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ABSTRACT 

 

The Open Computing Language (OpenCLTM) can be used in 

conjunction with the Software Communications Architecture 

(SCA) to build very portable applications that execute 

across heterogeneous platforms consisting of General 

Purpose Processors (GPPs), Digital Signal Processors 

(DSPs), Field Programming Gate Arrays (FPGAs), and 

Graphics Processing Units (GPUs). This paper starts with an 

overview of how SCA components can be built using 

OpenCL. It compares performance metrics of an application 

implemented as several OpenCL-SCA components with the 

metrics of a variation of the application that uses a reduced-

copy technique for the data being processed. The paper 

provides a detailed discussion on how the data flows in and 

out of the OpenCL device memory as it travels from a 

component to the next. The paper describes a novel 

approach that minimizes the number of copies made as the 

data flows through the different signal processing 

components of an SCA application. The paper concludes by 

identifying further research topics that could be investigated 

on this subject. 

 

 

1. INTRODUCTION 

 

 The Software Communications Architecture (SCA) [1] 

is the de facto standard to build military Software Defined 

Radio (SDR) radios [2]. Several hundred thousand SCA 

military radios have been deployed worldwide by several 

nations. The SCA offers a component-based operating 

environment for heterogeneous embedded systems that 

ensures applications are portable across platforms made of 

different combinations of processors, operating systems, 

micro-kernels, and communication buses.  

 

 Embedded system applications, especially signal 

processing applications, are often optimized using target-

specific instruction sets. Computing devices such as GPPs, 

DSPs, FPGAs, and GPUs provide various specialized 

instructions sets to accelerate data processing. While such an 

approach can provide great performance improvements, it 

decreases the level of portability of SCA components. Once 

a component has been optimized using a specific instruction 

set, it cannot be ported to another processor family without 

making changes to the source code.  

 

 OpenCL is an open and royalty-free standard 

maintained by a non-profit technology consortium called the 

Khronos Group [3]. Apple created the first version of 

OpenCL [4] to allow high-performance applications to be 

portable to various platforms. It is now supported by a very 

large number of commercial vendors [5]. OpenCL has been 

designed from the ground up for parallel processing. It 

supports task-based and data-based parallel programming 

which have been mapped to GPPs [6, 7, 8, 9], GPUs [10, 11, 

12, 13], DSPs [14], and FPGAs [15, 16].  

 

 Creating SCA components using OpenCL to perform 

signal processing on various processors has been 

demonstrated to work [17]. Thanks to its support for a wide 

range of processors, OpenCL can significantly increase the 

level of portability of SCA applications. The current paper 

describes how the technique described in [17] can be 

improved. In particular, it examines the cost of moving data 

across SCA components. The paper proposes a novel 

approach that can provide better performances for SCA 

applications that use OpenCL.  

 

2. USING OPENCL WITH SCA COMPONENTS 

 

 This section offers a brief overview of what SCA 

components are and how they are used to create 

applications. It follows with a description of OpenCL and 

how it can be used to create SCA components.  

 



2.1. SCA Components and Applications 

 

 An SCA component is to software what an integrated 

circuit component (also known as a chip) is to hardware. 

They are components that can be reused from one system to 

another.  Much like a hardware designer cannot modify a 

chip to change its behavior, a software developer does not 

modify the source code of a SCA component to change its 

behavior. The designer of the component must provide an 

interface that allows the user of a component to control it.  

 

 With hardware, chips offer pins that implement specific 

protocols to allow users to control them. With software, 

SCA components offer ports and properties as a means to 

interact with other software. Ports implement well-defined 

interfaces that can be used to exchange data and control the 

component. Properties provide a well-defined interface to 

allow a user to change the value of an attribute in order to 

alter the behavior of a component.   

 

 When a designer cannot find a chip that does exactly 

what is needed, he can connect several chips together to 

obtain the overall required behavior. Alternatively, the 

designer can create an Application Specific Integrated 

Circuit (ASIC). The same is true about SCA software 

components. The developer can assemble several software 

components together or create a new component.  

