

INCREASING PERFORMANCES OF SCA APPLICATIONS THAT USE

OPENCL

Steve Bernier (NordiaSoft, Gatineau, Québec, Canada; Steve.Bernier@NordiaSoft.com);

François Lévesque (NordiaSoft, Gatineau, Québec, Canada;

Francois.Levesque@NordiaSoft.com);

Martin Phisel (NordiaSoft, Gatineau, Québec, Canada; Martin.Phisel@NordiaSoft.com);

David Hagood (Cobham, Wichita, Kansas, USA; David.Hagood@Cobham.com);

ABSTRACT

The Open Computing Language (OpenCLTM) can be used in

conjunction with the Software Communications Architecture

(SCA) to build very portable applications that execute

across heterogeneous platforms consisting of General

Purpose Processors (GPPs), Digital Signal Processors

(DSPs), Field Programming Gate Arrays (FPGAs), and

Graphics Processing Units (GPUs). This paper starts with an

overview of how SCA components can be built using

OpenCL. It compares performance metrics of an application

implemented as several OpenCL-SCA components with the

metrics of a variation of the application that uses a reduced-

copy technique for the data being processed. The paper

provides a detailed discussion on how the data flows in and

out of the OpenCL device memory as it travels from a

component to the next. The paper describes a novel

approach that minimizes the number of copies made as the

data flows through the different signal processing

components of an SCA application. The paper concludes by

identifying further research topics that could be investigated

on this subject.

1. INTRODUCTION

 The Software Communications Architecture (SCA) [1]

is the de facto standard to build military Software Defined

Radio (SDR) radios [2]. Several hundred thousand SCA

military radios have been deployed worldwide by several

nations. The SCA offers a component-based operating

environment for heterogeneous embedded systems that

ensures applications are portable across platforms made of

different combinations of processors, operating systems,

micro-kernels, and communication buses.

 Embedded system applications, especially signal

processing applications, are often optimized using target-

specific instruction sets. Computing devices such as GPPs,

DSPs, FPGAs, and GPUs provide various specialized

instructions sets to accelerate data processing. While such an

approach can provide great performance improvements, it

decreases the level of portability of SCA components. Once

a component has been optimized using a specific instruction

set, it cannot be ported to another processor family without

making changes to the source code.

 OpenCL is an open and royalty-free standard

maintained by a non-profit technology consortium called the

Khronos Group [3]. Apple created the first version of

OpenCL [4] to allow high-performance applications to be

portable to various platforms. It is now supported by a very

large number of commercial vendors [5]. OpenCL has been

designed from the ground up for parallel processing. It

supports task-based and data-based parallel programming

which have been mapped to GPPs [6, 7, 8, 9], GPUs [10, 11,

12, 13], DSPs [14], and FPGAs [15, 16].

 Creating SCA components using OpenCL to perform

signal processing on various processors has been

demonstrated to work [17]. Thanks to its support for a wide

range of processors, OpenCL can significantly increase the

level of portability of SCA applications. The current paper

describes how the technique described in [17] can be

improved. In particular, it examines the cost of moving data

across SCA components. The paper proposes a novel

approach that can provide better performances for SCA

applications that use OpenCL.

2. USING OPENCL WITH SCA COMPONENTS

 This section offers a brief overview of what SCA

components are and how they are used to create

applications. It follows with a description of OpenCL and

how it can be used to create SCA components.

2.1. SCA Components and Applications

 An SCA component is to software what an integrated

circuit component (also known as a chip) is to hardware.

They are components that can be reused from one system to

another. Much like a hardware designer cannot modify a

chip to change its behavior, a software developer does not

modify the source code of a SCA component to change its

behavior. The designer of the component must provide an

interface that allows the user of a component to control it.

 With hardware, chips offer pins that implement specific

protocols to allow users to control them. With software,

SCA components offer ports and properties as a means to

interact with other software. Ports implement well-defined

interfaces that can be used to exchange data and control the

component. Properties provide a well-defined interface to

allow a user to change the value of an attribute in order to

alter the behavior of a component.

