
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

THE DEPLOYMENT OF SOFTWARE COMPONENTS INTO

HETEROGENEOUS SCA PLATFORMS

Steve Bernier (CRC Ottawa, Canada; steve.bernier@crc.ca);

Juan Pablo Zamora Zapata (CRC Ottawa, Canada; juan.zamora@crc.ca);

ABSTRACT

This paper examines the JTRS goal of maximizing

reusability of common software and hardware for different

software defined radios. It does so by analyzing the different

aspects of reusability through portability of SCA

applications. It looks at binary reuse as well as at source

code portability. For the latter, the paper describes how the

SCA enhances portability when dealing with aspects such as

Operating Systems, Middleware and Platform Devices. The

paper also describes the different mechanisms provided by

the Software Communications Architecture (SCA) to deploy

software components. In doing so, it provides a detailed

discussion on how the SCA addresses operating

environments that support multiple processes as well as

those that don’t. Finally, the paper provides guidelines on

how to map the SCA Loadable and Executable Devices to

the different Computational Elements (GPPs, DSPs and

FPGAs) that can be found on an SDR system,

1. INTRODUCTION

The Joint Tactical Radio Systems (JTRS) is a US DoD

program. Its objective is to provide the DoD with needed

communications capabilities through a family of affordable

radios. The JTRS radio sets are Software Defined Radios

(SDRs) that can be used to quickly field new

communications capabilities. The JTRS program achieves

its goal by maximizing the reusability of common software

and hardware for different radios. This paper examines the

different aspects of reusability through portability of SCA

applications. It concentrates on the portability of the

assembly implementation and underlines the role of the

platform provider in portability. In essence, this paper

provides guidelines for designing SCA devices for platforms

with different kinds of computational elements.

The remaining of the paper is structured as follows: section

2 describes the different aspects that impact reusability and

illustrates how the SCA deals with them. Section 3 talks

about the need to map different computational elements

(GPPs, DSPs and FPGAs) to SCA containers. Section 4

presents the conclusions of the paper. Section 5 provides the

references used in the elaboration of this document.

2. REUSABILITY THROUGH PORTABILITY

An SCA application is defined as an assembly of

interconnected software components. The level of

reusability for an application is a function of the level of

portability of its software components and of the assembly

description. For the latter, the SCA addresses the issue by

having all of the information related to the assembly of the

application components stored in a number of descriptors

defined by the SCA as the XML Domain Profile. The

descriptors define how each component of the application

must be instantiated, connected, and configured. They

contain the requirements that must be met by the operating

environment in order to run each component of an

application.

Portability of the application implementation is addressed in

the following subsections. In section 2.1 we first explore the

reuse of binary implementations without modifications.

Section 2.2 then considers a second approach that aims to

enhance the portability of source code.

2.1 Implementation Reuse

Ideally, every component of an application would have a

single implementation, which would be reused and run on

any processor. A way of achieving this goal is to use an

interpreter or a virtual machine. This solution is not very

common in embedded systems since it usually cannot

provide the level of performance required by waveform

applications. Another way of achieving this goal is to use a

family of processors that are binary-compatible with each

other. This option implies that platform vendors would need

to standardize on a single processor family, which would

severely constrain SDR developers.

2.2 Source Code Portability

Considering that reuse of binary implementations are

handicapped by either the existence of performance

requirements that cannot be met, or because

implementations require homogenous hardware

environments (which is not probable), an alternative and

more realistic approach is to port the source code of

components. Porting source code implies the creation of new

mailto:steve.bernier@crc.ca
mailto:juan.zamora@crc.ca

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

implementations of a software component using a different

tool chain (compiler, linker, etc.) specific to a different

processor and operating system. The extent of changes that

must be performed in the source code in order to create the

new implementations defines the level of portability. The

more modifications are required, the less portable the source

code is considered.

Thus the goal of the SCA specification is to achieve the

highest level of portability for the source code of

applications. The target here is to reuse as much of the

original source code as possible. The SCA provides a means

for developers to write portable source code. It does this by

enabling the source code to have a high level of

independence regarding the operating system, middleware,

and devices it uses. In the following subsection we explore

each of those areas

2.2.1 Operating Systems

Every software component must use operating systems calls

for things like threads, synchronization, file access, and

such. The SCA specification requires that application

software be restricted to the use of a standard set of system

calls defined in the POSIX Application Environment Profile

document [1]. This set of system calls must thus be provided

with every operating environment.

2.2.2 Middleware

The SCA also requires the use of a standard middleware for

communications between components. SCA applications are

made of several interconnected components that must

interact with each other. Therefore, each component

contains a significant amount of code for inter-component

communications. Standardizing the middleware helps

achieve a greater level of portability. The SCA provides the

choice of two communications schemes: CORBA [2] or

MHAL [3]. CORBA is a middleware used for components

usually hosted by a general purpose processor (GPP).