   

 SCA systems are made of two types of components: 

components that control the hardware and components that 

implement the application behavior. In the case of an SDR 

platform, some SCA components control hardware such as 

the transmitter, the transceiver, and the power amplifier. 

Other components perform the signal processing required to 

implement communication standards such as AM, FM, and 

LTE.  

 

 SCA applications are typically made of a series of 

interconnected software components that process digitized 

signals to, for instance, implement a communication 

standard, control a robot, or perform diagnostics. SCA 

application components interact with components that 

abstract the physical hardware. With a proper hardware 

abstraction layer, SCA applications become very portable 

across different physical platforms. 

 

SCA components come as a set of files that contain 

binary code and meta-data. The SCA defines a standard set 

of meta-data that describes the different ports and properties 

of a component. A port is described in terms of the interface 

it provides or uses. Properties are described in terms of their 

data types and structures. SCA components are meant to 

support several different operating environments each. As 

such, the meta-data also describes which binary files are to 

be used to different operating environments. An operating 

environment represents an execution host and can be defined 

by a processor type, an operating system, a vector engine, or 

anything a component implementation might need to 

execute. SCA components can be executed on processors 

such as GPPs, DSPs, FPGAs, GPUs, etc. However, each 

application must have at least one component that runs on an 

operating system that supports a minimum set of POSIX 

calls.  

 

2.2. OpenCL 

 

 Software developers use OpenCL to improve data 

processing performances by allowing task-based and data-

based parallel programming. An OpenCL application is 

made of two parts: kernels and a host program. OpenCL 

kernels are routines (algorithms) that numerically process 

data.  

 

 Kernels are implemented in a C-like language with 

vector types and operations, synchronization, and functions 

that facilitate the use of parallelism by allowing the 

processing to be divided into work-items and work-groups. 

Kernels can be dispatched to run in parallel on a target 

device that supports OpenCL.   

 

 The host program runs on the host processor and is 

implemented using the OpenCL Application Programming 

Interface (API) to launch kernels on the target devices and 

manage device memory. The host processor is typically a 

GPP while the target device can be a GPP, a DSP, a GPU, 

or even an FPGA.  

 

 An OpenCL framework consists of a library that 

implements the host APIs, and an OpenCL compiler that 

compiles and links kernels for a specific target device. An 

OpenCL host program goes through the following steps for 

each buffer of data that needs to be processed. It uses the 

host APIs to first load the required OpenCL kernels onto the 

selected compute device. The host program then copies the 

data that needs to be processed from the host memory to the 

target device memory. Next, the host program launches the 

execution of the kernels and finally, it copies the processed 

data back from the target device memory to the host 

memory.  

 

 Conceptually, OpenCL offers nothing more than a co-

processor. The novelty with OpenCL is that it supports a 

wide range of target devices as co-processors. OpenCL does 

so with a standard set of host and ‘C’ APIs which are 

supported by a very large segment of the high-tech industry 

manufacturers that includes Apple, Intel, AMD, ARM 

holdings, IBM, Qualcomm, Samsung, Creative 

Technologies, Altera, Xilinx, and more. Using the same 



APIs for any target device provides a very high level of 

reusability.  

 

2.2. A New Kind of SCA Component 

 

 Using OpenCL, the host program sets up the 

environment to exploit a co-processor to perform data 

processing. Using the SCA, at least one component needs to 

run on a host processor. The fundamental concepts behind 

SCA and OpenCL go hand-in-hand. It’s easy to make an 

SCA component play the role of the OpenCL host program 

and dispatch the execution of signal processing functions to 

co-processors. The signal processing functions take the form 

of OpenCL kernels that get loaded onto target devices. 

 

 When an SCA component gets launched and initialized, 

it needs to look for and select an OpenCL target device. For 

each buffer of input data that the SCA component receives, 

it must load the kernels onto the selected target device, copy 

the data from the host to the target memory, launch the 

execution of kernels, and copy the data back from the target 

to the host memory. Once the processed data is back into the 

host memory, the SCA component must send the data to the 

next SCA component of the SCA application for further 

processing.  

 Figure 1 illustrates the structure of a typical SCA 

component. The main body of an SCA component is made 

of two main logical parts: the control part and data 

processing part. The black arrows represent the flow of data. 