 When a designer cannot find a chip that does exactly

what is needed, he can connect several chips together to

obtain the overall required behavior. Alternatively, the

designer can create an Application Specific Integrated

Circuit (ASIC). The same is true about SCA software

components. The developer can assemble several software

components together or create a new component.

 SCA systems are made of two types of components:

components that control the hardware and components that

implement the application behavior. In the case of an SDR

platform, some SCA components control hardware such as

the transmitter, the transceiver, and the power amplifier.

Other components perform the signal processing required to

implement communication standards such as AM, FM, and

LTE.

 SCA applications are typically made of a series of

interconnected software components that process digitized

signals to, for instance, implement a communication

standard, control a robot, or perform diagnostics. SCA

application components interact with components that

abstract the physical hardware. With a proper hardware

abstraction layer, SCA applications become very portable

across different physical platforms.

SCA components come as a set of files that contain

binary code and meta-data. The SCA defines a standard set

of meta-data that describes the different ports and properties

of a component. A port is described in terms of the interface

it provides or uses. Properties are described in terms of their

data types and structures. SCA components are meant to

support several different operating environments each. As

such, the meta-data also describes which binary files are to

be used to different operating environments. An operating

environment represents an execution host and can be defined

by a processor type, an operating system, a vector engine, or

anything a component implementation might need to

execute. SCA components can be executed on processors

such as GPPs, DSPs, FPGAs, GPUs, etc. However, each

application must have at least one component that runs on an

operating system that supports a minimum set of POSIX

calls.

2.2. OpenCL

 Software developers use OpenCL to improve data

processing performances by allowing task-based and data-

based parallel programming. An OpenCL application is

made of two parts: kernels and a host program. OpenCL

kernels are routines (algorithms) that numerically process

data.

 Kernels are implemented in a C-like language with

vector types and operations, synchronization, and functions

that facilitate the use of parallelism by allowing the

processing to be divided into work-items and work-groups.

Kernels can be dispatched to run in parallel on a target

device that supports OpenCL.

 The host program runs on the host processor and is

implemented using the OpenCL Application Programming

Interface (API) to launch kernels on the target devices and

manage device memory. The host processor is typically a

GPP while the target device can be a GPP, a DSP, a GPU,

or even an FPGA.

 An OpenCL framework consists of a library that

implements the host APIs, and an OpenCL compiler that

compiles and links kernels for a specific target device. An

OpenCL host program goes through the following steps for

each buffer of data that needs to be processed. It uses the

host APIs to first load the required OpenCL kernels onto the

selected compute device. The host program then copies the

data that needs to be processed from the host memory to the

target device memory. Next, the host program launches the

execution of the kernels and finally, it copies the processed

data back from the target device memory to the host

memory.

 Conceptually, OpenCL offers nothing more than a co-

processor. The novelty with OpenCL is that it supports a

wide range of target devices as co-processors. OpenCL does

so with a standard set of host and ‘C’ APIs which are

supported by a very large segment of the high-tech industry

manufacturers that includes Apple, Intel, AMD, ARM

holdings, IBM, Qualcomm, Samsung, Creative

Technologies, Altera, Xilinx, and more. Using the same

APIs for any target device provides a very high level of

reusability.

2.2. A New Kind of SCA Component

 Using OpenCL, the host program sets up the

environment to exploit a co-processor to perform data

processing. Using the SCA, at least one component needs to

run on a host processor. The fundamental concepts behind

SCA and OpenCL go hand-in-hand. It’s easy to make an

SCA component play the role of the OpenCL host program

and dispatch the execution of signal processing functions to

co-processors. The signal processing functions take the form

of OpenCL kernels that get loaded onto target devices.

 When an SCA component gets launched and initialized,

it needs to look for and select an OpenCL target device. For

each buffer of input data that the SCA component receives,

it must load the kernels onto the selected target device, copy

the data from the host to the target memory, launch the

execution of kernels, and copy the data back from the target

to the host memory. Once the processed data is back into the

host memory, the SCA component must send the data to the

next SCA component of the SCA application for further

processing.

