 2013.

[12] P. C. Clements, “From Subroutines to Subsystems:
Component-Based Software Development”, November 1995,
Software Engineering Institute.

[13] M. Broy, S. Kirstan, H. Krcmar, and B. Schatz, “What is the
Benefit of a Model-Based Design of Embedded Software
Systems in the Car Industry?”, In Emerging Technologies for
the Evolution and Maintenance of Software Models. ICI, 2011.

[14] Wireless Innovation Forum, “SCA Standards for Defense
Communications: Global Adoption, Proven Performance”,
2014.

[15] M. Turner, “Waveform Applications Porting – Experience in
Moving Past the Myths and Legends”, Proceedings of the
SDR’10 Technical Conference, March, 2010.

[16] K. Dingman, A. Dibernado, “Porting…It’s More Than Just
Software”, Waveform Portability Workshop, January, 2014.

[17] C. Rathfelder, H. Groenda, R. Reussner, “Software
Industrialization and Architecture Certification”,
Industrialisierung des Software Management. 2008.

[18] J. Botella, E. Jaffuel, B. Legeard, F. Peureux, “Model-Based
Testing for SCA Conformance”, In Proceedings of
WInnComm Europe 2014.

[19] NordiaSoft, “NordiaSoft Technologies Pave the Way to SCA
Certification for GateHouse”,
http://www.nordiasoft.com/#!news/c1jg6

[20] SDR Forum, Test and Certification Guide for SDRs based on
SCA, Part 1: SCA, SDRF-08-P-0007-V1.0.0, April 2009.

[21] S. J. Garland, J. V. Guttag, J. J. Horning, “An Overview of
Larch,” in Functional Programming, Concurrency, Simulation
and Automated Reasoning, Peter E. Lauder (editor), LNCS
693, Springer, July 1993, pp 329-348.

[22] D. Engler and M. Musuvathi, “Static Analysis Versus Software
Model Checking for Bug Finding,” in Verification, Model
Checking, and Abstract Interpretation, LNCS vol. 2937, 2004,
pp 191-210.

[23] S. Hallem, B. Chelf, Y. Xie, D. Engler, “A system and language
for building system-specific, static analyses,” in Proceedings
of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation (PLDI), 2002, pp 69-82.

[24] The Internet Society, US Secure Hash Algorithm 1 (SHA1),
2001. http://tools.ietf.org/html/rfc3174

[25] M. Turner, “Global Military SDR Solutions – Practical
Methods for SCA Radio Compliance and Deployment”,
Proceedings of the SDR’09 Technical Conference, December,
2009.

Proceedings of WInnComm 2015, Copyright © 2015 Wireless Innovation Forum All Rights Reserved

163

http://www.nordiasoft.com/#!news/c1jg6
http://tools.ietf.org/html/rfc3174