Typically, the input data flows through a port and the control 

part routes the data processing part. The control part gets the 

data back from the processing part and sends the processed 

data to another component through an output port. In the 

case of an SCA component that uses OpenCL, the data 

processing part is actually made of kernels that run on the 

target processor.  

 

 Using OpenCL as described in this paper, the level of 

portability of an SCA component can be significantly 

increased. Without OpenCL, SCA components are often 

implemented using processor-specific instruction sets to 

increase performance. However, doing so makes the 

components very target specific. Thanks to OpenCL, the 

source code that performs data processing remains very 

portable across different types of target processors.  

 

3. SCA APPLICATIONS AND OPENCL 

 

 Creating an SCA application from components that use 

OpenCL offers performances with an unprecedented level of 

portability across heterogeneous platforms. Target devices 

are typically orders of magnitude faster than a GPP for data 

processing [18, 19]. But since there is a cost associated with 

copying the data, the developer must ensure the increase in 

speed of processing more than compensates for the time it 

takes to copy the data to the target device and back. In cases 

where the data processing is not intensive enough, especially 

with large amounts of data, using an OpenCL target device 

may in fact be slower than using the host processor [20].  

 

 In the context of SDR, the data processing is very 

intensive and can benefit from OpenCL. With applications 

made of several components that use OpenCL, it is possible 

for more than one component to share the same OpenCL 

target device. That is especially true when an SCA 

application runs on a handheld platform. Indeed, several 

portable platforms are made of a single System-on-Chip 

(SoC) processor which consists of a GPP associated with a 

GPU or a DSP. Several cell phones and military handheld 

radios are designed around SoC processors. Desktop 

computers are also made of a single host processor and often 

only have one GPU card. 

 

 Running several SCA components on the same SoC 

processor leads to a situation where the data being 

exchanged is copied back-and-forth between the host and 

target memory. The more components use the same OpenCL 

target device, the more copies are done. Figure 2 illustrates 

this situation.  
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Figure 1 - Structure of an SCA Component that uses 

OpenCL 
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Figure 2 – Data Flow without any Enhancement 

 



4. EXCHANGING DATA MORE EFFICIENTLY 

 

 Since copying the data between the host and target 

memory has a cost, it would make sense to avoid making a 

copy between each component of an application that uses 

the same target device. Figure 3 illustrates how the data 

could flow without being transferred to the host processor in 

between each component. From the figure, it is easy to see 

how performances could be increased especially with an 

application made of many more components that use the 

same OpenCL target device.  

 

 One approach to avoid making unnecessary data copies 

is to create a new component that combines all the data 

processing algorithms into a single component. While this 

approach would minimize the number of copy operations, it 

violates the fundamental rules of component reuse. Creating 

new components for every situation requires more lines of 

code and reduces the potential for reusability. If the 

individual software components were actually hardware 

chips, a designer would almost certainly not combine them 

into a new chip. The cost of doing so could be high.  

 

 Another approach is to allow a component to determine 

when it is being connected to another component that uses 

the same OpenCL target device. When both components are 

colocated, they can use a more efficient way of exchanging 

data.  Implementing this solution consists in conceiving a 

way to let two OpenCL kernels communicate directly with 

each other even when they are deployed by two separate 

SCA components. The next section identifies the 

requirements associated with communications between 

kernels.  

 

4.1. The OpenCL Platform 

 

The OpenCL platform is a concept that describes a system 

as being made of a number of compute devices connected to 

a host processor. The host processor is generally a GPP 

while the compute devices can be GPPs, GPUs, DSPs, and 

even FPGAs. The host processor is responsible for 

dispatching kernels to be executed on a compute device (i.e. 

the target device). In terms of OpenCL, a compute device is 

made of one or more compute units each of which contain 

many processing elements (PEs). Each kernel can be 

dispatched to run on all or many PEs in parallel. 

 

4.2. The Host Program 

 

The host program is responsible for scheduling the 

execution of kernels on various compute devices. It starts by 

getting a list of the available compute devices and chooses 

which devices it will target for the execution of kernels. In 

OpenCL terminology, the host program creates an OpenCL 

context from the list of the selected target devices. The 

context is then used to create a command queue that will be 

used to schedule kernels for execution.  

