
SDR WAVEFORM PORTABILITY

Steve Bernier, Claude Bélisle, Charles Auger

IQPC Conference

3 December 2003

2

Software Defined Radio

• SDR concept provides for a segregation between hardware

providers, software developers, and system integrators

– Reduces stovepipe acquisition process

– Facilitates development and distribution of new applications

• Make use of third party software

• Deployment and execution of software on different vendor

platforms must be made possible

– Software deployment rather than software configuration

• Application portability becomes essential

– With minimum software modifications to minimize cost

3

Application Portability

• Current implementations of SDRs do not lend to portability

– The three SDR development responsibilities are still tightly integrated

– Implementation is based on proprietary architectures that uniquely

define the roles of hardware providers, software developers and

system integrators

– Limited application expansion possible through COTS software

• The development of portable applications faces a number of

challenges

– Heterogeneous digital and RF platforms provided by different vendors

– Standardization of software development architecture

4

Platform Configuration

DSP GPP FPGA

Communications

Fabric

A/D

D/A

RF Elements

5

SDR Platform Components

• SDR platforms are composed of heterogeneous components

– Signal processing components

• Digital Signal Processors (DSP)

• General Purpose Processors (GPP)

• Field Programmable Gate Arrays (FPGA)

– Operating Systems

• Multiple vendors

• Real time vs non-real time

– Inter-component communications

• Protocols

• Bus, Star fabric…

– RF front end

• A/D, D/A, oscillators, filters, antennas

6

Portability Options

• Deployment and execution of software on different platforms

can be done in a number of ways:

– Interpreter with source code (e.g. Postscript)

– Virtual machine with byte code (e.g. Java)

– Multiple compile with native code

• Multiple compile is the only approach that can offer the

performance required by modern radio applications

– Data rates, modulation formats, error correction, frequency hopping

7

Portability via Multiple Compile

• Each application component is compiled for the different

platform configurations to be supported

– Processing devices

– Operating systems

• Provides optimum performance since applications can draw

on the full potential of platform components

– Not limited to single configuration

• Software can be ran where it is most efficient, if available.

For example:

– Synchronization and DDC/DUC on FPGA

– Filtering and modulation/demodulation on DSPs

– Error correction and interleaving on GPP

8

Portability via Multiple Compile (2)

• Will most likely require different software implementations for

different platform configurations

– E.g. GPP vs FPGA software

• A deployment architecture is required to automatically select

the proper application component implementation compatible

with platform configuration

– Comparison between platform capabilities and component

implementation requirements

• Allows hot swap capability

– If a device becomes inactive, software can be redeployed elsewhere

– Increase application reliability

9

Automatic Component Selection

Radio

Management

Component Implementations Platform Elements

Component 1

Component 2

Implementation 1

Requirements:

– OS: Linux

– Processor: X86

Requirements:

– OS: Windows

– Processor: X86

Implementation 1

Advertised:

– OS: Linux

– Processor: X86

Device 1

Advertized:

– OS: Neutrino

– Processor: X86

Device 2Implementation 2

? ?

? ?

10

Standardization for Portability

• To reduce the development cost of the different component
implementations, code reuse should be maximized

• This can be achieved with a standard development
framework that defines:

– A set of Application Programming Interfaces (API)

• API for OS

• API for access to RF equipment

– Communications middleware

• Between components provided by different developer
categories

– Deployment Architecture

• Component selection,

• Application load, initialize, execute

11

Software Communications

Architecture

• The SCA is a radio framework developed to facilitate

portability

– Open Architecture

• Based on commercial standards

– Created by a consortium of companies

• Raytheon, BAE System, ITT, Rockwell Collins, Motorola, Harris…

– Improved through an open public change proposal process

• http://jtrs.army.mil/

– An open source reference implementation exists

• http://www.crc.ca/scari

12

Portability with the SCA

• The SCA addresses the standardization process with:

– Open specification deployment architecture

• Based on CORBA Component Model (CCM)

– XML assembly descriptor defines application component requirements

– Performs platform capability and capacity verification

– Component selection based on component requirements

– Application Programming Interfaces

• POSIX compliancy for OS APIs

• Device state management ITU X.731 ISO/IEC 10164-2

• SCA API Supplement

• Public submission process for new API

– SDRF and OMG initiative

– Communications Middleware

• Minimum CORBA

13

Component Implementation

Granularity

• For ultimate portability, each component should be recompiled
for every possible platform element configuration

– Various combinations of processors, OS, and middleware !!!