 Figure 1 illustrates the structure of a typical SCA

component. The main body of an SCA component is made

of two main logical parts: the control part and data

processing part. The black arrows represent the flow of data.

Typically, the input data flows through a port and the control

part routes the data processing part. The control part gets the

data back from the processing part and sends the processed

data to another component through an output port. In the

case of an SCA component that uses OpenCL, the data

processing part is actually made of kernels that run on the

target processor.

 Using OpenCL as described in this paper, the level of

portability of an SCA component can be significantly

increased. Without OpenCL, SCA components are often

implemented using processor-specific instruction sets to

increase performance. However, doing so makes the

components very target specific. Thanks to OpenCL, the

source code that performs data processing remains very

portable across different types of target processors.

3. SCA APPLICATIONS AND OPENCL

 Creating an SCA application from components that use

OpenCL offers performances with an unprecedented level of

portability across heterogeneous platforms. Target devices

are typically orders of magnitude faster than a GPP for data

processing [18, 19]. But since there is a cost associated with

copying the data, the developer must ensure the increase in

speed of processing more than compensates for the time it

takes to copy the data to the target device and back. In cases

where the data processing is not intensive enough, especially

with large amounts of data, using an OpenCL target device

may in fact be slower than using the host processor [20].

 In the context of SDR, the data processing is very

intensive and can benefit from OpenCL. With applications

made of several components that use OpenCL, it is possible

for more than one component to share the same OpenCL

target device. That is especially true when an SCA

application runs on a handheld platform. Indeed, several

portable platforms are made of a single System-on-Chip

(SoC) processor which consists of a GPP associated with a

GPU or a DSP. Several cell phones and military handheld

radios are designed around SoC processors. Desktop

computers are also made of a single host processor and often

only have one GPU card.

 Running several SCA components on the same SoC

processor leads to a situation where the data being

exchanged is copied back-and-forth between the host and

target memory. The more components use the same OpenCL

target device, the more copies are done. Figure 2 illustrates

this situation.

Control

Data Processing

Data copied to
host memory

Data copied to
target memory

Host Memory

Target Memory

Input Port Output Port

SCA Component

Figure 1 - Structure of an SCA Component that uses

OpenCL

Gain

Host
Memory

Target
Memory Gain Gain

Comp1 Comp2 Comp3

Figure 2 – Data Flow without any Enhancement

4. EXCHANGING DATA MORE EFFICIENTLY

 Since copying the data between the host and target

memory has a cost, it would make sense to avoid making a

copy between each component of an application that uses

the same target device. Figure 3 illustrates how the data

could flow without being transferred to the host processor in

between each component. From the figure, it is easy to see

how performances could be increased especially with an

application made of many more components that use the

same OpenCL target device.

 One approach to avoid making unnecessary data copies

is to create a new component that combines all the data

processing algorithms into a single component. While this

approach would minimize the number of copy operations, it

violates the fundamental rules of component reuse. Creating

new components for every situation requires more lines of

code and reduces the potential for reusability. If the

individual software components were actually hardware

chips, a designer would almost certainly not combine them

into a new chip. The cost of doing so could be high.

 Another approach is to allow a component to determine

when it is being connected to another component that uses

the same OpenCL target device. When both components are

colocated, they can use a more efficient way of exchanging

data. Implementing this solution consists in conceiving a

way to let two OpenCL kernels communicate directly with

each other even when they are deployed by two separate

SCA components. The next section identifies the

requirements associated with communications between

kernels.

4.1. The OpenCL Platform

The OpenCL platform is a concept that describes a system

as being made of a number of compute devices connected to

a host processor. The host processor is generally a GPP

while the compute devices can be GPPs, GPUs, DSPs, and

even FPGAs. The host processor is responsible for

dispatching kernels to be executed on a compute device (i.e.

the target device). In terms of OpenCL, a compute device is

made of one or more compute units each of which contain

many processing elements (PEs). Each kernel can be

dispatched to run on all or many PEs in parallel.