Recently, CORBA also started to become available for

Digital Signal Processors (DSPs) and Field Programmable

Gate Arrays (FGPAs) [4, 5]. MHAL is a low-level

communications layer that is required for communications

between components when CORBA is not available.

2.2.3 Platform Devices

Waveform applications must interact with physical devices

to get access data and/or relevant information about the

system (e.g., radio signals, time). This is normally done

using device drivers, which often provide different APIs

from one manufacturer to another. Therefore, in order to

maximize portability, the JTRS requires that every operating

environment provide a standardized set of APIs for access to

hardware components. So far, the JTRS program has

standardized the APIs for a number of devices such as an

Ethernet device, a Serial port, and a Vocoder [6]. The

Software Defined Radio Forum also has a number of

working groups developing standard APIs for devices such

as antennas and transceivers.

2.3 Installation, Instantiation and Connection

When an application is ported to a new operating

environment, a fair amount of time can be spent changing

the way a component will be installed, instantiated,

connected, controlled, etc. For instance, different operating

systems can offer distinct ways of creating a process. As a

matter of fact, some operating systems support the concept

of a process while others don’t. Different platforms can also

support different file system technologies, which will have

an impact on how an application is installed and instantiated.

The SCA Core Framework specification [7] addresses this

issue by defining a deployment engine that must be part of

every operating environment. The deployment engine

standardizes how applications are handled. The specification

also defines how component connections are to be

established, including 5 different alternatives on how to

locate (direct or indirect) the source and target components

of such connections [8].

The Core Framework specification describes a deployment

model by which software components are hosted by

containers offered by the platforms. The Core Framework

deployment engine uses the different containers of its

operating environment to deploy application components.

The SCA defines two types of containers: the

ExecutableDevice and the LoadableDevice. In section 3 we

discuss in depth how the SCA can map those containers to

computational elements.

3. MAPPING THE SCA CONTAINERS TO

HARDWARE

SDR hardware platforms can provide three types of

Computational Elements (CEs): General Purpose Processors

(GPPs), Digital Signal Processors (DSPs), and Field-

Programmable Gate Arrays (FPGAs). But the SCA Core

Framework deployment engine uses only two types of

software containers to deploy applications. Consequently, a

relationship must be defined between the SCA containers

and the different CEs of a platform. This process is called

mapping the SCA to a platform.

The mapping consists in creating a software abstraction

layer for the hardware. Each CE must be represented by an

SCA container, which acts as a proxy to the hardware. These

SCA containers along with the SCA Devices described in

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

section 2.1.3 are sometimes referred to as an SCA Board

Support Package (BSP). A software component can be made

of a number of artifacts (e.g. shared libraries, configuration

files, main executable). Those artifacts are deployed into

SCA containers by the SCA deployment engine.

In the remaining of the section we address the characteristics

of the two types of SCA Devices, and how they can be

mapped to the three types of CEs.

3.1 SCA Containers Characteristics

The key in developing an abstraction layer is a good

understanding of the core characteristics of the two SCA

containers. This helps identify which type of SCA container

should be a proxy for a specific CE.

The SCA LoadableDevice is a type of container that is used

by the deployment engine to load artifacts of software

components. This container is capable of loading new

artifacts, but not capable of launching new tasks (also known

as processes). This type of container is therefore not capable

of instantiating a component.

The SCA ExecutableDevice is a type of container used by

the deployment engine to load and execute artifacts of

potentially many software components. It is capable of

creating several tasks at the same time without having to

reboot to launch a newly loaded task. This type of container

is therefore capable of instantiating a component. The

deployment engine is responsible for the life-cycle of every

component it instantiates. The life-cycle includes how a

component is launched, the value of input arguments for

launching, when the component is initialized, what property

values are to be used as the initial configuration, and when

the component is started. The life-cycle also includes the

tear-down of a component which controls when a

component is stopped, disconnected, and released. The SCA

specification requires that an application be made of at least

one SCA-compliant component. Therefore an SCA platform

needs to provide at least one ExecutableDevice

The deployment engine cannot use an SCA LoadableDevice

for launching components that implement the SCA standard

life-cycle. This implies amongst other things that the

deployment engine cannot feed such a component with a

variable initial set of configuration properties and that it

cannot connect it with other components. In essence, using

an SCA LoadableDevice implies some level of hardcoding

that negatively impacts the level of portability.

Ideally, all the containers provided by an SCA platform

would be of type ExecutableDevice to maximize portability.