– Deployment manager selects proper combination

• When FPGAs are used, a certain level of component
aggregation is required

– No Dynamic Loader available for FPGAs

– Components must be combined into a single loadable image

• otherwise one component per FPGA

• Implementation granularity depends on FPGA capabilities and
radio reconfiguration flexibility required

– FPGA image can be composed of many application components
providing increasing application performance but decreasing
reconfiguration flexibility and increasing development cost

14

Component Implementation

DAB Example
A/D

Converter
Device

Time & Freq
Sync

D-QPSK
Decoding

Freq
Deinterleave

Q-PSK
Demapping

Block
Decoder

Block
Deinterleave

Time
Deinterleave

Viterbi
Decoder MPEG player

Audio
Device

1024 pts
FTT

Base software implementation

15

Component Implementation

DAB Example - 2
A/D

Converter
Device

Time & Freq
Sync

D-QPSK
Decoding

Freq
Deinterleave

Q-PSK
Demapping

Block
Decoder

Block
Deinterleave

Time
Deinterleave

Viterbi
Decoder MPEG player

Audio
Device

1024 pts
FTT

FPGA

DSP

or

GPP

Mapping 1

16

Component Implementation

DAB Example - 3
A/D

Converter
Device

Time & Freq
Sync

D-QPSK
Decoding

Freq
Deinterleave

Q-PSK
Demapping

Block
Decoder

Block
Deinterleave

Time
Deinterleave

Viterbi
Decoder MPEG player

Audio
Device

1024 pts
FTT FPGA

DSP

or

GPP

Mapping 2

17

Component Implementation

DAB Example - 4
A/D

Converter
Device

Time & Freq
Sync

D-QPSK
Decoding

Freq
Deinterleave

Q-PSK
Demapping

Block
Decoder

Block
Deinterleave

Time
Deinterleave

Viterbi
Decoder MPEG player

Audio
Device

1024 pts
FTT

FPGA

DSP

or

GPP

Mapping 3

18

Quality of Service

• In some instances, the platform configuration could support

multiple implementations of a same component

– Java or C++

– FPGA or GPP code

• SCAv2.2 does not offer a QoS mechanism to select best

implementation

– SCA loads components according to assembly descriptor file

• Modifications to the SCA is needed

– QoS requirements to be included in SAD

• Tools such as the CRC Waveform Application Builder

(WAB), Component Editor and Waveform Optimizer could be

used to address QoS requirements

19

Software Accelerators

• While FPGA offer increased performance (processing
speed and lower power consumption) over DSP and GPP,
current use limits portability

– Development cost is increased since FPGA programming is
platform specific

– Optimum granularity level is difficult to estimate

• A better use of FPGA would be to consider them as a bank
of selectable signal processing functions

– Similar to math coprocessor, DirectX, MMX

• Deployment manager compares application component list
with Software Accelerator functions provided by the FPGA

– When a match is made, FPGA component is used instead of
loading DSP or GPP component

20

Software Accelerators – 2

• Software accelerator concept requires certain modifications

to current SDR implementations

• FPGA implementations require the use of an internal data

bus to individually address each function and connect them

as defined in the application description

• A standard component descriptor is required to identify

functions provided by the FPGA

21

Conclusion

• Application Portability is an essential element for SDR technology

– It is the mean by which true segregation of development roles wil be

acheived

• Multiple compile is most suitable approach for heterogeneous

platforms

– One implementation per platform element configuration

• Processor + OS

• Portability requires a certain level of standardization, offered by

the SCA.

– Open specification Deployment Architecture

– Application Programming Interfaces (*)

– CORBA middleware

• The concept of Software Accelerator in FPGA should be explored

to provide higher application performance without reducing

portability

