
1

JTRS SCA: CONNECTING SOFTWARE COMPONENTS

François Lévesque, Charles Auger, Steve Bernier, Hugues Latour

Communications Research Centre (CRC), Canada

Presented by Steve Bernier at

Software Defined Radio Technical Conference

17th – 19th November 2003

2

Outline

• Software Component Portability

• SCA Connection Model

• Connection Portability Issues

• Connection Portability Guidelines

• Inter-Application Connections

3

Software Component Portability

• In general, software component portability can be

obtained using one of three approaches:

– Interpreter: source code of a portable component is sent to an

interpreter program that behaves appropriately for the host platform

– Virtual machine: source code of a portable component is compiled

for a specific platform and is executed by a virtual machine that

behaves appropriately for the host platform.

– Multiple compiles: source code of a portable component is compiled

for each different host platforms and is executed natively

4

• The SCA uses the multiple-compiles model to achieve

portability:

– SCA components (e.g. Devices and Resources) are compiled for the

different platforms in which they are intended to be used

– Components provide a description of their requirements and

capabilities, which are compared during the process of software

deployment

Software Component Portability (con’t)

5

• SCA connection portability

– This portability model doesn’t deal with connection portability

– If it is not used properly, the SCA connection model can lead to

portability problems

– Even though SCA components were compiled for their target SCA

platforms, connection portability problems may preclude their

execution

Software Component Portability (con’t)

6

SCA Connection Model

• SCA connections

– Connections are used to provide references to components for

communication and control purposes

– Connections are unidirectional

– Orientation of a connection doesn’t indicate data flow

– Connections are used in DCD (node) and SAD (application)

component_A component_B
Push or pull data/control info

Source Destination

7

SCA Connection Model (con’t)

• Connection source: to receive a reference to the destination

component of a connection, the connection source must provide

a special API named Port

8

SCA Connection Model (con’t)

• Two types of SCA connection:

– Port-to-component: Connection destination inherits the

interface needed by the source; connection is established directly

to the component

– Port-to-port: Connection destination implements the needed

interface by aggregation; connection has to be established to the

sub-component implementing the interface

9

• Port-to-component connection

SCA Connection Model (con’t)

– Connection:

portA1 = component_A.getPort(“Port1”)

portA1.connectPort(component_B, “toB”)

– Disconnection:

portA1.disconnectPort(“toB”)

component_A Port1 component_B

10

• Port-to-port connection

SCA Connection Model (con’t)

– Connection:

portA1 = component_A.getPort(“Port1”)

portB1 = component_B.getPort(“Port1”)

portA1.connectPort(portB1, “toB1”)

– Disconnection:

portA1.disconnectPort(“toB1”)

component_A component_BPort1 Port1

11

SCA Connection Model (con’t)

• The SCA offers five mechanisms for obtaining/identifying the

source or destination component of a connection

• Can be categorized into “direct” and “indirect” identification

mechanisms

– Direct identification mechanisms: source or destination component is

identified using pre-defined (static) information

– Indirect identification mechanisms: source or destination component is

identified using runtime information

12

SCA Connection Model (con’t)

• Direct identification mechanisms:

– Naming service name: CORBA naming service is queried using a

name to obtain a reference to a component. Naming service

registration is only mandatory for Resources

– Component instantiation reference: in an assembly descriptor

(SAD, DCD), each component instance is associated to a unique

identifier which can be used to establish connections

13

SCA Connection Model (con’t)

• Indirect identification mechanisms:

– Domain finder: used to establish connections to radio services (e.g. log,

naming service). Services from all nodes register to the DomainManager

using a name and a type.

– Device that loaded a component: allows a connection with a Device that

was used to load a specific component (e.g. FPGA Device that was used

to load a specific algorithm)

– Device used by a component: allows a connection with a Device that is

being used by a specific component. Usage relationship are declared

using capabilities and capacities requirements

14

SCA Connection Model (con’t)

• Restrictions for node connections (DCD):

– Components of a node are launched by a DeviceManager while the

connections are established by the DomainManager

– Because of a lack of API between the DeviceManager and

DomainManager, the information gathered by the DeviceManager when

launching the components cannot be provided to the DomainManager

– Therefore, the following indirect identification mechanisms cannot be used:

• Device that loaded a component

• Device used by a component

15

Connection Portability for Applications

• Issues that can preclude connection establishment for an

application:

– Reference to a specific Device name

– Reference to a specific Port name

– Reference to a specific Service name

– Different Radio Frequency (RF) chain implementations

– Association between a component and a Device

– External connections

16

Connection Portability for Applications (con’t)