The problem is that most often ExecutableDevices are

mapped only to GPPs, and very seldom used with the other

more powerful computational elements like DSPs or FPGAs

often used in SDR platforms.

There are two key features provided by computational

elements that can be used to differentiate a LoadableDevice

from an ExecutableDevice: incremental loading and multi-

tasking.

Incremental Loading is a feature that allows new binary code

to be loaded into execution memory during runtime without

rebooting the CE. Most operating systems that provide this

feature do so through what is called a loader [9]. For

instance, the POSIX standard [10] provides access to a

loader through the ‘exec()’ system calls.

Multi-tasking is a feature that allows multiple tasks to share

a single CE. It allows several tasks to run concurrently

without requiring a reboot every time a new task is launched.

Most operating systems implement this feature through what

is called a task scheduler [9].

3.2 Mapping SCA Containers to Computational

Elements

3.2.1 Mapping GPPs

GPPs are always represented as SCA ExecutableDevices

since they provide support for both incremental loading and

multi-tasking.

3.2.2 Mapping DSPs

DSPs are almost never represented as an SCA

ExecutableDevice because they are not traditionally used

with a loader. As well, most DSPs are used without

multitasking support. Therefore DSPs are most often

represented as SCA LoadableDevices.

Even when a DSP is used with a multitasking scheduler (e.g.

DSP/BIOS), it can only be represented as an SCA

LoadableDevice when it does not support incremental

loading. That is because it can’t be used to load new artifacts

to create new tasks. In other words, it cannot launch new

components. It can only create new tasks using the binary

code that was originally loaded. In this case, reloading the

DSP will inevitably change its behavior. In other words,

reloading the DSP implicitly starts a new task and that is

why there is no need for the SCA ExecutableDevice API.

However, it is possible to represent a DSP as an executable

using an operating system that provides both incremental

loading and multi-tasking [11]. Nevertheless, in most cases,

DSPs are not used with an operating system. As a result, the

level of portability of the code it runs is decreased.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

3.2.3 Mapping FPGAs

Since most FPGAs don’t provide support for incremental

loading, they are usually represented as SCA

LoadableDevices. But, it is possible to use FPGAs as

ExecutableDevices. The Xilinx Virtex FPGAs support

incremental loading through a concept called partial

reconfiguration. It allows the FPGA to be partially

reprogrammed during runtime without rebooting. ISR

Technologies has used a Xilinx FPGA mapped as an

ExecutableDevice [12]. Also, even if FPGAs don’t come

with an operating system, they natively support the concept

of multi-tasking through parallelism.

4. CONCLUSION

In this paper we have outlined different aspects that play a

role in software reuse, mainly associated with application

portability. We have described how the SCA specification

enhances application portability. We have also described

characteristics of the different computational elements being

used in SDR platforms, and how they are traditionally

mapped to SCA containers. By identifying the key concepts

that differentiate SCA containers (LoadableDevices and

ExecutableDevices), we have described the limitations that

LoadableDevices pose for SCA application portability.

Finally, we have provided guidelines of what it is required

for computational elements traditionally mapped as

LoadableDevices, to be mapped as ExecutableDevices

instead.

5. REFERENCES

[1] JPEO JTRS, “SCA APPLICATION ENVIRONMENT

PROFILE”, http://sca.jpeojtrs.mil/, May 2006.

[2] “Minimum CORBA Specification version 1.0: OMG

Document formal/02-08-01”, http://www.omg.org, August

2006.

[3] JPEO JTRS, “Joint Tactical Radio System (JTRS)

Standard Modem Hardware Abstraction Layer Application

Program Interface (API)”, http://sca.jpeojtrs.mil/, May 2007.

[4] L. Wirbel, “SDR looks to new middleware”, DSP Design

Line, January 2007.

[5] J. Jacob, M. Ulm, “CORBA for FPGAs: Tying together

GPPs, DSPs, and FPGAs”, http://DSP-FPGA.com.

[6] JPEO JTRS, “Introducing the JTRS Public APIs”,

http://sca.jpeojtrs.mil/, May 2007.

[7] JPEO JTRS, “Software Communications Architecture

Specification”, http://sca.jpeojtrs.mil/, May 2006.

[8] F. Lévesque, C. Auger, S. Bernier, H. Latour, “Jtrs Sca:

Connecting Software Components”, SDRF’03 Technical

Conference, Orlando, November 2003.

[9] J. R. Levine, “Linkers and Loaders”, Morgan Kaufmann

Press, January 2000.

[10] “IEEE Std 1003.1, 2004 Edition”, http://www.unix.org.

[11] Talon™ DSP RTOS, http:// www.blackhawk-dsp.com.

[12] J. Belzile, “Putting it all together – Objectives and

Challenges”, SDRF’05 Technical Conference, 2005.