4.2. The Host Program

The host program is responsible for scheduling the

execution of kernels on various compute devices. It starts by

getting a list of the available compute devices and chooses

which devices it will target for the execution of kernels. In

OpenCL terminology, the host program creates an OpenCL

context from the list of the selected target devices. The

context is then used to create a command queue that will be

used to schedule kernels for execution.

 To feed input data to a kernel, the host program needs

to create an OpenCL buffer that is linked to the input data

located in the host memory. Such buffers are created using

the context where the kernels will be executed. The OpenCL

framework automatically takes care of making the data

available on the specific target device that will run the

kernel.

 For two kernels to share data efficiently, the same

context must be used to schedule the execution of both

kernels. This way, the host program does not need to get

involved in copying data from one context to another after

kernel executions. In fact, the most efficient way to share

data is to run the kernels not only using the same context,

but using the same target device. This way, even the

OpenCL framework does need to get involved in copying

the data from one target device to another.

 Launching the execution of a kernel involves a few

steps. For each kernel, the host program must read the kernel

file to create an OpenCL construct that will be used for

execution. The host program must also create all the

OpenCL input and output buffer(s) the kernel will need. The

host program schedules a kernel for execution by adding the

kernel to a command queue and by specifying which input

and output OpenCL buffer(s) the kernel will need. The

OpenCL framework takes over at that point to make the

buffers available on the target device that will run the kernel.

 When several kernels are scheduled for execution, the

most basic way to ensure an order of execution is to use an

ordered command queue. This way, the kernels will be

executed in the same order as the host program adds them to

the command queue. Orderly execution is important to

ensure output buffers are produced before they are used as

input buffers by subsequent kernels. After the execution of

the last scheduled kernel, the host program can copy the data

from the OpenCL buffer back to the host memory.

Host
Memory

Target
Memory

Figure 3 - Data Flow with Enhancement

 Because command queues and buffers belong to a

context, for kernels that interact with other kernels, it is

more efficient to schedule the execution using the same

context. An OpenCL context is an opaque data type that is

allocated in a program space. As such, a context cannot be

shared across multiple program spaces without using shared

memory or similar technics. This is a very important

characteristic that influences how an OpenCL context can be

used in the context of an SCA system.

5. COLOCATION OF SCA COMPONENTS THAT

USE OPENCL

 The SCA is very flexible regarding how software

components get executed. The version 2.2.2 of the SCA

specification [21] supports the concept of running software

components into individual process spaces. It can also run

several components into a single process space. The latest

SCA specification, version 4.1[23], supports even more

options to colocate several SCA components.

 Running several SCA components into a same process

space allows each component to share a same OpenCL

context. As explained above, sharing the same context

allows kernels to interact without having the data go through

a round trip via the host memory. Avoiding the un-necessary

copies of the data across the bus between the host process

and the target processor represents a substantial

improvement over the technique proposed in [17].

 The technique proposed in this paper allows

components to determine when their kernels run on the same

OpenCL context. The key element of the proposal exploits

the connection process that creates a link between two

components. With the SCA, a connection between two

components is always unidirectional. SCA connections are

nothing more than a mechanism to exchange references to

components. This means that if Component1 is connected to

Component2, Component1 can uses service of Component2

but not the other way around. To create a bi-directional

relationship requires two connections, one in each direction.

 A SCA connection provides a reference to an

implementation of a specific interface described using

CORBA’s Interface Definition Language (IDL). The

reference can therefore be used to invoke any operation

defined by the IDL. The technique described in this paper

relies on an IDL interface that allows a component to learn

about the operating environment of another component to

which it is connected. The detailed description of the

interface is irrelevant as it can be implemented in multiple

ways. The important aspect is the services the IDL interface

must provide. Figure 4 illustrates an informal UML

sequence diagram that describes the steps involved to allow

a component to determine if another component uses the

same OpenCL context or not. It also illustrates that the

component that feeds another component does not copy data

back to the host but instead provides the OpenCL buffer

(transition #7).

 The whole sequence of operations starts with Comp1

being connected with Comp2. The first thing that Comp1

does after being connected is verify if Comp2 implements

the special OpenCL IDL interface (transition #2). If that is

the case, Comp1 uses that interface to verify if it runs on the

same processor as Comp2 and if they use the same OpenCL

context (transition #3). This can be accomplished by

comparing some specific identifiers.