 

 To feed input data to a kernel, the host program needs 

to create an OpenCL buffer that is linked to the input data 

located in the host memory. Such buffers are created using 

the context where the kernels will be executed. The OpenCL 

framework automatically takes care of making the data 

available on the specific target device that will run the 

kernel.  

 

 For two kernels to share data efficiently, the same 

context must be used to schedule the execution of both 

kernels. This way, the host program does not need to get 

involved in copying data from one context to another after 

kernel executions. In fact, the most efficient way to share 

data is to run the kernels not only using the same context, 

but using the same target device. This way, even the 

OpenCL framework does need to get involved in copying 

the data from one target device to another.  

 

 Launching the execution of a kernel involves a few 

steps. For each kernel, the host program must read the kernel 

file to create an OpenCL construct that will be used for 

execution. The host program must also create all the 

OpenCL input and output buffer(s) the kernel will need. The 

host program schedules a kernel for execution by adding the 

kernel to a command queue and by specifying which input 

and output OpenCL buffer(s) the kernel will need. The 

OpenCL framework takes over at that point to make the 

buffers available on the target device that will run the kernel.  

 

 When several kernels are scheduled for execution, the 

most basic way to ensure an order of execution is to use an 

ordered command queue. This way, the kernels will be 

executed in the same order as the host program adds them to 

the command queue. Orderly execution is important to 

ensure output buffers are produced before they are used as 

input buffers by subsequent kernels. After the execution of 

the last scheduled kernel, the host program can copy the data 

from the OpenCL buffer back to the host memory. 
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Figure 3 - Data Flow with Enhancement 

 



 Because command queues and buffers belong to a 

context, for kernels that interact with other kernels, it is 

more efficient to schedule the execution using the same 

context. An OpenCL context is an opaque data type that is 

allocated in a program space. As such, a context cannot be 

shared across multiple program spaces without using shared 

memory or similar technics. This is a very important 

characteristic that influences how an OpenCL context can be 

used in the context of an SCA system.  

 

5. COLOCATION OF SCA COMPONENTS THAT 

USE OPENCL 

 

 The SCA is very flexible regarding how software 

components get executed. The version 2.2.2 of the SCA 

specification [21] supports the concept of running software 

components into individual process spaces. It can also run 

several components into a single process space. The latest 

SCA specification, version 4.1[23], supports even more 

options to colocate several SCA components. 

 

 Running several SCA components into a same process 

space allows each component to share a same OpenCL 

context. As explained above, sharing the same context 

allows kernels to interact without having the data go through 

a round trip via the host memory. Avoiding the un-necessary 

copies of the data across the bus between the host process 

and the target processor represents a substantial 

improvement over the technique proposed in [17].  

 

 The technique proposed in this paper allows 

components to determine when their kernels run on the same 

OpenCL context.  The key element of the proposal exploits 

the connection process that creates a link between two 

components. With the SCA, a connection between two 

components is always unidirectional. SCA connections are 

nothing more than a mechanism to exchange references to 

components. This means that if Component1 is connected to 

Component2, Component1 can uses service of Component2 

but not the other way around. To create a bi-directional 

relationship requires two connections, one in each direction. 

 

 A SCA connection provides a reference to an 

implementation of a specific interface described using 

CORBA’s Interface Definition Language (IDL). The 

reference can therefore be used to invoke any operation 

defined by the IDL. The technique described in this paper 

relies on an IDL interface that allows a component to learn 

about the operating environment of another component to 

which it is connected. The detailed description of the 

interface is irrelevant as it can be implemented in multiple 

ways. The important aspect is the services the IDL interface 

must provide. Figure 4 illustrates an informal UML 

sequence diagram that describes the steps involved to allow 

a component to determine if another component uses the 

same OpenCL context or not. It also illustrates that the 

component that feeds another component does not copy data 

back to the host but instead provides the OpenCL buffer 

(transition #7).  