• Reference to a specific Device name

– The name of a Device is chosen by a radio integrator; it may differ in

each radio

– Therefore using a direct identification mechanism is not portable

– The Device involved in a connection should be identified using its

characteristics (capabilities and capacities)

• The SCA will have to standardize more capabilities/capacities

17

• Reference to a specific Port name

– To connect to Devices, applications may use port names which are

defined by the Device developer

– Port names for SCA components provided by a platform and used by an

application should be standardized

Connection Portability for Applications (con’t)

18

Application Connections Portability (con’t)

• Reference to a specific Service name

– Services register to the DomainManager using a name and a type

– Components connect to radio services using domain finder connections

– Since the component that implements a radio service may be different in

each radio, connections to services should not be identified using a name

– Connections to radio services should be identified using a service type

(e.g. filemanager, filesystem, logger, namingservice)

19

• Different Radio Frequency (RF) chain implementations

– The steps that need to be performed for the conversion of RF signals to

baseband data sample can be implemented in various ways

– Different radios could provide different groups of RF Devices and still

offer an equivalent service

– To configure a Device, an application needs to be connected to it

– Since the number of Devices used by an application can vary, it is

impossible to define a portable application assembly descriptor because

of the varying requirements in terms of connections

Connection Portability for Applications (con’t)

20

• Different Radio Frequency (RF) chain implementations

- RF Chain 1

- RF Chain 2

High-Speed

ADC

Digital Down

Converter

Waveform

Application

ADC
Down

Converter

Waveform

Application

Connection Portability for Applications (con’t)

21

• Different Radio Frequency (RF) chain implementations

– One way to address this problem is to abstract the RF device chain

– Application components would not connect to individual RF devices but

only to a high-level abstraction artifact

– The OMG SWRadio group has introduced the concept of an RF_Channel

component that could be used as a basis for a solution in the SCA

Connection Portability for Applications (con’t)

22

• Association between a component and a Device (ie: usesdevice)

– The declaration of an association can be defined:

• globally for a component (component level) or

• for a specific implementation of a component (implementation level)

– Connections referencing an association not defined for all implementations

could fail depending on the chosen implementation

– Associations should be defined at the component level rather than the

implementation level

• For more portability, associations to devices should only be made with the

assembly controller component

Connection Portability for Applications (con’t)

23

Application Connections Portability (con’t)

• External connections

– For an Application to be controlled (ex: from a console GUI), connections

must be established with it. There are two options:

• Connections to sub-components

• Connections to external ports

– Connections to sub-components of an Application break the

encapsulation concept and may create portability problems

• Modifications to sub-components of an application may render external

connections unusable

• Even tough the application is portable and may be executed, it cannot be

controlled

24

Application Connections Portability (con’t)

• External connections (con’t)

– External entities should connect to the external ports of an application

(i.e. defined in the application’s SAD)

– The external ports should be mapped to the ports of the assembly

controller to allow connections without breaking the encapsulation

25

Inter-Application Connections

• Problem

– In many scenarios, multiple applications must communicate

with each other in order to provide a single aggregated

functionality to the radio user

– The current version of the SCA (2.2) doesn’t specify how

applications may be connected with each other

– An application can potentially be connected to another

application since it implements the PortSupplier interface

26

Inter-Application Connections (con’t)

• Problem (con’t)

– However, there are problems preventing portable connections between

applications:

• The order in which applications are created is usually controlled by

the radio operator. It is difficult to automate the launch of two (or

more) applications in a specific sequence suitable for connection

establishment

• The name of an application component is always appended to the

name of the application (chosen at run time by the radio operator).

Pre-defined application names have to be used

27

Inter-Application Connections (con’t)

• Potential Solution 1

– One of the applications involved in a connection registers as a radio

service

– The connection could identify this application using the domainfinder

identification mechanism

– Advantage:

• This solution would preserve application encapsulation which is good for

maintenance and portability

– Disadvantages:

• Requires a new type of service called “application”

• The name of the second application (i.e. service) would have to remain

unchanged

28

Inter-Application Connections (con’t)

• Potential Solution 2

– Add support for the concept of aggregate applications to the SCA

– An aggregate application would be composed of two or more applications

– Advantages:

• The radio operator does not need to launch many individual applications with

a specific name to obtain the aggregate application behavior

• Connections would be established between applications, thus preserving

encapsulation

29

Inter-Application Connections (con’t)

• Potential Solution 2 (con’t)

– Disadvantages:

• Requires modifications to the SCA standard

– ApplicationFactory behavior has to be altered to launch aggregate

applications in addition to the standard applications

– A new assembly descriptor is needed to indicate which applications

compose the aggregate application and how they must be inter-

connected

30

Questions ?