 Once Comp1 determines it shares the same OpenCL

context with Comp2, it schedules its kernels for execution

(transition #5) and waits for them to produce output buffers

(transition #6). As soon as the OpenCL output buffers have

been produced, Comp1 uses the OpenCL IDL interface to

provide Comp2 with a reference to the new output buffers it

has produced (transition #7). At that point, Comp2

schedules its kernels using the Comp1 output buffers as

input buffers (transition #8). And this process repeats for

each new output buffer Comp1 produces. This approach can

be used between any two SCA components using the special

OpenCL IDL interface.

 When a component involved in a connection does not

support OpenCL (or is running on a remote processor), the

output buffers need to be copied back from the target

memory to the host memory before they get delivered via

CORBA (or another specialized protocol). This use case is

the one described in [17].

Figure 4 - Sequence of Interactions to Detect Colocation

6. PERFORMANCE METRICS

To perform our experiments, we used a desktop computer

with an Intel i7-4770 CPU with 8 cores clocked at 3.40

GHz, 4GB of memory. We used the 64 bits version of

Fedora 20 with the Linux kernel version 3.11.10-301. As for

OpenCL, we used one OpenCL compute device. The device

is a PCI-Express 3.0 NVIDIA GeForce GT 635 GPU card.

We used the NVIDIA OpenCL CUDA 7.0.41 platform

driver which supports OpenCL1.1.

 Figure 5 and Figure 6 show the two test cases used to

conduct all the experiments. It is important to note that both

test cases rely on the same SCA application. The application

is made of five identical components which add gain by

multiplying the input data by a set value. The experiments

consist in measuring how long it takes to push data through

all five components. The gain function takes a small and

constant amount of time. Thus the variations in the

measurements between the different experiments are caused

by differences in the time it takes for the data to flow

through the application.

 In all the experiments, the application was launched

such that all the SCA components are executed on the same

processor. The difference is that in first test case (herein

“baseline test case”), the components are launched as

individual process spaces while in the second test case

(herein “enhanced test case”), all the components where

launched as part of the same process space. Thanks to the

special OpenCL IDL interface, in all the experiments

conducted for the enhanced test case, the components are

able to detect they are running in a single process space.

They can also determine that they are using the same

OpenCL context. Consequently, the components do not copy

output buffers back to the host computer but instead keep

the data in the OpenCL target memory.

 In all the experiments, the data buffers originate from a

generator component (not shown in diagrams) running on

the same processor. The generator component always runs in

a process space of its own and uses a standard CORBA call

to deliver the buffers to the first gain component (i.e.

Comp1) of the application. The last gain component of the

application (i.e. Comp5) copies the output buffers from the

target memory back to the host memory and sends it to a

sink component (not shown in diagram). In all the

experiments, the sink component runs in a process space of

its own. Data buffers are always delivered to the sink

component via a standard CORBA call.

 As data buffers flow through the application, each gain

component inserts a time-stamp that records time of

reception, right before any data processing is done. The

components also insert a time-stamp after the output buffers

are produced, right before the buffers are sent to the next

component. Each component preserves the time stamps

inserted by other components. The sink component

accumulates all the time stamps and produces a report after

all the buffers of the experiment have been processed.

 Each test case was used to conduct experiments using 7

different buffer sizes: 2KB, 4KB, 32KB, 64KB, 256KB,

1024KB, and 4096KB. The buffers were made of 32 bits

floating point values. Each experiment was conducted by

sending one thousand buffers, one at the time. Said

Gain

Host
Memory

Target
Memory Gain Gain Gain Gain

Comp1 Comp2 Comp3 Comp4 Comp5

Figure 5 - Baseline Test Case: data goes back to host memory

GainGainGainGainGain

Host
Memory

Target
Memory

Comp1 Comp2 Comp3 Comp4 Comp5

Figure 6 - Enhanced Test Case: data remains in target memory

differently, the application never processed more than one

buffer simultaneously. This was done in order to avoid side

effects like concurrency, scheduling, and caching. Such side

effects also have an impact on how long it takes to move

data between the GPP and the GPU. However, the

enhancement described in this paper can be used to process

several buffers at the same time. Nonetheless, the goal of the

paper is not to measure the raw data processing

performances. Such measurements are highly dependent of

the data processing algorithms that are being used in the

application. The goal of the paper is to measure the amount

of time that can be saved by avoiding the repeated copy of

buffers between the host and target memory.