 

 The whole sequence of operations starts with Comp1 

being connected with Comp2. The first thing that Comp1 

does after being connected is verify if Comp2 implements 

the special OpenCL IDL interface (transition #2). If that is 

the case, Comp1 uses that interface to verify if it runs on the 

same processor as Comp2 and if they use the same OpenCL 

context (transition #3). This can be accomplished by 

comparing some specific identifiers.  

 

 Once Comp1 determines it shares the same OpenCL 

context with Comp2, it schedules its kernels for execution 

(transition #5) and waits for them to produce output buffers 

(transition #6). As soon as the OpenCL output buffers have 

been produced, Comp1 uses the OpenCL IDL interface to 

provide Comp2 with a reference to the new output buffers it 

has produced (transition #7). At that point, Comp2 

schedules its kernels using the Comp1 output buffers as 

input buffers (transition #8). And this process repeats for 

each new output buffer Comp1 produces. This approach can 

be used between any two SCA components using the special 

OpenCL IDL interface.  

 

 When a component involved in a connection does not 

support OpenCL (or is running on a remote processor), the 

output buffers need to be copied back from the target 

memory to the host memory before they get delivered via 

CORBA (or another specialized protocol). This use case is 

the one described in [17]. 

 

 
Figure 4 - Sequence of Interactions to Detect Colocation 



6. PERFORMANCE METRICS 

 

 

To perform our experiments, we used a desktop computer 

with an Intel i7-4770 CPU with 8 cores clocked at 3.40 

GHz, 4GB of memory. We used the 64 bits version of 

Fedora 20 with the Linux kernel version 3.11.10-301. As for 

OpenCL, we used one OpenCL compute device. The device 

is a PCI-Express 3.0 NVIDIA GeForce GT 635 GPU card. 

We used the NVIDIA OpenCL CUDA 7.0.41 platform 

driver which supports OpenCL1.1. 

 

 Figure 5 and Figure 6 show the two test cases used to 

conduct all the experiments. It is important to note that both 

test cases rely on the same SCA application. The application 

is made of five identical components which add gain by 

multiplying the input data by a set value. The experiments 

consist in measuring how long it takes to push data through 

all five components. The gain function takes a small and 

constant amount of time. Thus the variations in the 

measurements between the different experiments are caused 

by differences in the time it takes for the data to flow 

through the application. 

 

 In all the experiments, the application was launched 

such that all the SCA components are executed on the same 

processor. The difference is that in first test case (herein 

“baseline test case”), the components are launched as 

individual process spaces while in the second test case 

(herein “enhanced test case”), all the components where 

launched as part of the same process space. Thanks to the 

special OpenCL IDL interface, in all the experiments 

conducted for the enhanced test case, the components are 

able to detect they are running in a single process space. 

They can also determine that they are using the same 

OpenCL context. Consequently, the components do not copy 

output buffers back to the host computer but instead keep 

the data in the OpenCL target memory.  

 

 In all the experiments, the data buffers originate from a 

generator component (not shown in diagrams) running on 

the same processor. The generator component always runs in 

a process space of its own and uses a standard CORBA call 

to deliver the buffers to the first gain component (i.e. 

Comp1) of the application. The last gain component of the 

application (i.e. Comp5) copies the output buffers from the 

target memory back to the host memory and sends it to a 

sink component (not shown in diagram). In all the 

experiments, the sink component runs in a process space of 

its own. Data buffers are always delivered to the sink 

component via a standard CORBA call.  

 

 As data buffers flow through the application, each gain 

component inserts a time-stamp that records time of 

reception, right before any data processing is done. The 

components also insert a time-stamp after the output buffers 

are produced, right before the buffers are sent to the next 

component. Each component preserves the time stamps 

inserted by other components. The sink component 

accumulates all the time stamps and produces a report after 

all the buffers of the experiment have been processed.  