KB Samples

per Buffer

Baseline

(µs)

Enhanced

(µs)

Baseline /

Enhanced

2 512 732 435 1.68

4 1024 696 442 1.57

32 8192 851 350 2.43

64 16,384 992 444 2.23

256 65,536 2527 529 4.8

1024 262,144 10,735 3039 3.5

4096 1,048,576 32,130 7076 4.5

Table 1 - Measurements for Both Test Cases

 As explained in [22], when all the components of an

application execute in a same process space, high

performance Object Request Brokers (ORBs), like

ORBexpress RT from Objective Interface Systems, optimize

interactions by making native function calls as opposed to

use a communications transport like TCP/IP. As a result, all

the one-way interactions that are normally conducted on a

separate thread are executed using the calling thread. This

causes a thread of the first component to be used for the

processing of all the components in the application. In order

to avoid this issue, the SCA components for this paper use a

queue to store incoming buffers and a separate thread to

perform the processing.

 In an effort to minimize the impact of threads being

moved to a different core during the test, all the application

components were assigned to one single core of the

processor. Without using core assignment, the measurements

are impacted by low-level cache misses which occur non-

deterministically.

 Table 1 contains two columns, one for each test case.

The measurements represent the time it takes, in

microseconds, for a data buffer to transition from the input

of the first component (i.e. Comp1) to the output of the last

component (i.e. Comp5) of the application. The “Baseline”

column contains measurements that involves copying data

buffers across the GPP/GPU bus in between each of the 5

components. This means each buffer is copied 10 times to

go through the whole application. The “Enhanced” column

contains measurements for the enhanced version of the

application which involves only two copies of the buffers

across the GPP/GPU bus. As the measurements show, the

enhanced test case provides better performances. The

measurements indicate the enhanced test case is 1.57 to 4.8

times faster because it spends less time copying data. Each

measurement in the table represents the average, in

microseconds, after running one thousand experiments.

7. CONCLUSION

 This paper starts by describing that SCA components

can be made more portable using OpenCL to implement the

data processing part of a component. It briefly describes that

OpenCL requires data to be copied from the host memory to

the OpenCL target memory prior to perform the data

processing. It also describes that SCA components must

copy the data back to the host memory after processing in

order to be able to route the data to the next SCA

component.

 This paper introduces a new technique to allow SCA

components to avoid making copies across the memory bus

when not required. The technique allows components that

run from the same host processor and use the same OpenCL

context to share data buffers directly. The technique is

implemented in such a way that components remain very

flexible. Components can autonomously determine when

copies must be made and when they can be avoided.

 Measurements provided clearly show that a significant

amount of time can be saved by not making data do

roundtrips over the bus connecting the host processor to the

OpenCL target processor. The new technique described in

this paper allows for up to 4.5 times faster data transfers

between components which translates into better signal

processing performances for a complete application.

 Future work will involve investigating how the

technique described in this paper performs when several

buffers are being processed in parallel by different

components of an SCA application. As demonstrated by the

work performed for this paper, the notion of locality for two

components can be exploited to increase performances

significantly. The authors of this paper will engage in a

process to generalize and propose the concept of locality

detection for adoption in a future version of the SCA

specification.

6. REFERENCES

[1] Joint Tactical Networking Center (JTNC), Software

Communications Architecture,
http://www.public.navy.mil/jtnc/sca/Pages/default.aspx

[2] SCA Standards for Defense Communications, Wireless
Innovation Forum,
http://www.wirelessinnovation.org/assets/sca%20standards%
20%20global%20adoption%20version%201.0%20high%20re
s%20final.pdf

[3] Khronos Group, OpenCL Standard,
https://www.khronos.org/opencl/

[4] OpenCL, Wikipedia, https://en.wikipedia.org/wiki/OpenCL
[5] Complete list of companies and OpenCL conformant

products, The Khronos Group,
https://www.khronos.org/conformance/adopters/conformant-
products#opencl

[6] Getting Started with Intel® SDK for OpenCL™ Applications,
Intel, https://software.intel.com/en-us/articles/getting-started-
with-opencl-code-builder

[7] Getting Started with OpenCL™, AMD,
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-
resources/getting-started-with-opencl/

[8] ARM extends OpenCL to the ARM Cortex-A processor
family, ARM, https://www.arm.com/about/newsroom/media-
alert-arm-extends-opencl-to-the-arm-cortex-a-processor-
family.php

[9] T. Ballard, “OpenCL for Linux on Power”,
https://www.ibm.com/developerworks/community/wikis/hom
e?lang=en#!/wiki/Wbf059a58a9b9_459d_aca4_493655c9637
0/page/OpenCL%20for%20Linux%20on%20Power

[10] OpenCL Platform with Intel® Graphics, Intel,
https://software.intel.com/en-us/node/540387

[11] NVIDIA Adds OpenCL To Its Industry Leading GPU
Computing Toolkit, Nvidia,
http://www.nvidia.com/object/io_1228825271885.html

[12] L. Howes, OpenCL Parallel Computing for GPUs, AMD,
https://developer.amd.com/wordpress/media/2012/10/OpenC
L_Parallel_Computing_for_CPUs_and_GPUs_201003.pdf

[13] ARM Mali-T600 Series GPU OpenCL Developer Guide,
ARM,http://infocenter.arm.com/help/topic/com.arm.doc.dui0
538f/DUI0538F_mali_t600_opencl_dg.pdf

[14] Introduction - TI OpenCL Documentation, TI,
http://downloads.ti.com/mctools/esd/docs/opencl/intro.html

[15] M. Parker, M. Jarvis, The Most Under-Rated Design Tool
Ever, Altera,
http://www.eetimes.com/author.asp?section_id=36&doc_id=1
327664

[16] S. Leibso, OpenCL code compiled with Xilinx SDAccel
accelerates genome sequencing, beats CPU/GPU
performance/W by 12-21x, Xilinx,
https://forums.xilinx.com/t5/Xcell-Daily-Blog/OpenCL-code-
compiled-with-Xilinx-SDAccel-accelerates-genome/ba-
p/680764

[17] S. Bernier, F. Levesque, M. Phisel, and D. Hagood, Using
OpenCL to Increase SCA Application Portability,
Proceedings of SDR-WInnComm-Europe 2015, September
2015.

[18] M. Papadimitriou, J. Cramwinckel, A.L. Varbanescu,
Accelerating Computational Finance Simulations with
OpenCL. Euro-Par 2016, 22nd International European
Conference on Parallel and Distributed Computing.

[19] K. Li, M. Wu, G. Wang, J.R. Cavallaro, A High Performance
GPU-based Software-defined Basestation, 48th IEEE
Asilomar Conference on Signals, Systems, and Computers
(ASILOMAR), 2014.

[20] A. Kalia, D. Zhou, M. Kaminsky, D. G. Andersen, Raising
the Bar for Using GPUs in Software Packet Processing.
Carnegie Mellon University and Intel Labs. USENIX NSDI
2015.

[21] SCA Specification version 2.2.2, Joint Tactical Networking
Center, http://www.public.navy.mil/jtnc/SCA/Pages/sca1.aspx

[22] S. Bernier, H. Latour, J.P. Zamora, “How different messaging
semantics can affect SCA applications performances: a
benchmark comparison”, Analog Integrated Circuits and
Signal Processing, Springer Verlag, December 2011.

[23] SCA Specification version 4.1, Joint Tactical Networking
Center, http://www.public.navy.mil/jtnc/SCA/Pages/sca1.aspx

https://www.khronos.org/opencl/