 

 Each test case was used to conduct experiments using 7 

different buffer sizes: 2KB, 4KB, 32KB, 64KB, 256KB, 

1024KB, and 4096KB. The buffers were made of 32 bits 

floating point values. Each experiment was conducted by 

sending one thousand buffers, one at the time. Said 
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Figure 5 - Baseline Test Case:  data goes back to host memory 
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Figure 6 - Enhanced Test Case: data remains in target memory 

 



differently, the application never processed more than one 

buffer simultaneously. This was done in order to avoid side 

effects like concurrency, scheduling, and caching. Such side 

effects also have an impact on how long it takes to move 

data between the GPP and the GPU. However, the 

enhancement described in this paper can be used to process 

several buffers at the same time. Nonetheless, the goal of the 

paper is not to measure the raw data processing 

performances. Such measurements are highly dependent of 

the data processing algorithms that are being used in the 

application. The goal of the paper is to measure the amount 

of time that can be saved by avoiding the repeated copy of 

buffers between the host and target memory.  

 

KB Samples 

per Buffer 

Baseline 

(µs) 

Enhanced 

(µs) 

Baseline / 

Enhanced 

2 512 732 435 1.68 

4 1024 696 442 1.57 

32 8192 851 350 2.43 

64 16,384 992 444 2.23 

256 65,536 2527 529 4.8 

1024 262,144 10,735 3039 3.5 

4096 1,048,576 32,130 7076 4.5 

Table 1 - Measurements for Both Test Cases 

 

 As explained in [22], when all the components of an 

application execute in a same process space, high 

performance Object Request Brokers (ORBs), like 

ORBexpress RT from Objective Interface Systems, optimize 

interactions by making native function calls as opposed to 

use a communications transport like TCP/IP. As a result, all 

the one-way interactions that are normally conducted on a 

separate thread are executed using the calling thread. This 

causes a thread of the first component to be used for the 

processing of all the components in the application. In order 

to avoid this issue, the SCA components for this paper use a 

queue to store incoming buffers and a separate thread to 

perform the processing.  

 

 In an effort to minimize the impact of threads being 

moved to a different core during the test, all the application 

components were assigned to one single core of the 

processor. Without using core assignment, the measurements 

are impacted by low-level cache misses which occur non-

deterministically.  

 

 Table 1 contains two columns, one for each test case. 

The measurements represent the time it takes, in 

microseconds, for a data buffer to transition from the input 

of the first component (i.e. Comp1) to the output of the last 

component (i.e. Comp5) of the application.  The “Baseline” 

column contains measurements that involves copying data 

buffers across the GPP/GPU bus in between each of the 5 

components. This means each buffer is copied 10 times to 

go through the whole application. The “Enhanced” column 

contains measurements for the enhanced version of the 

application which involves only two copies of the buffers 

across the GPP/GPU bus. As the measurements show, the 

enhanced test case provides better performances. The 

measurements indicate the enhanced test case is 1.57 to 4.8 

times faster because it spends less time copying data. Each 

measurement in the table represents the average, in 

microseconds, after running one thousand experiments.  

 

 

7. CONCLUSION 

 

 This paper starts by describing that SCA components 

can be made more portable using OpenCL to implement the 

data processing part of a component. It briefly describes that 

OpenCL requires data to be copied from the host memory to 

the OpenCL target memory prior to perform the data 

processing. It also describes that SCA components must 

copy the data back to the host memory after processing in 

order to be able to route the data to the next SCA 

component.  

 

 This paper introduces a new technique to allow SCA 

components to avoid making copies across the memory bus 

when not required. The technique allows components that 

run from the same host processor and use the same OpenCL 

context to share data buffers directly. The technique is 

implemented in such a way that components remain very 

flexible. Components can autonomously determine when 

copies must be made and when they can be avoided.  

 

 Measurements provided clearly show that a significant 

amount of time can be saved by not making data do 

roundtrips over the bus connecting the host processor to the 

OpenCL target processor. The new technique described in 

this paper allows for up to 4.5 times faster data transfers 

between components which translates into better signal 

processing performances for a complete application.  

 

 Future work will involve investigating how the 

technique described in this paper performs when several 

buffers are being processed in parallel by different 

components of an SCA application. As demonstrated by the 

work performed for this paper, the notion of locality for two 

components can be exploited to increase performances 

significantly. The authors of this paper will engage in a 

process to generalize and propose the concept of locality 

detection for adoption in a future version of the SCA 

specification. 
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