Communications Centre de recherches
Research Centre sur les communications
Canada Canada

An Agency of
Industry Canada

SDR WAVEFORM PORTABILITY

Steve Bernier, Claude Bélisle, Charles Auger

IQPC Conference
3 December 2003

. - e
) > S .
g Ny
B
"
N
-
A
2 o
5
‘3

Canadi

CENTRE pe RECHERCHES sur e
— COMMU

Software Defined Radio

SDR concept provides for a segregation between hardware
providers, software developers, and system integrators

— Reduces stovepipe acquisition process
— Facilitates development and distribution of new applications
« Make use of third party software

Deployment and execution of software on different vendor
platforms must be made possible

— Software deployment rather than software configuration

Application portability becomes essential
— With minimum software modifications to minimize cost

Application Portability

« Current implementations of SDRs do not lend to portability
The three SDR development responsibilities are still tightly integrated

Implementation is based on proprietary architectures that uniquely
define the roles of hardware providers, software developers and
system integrators

Limited application expansion possible through COTS software

« The development of portable applications faces a number of
challenges
— Heterogeneous digital and RF platforms provided by different vendors
— Standardization of software development architecture

Platform Configuration

RF Elements

SDR Platform Components

« SDR platforms are composed of heterogeneous components

Signal processing components
 Digital Signal Processors (DSP)
» General Purpose Processors (GPP)
* Field Programmable Gate Arrays (FPGA)

Operating Systems
« Multiple vendors
» Real time vs non-real time

Inter-component communications
* Protocols
* Bus, Star fabric...
RF front end
« A/D, D/A, oscillators, filters, antennas

Portability Options

Deployment and execution of software on different platforms
can be done in a number of ways:

— Interpreter with source code (e.g. Postscript)
— Virtual machine with byte code (e.g. Java)
— Multiple compile with native code

Multiple compile is the only approach that can offer the
performance required by modern radio applications

— Data rates, modulation formats, error correction, frequency hopping

Portability via Multiple Compile

Each application component is compiled for the different
platform configurations to be supported

— Processing devices
— Operating systems

Provides optimum performance since applications can draw
on the full potential of platform components

— Not limited to single configuration

Software can be ran where it is most efficient, if available.
For example:

— Synchronization and DDC/DUC on FPGA
— Filtering and modulation/demodulation on DSPs
— Error correction and interleaving on GPP

Portability via Multiple Compile (2)

Will most likely require different software implementations for
different platform configurations

— E.g. GPP vs FPGA software

A deployment architecture is required to automatically select
the proper application component implementation compatible
with platform configuration

— Comparison between platform capabilities and component
implementation requirements

Allows hot swap capability
— If a device becomes inactive, software can be redeployed elsewhere
— Increase application reliability

Automatic Component Selection

Component Implementations Platform Elements

Implementation 1

Implementation 2
Requirements: Advertized:

— OS: Windows 4 4 — OS: Neutrino
— Processor: X86 — Processor: X86

Implementation 1

CENTRE pe RECHERCHES sur Les
COMMUN

Standardization for Portability

To reduce the development cost of the different component
Implementations, code reuse should be maximized

This can be achieved with a standard development
framework that defines:

— A set of Application Programming Interfaces (API)
« API for OS
» API for access to RF equipment

— Communications middleware

« Between components provided by different developer
categories

— Deployment Architecture
« Component selection,
» Application load, initialize, execute

Software Communications
Architecture

« The SCA is aradio framework developed to facilitate
portability

Open Architecture
 Based on commercial standards

Created by a consortium of companies
« Raytheon, BAE System, ITT, Rockwell Collins, Motorola, Harris...

Improved through an open public change proposal process
 http://jtrs.army.mil/

An open source reference implementation exists
* http://www.crc.ca/scari

Portability with the SCA

« The SCA addresses the standardization process with:

— Open specification deployment architecture

« Based on CORBA Component Model (CCM)
— XML assembly descriptor defines application component requirements
— Performs platform capability and capacity verification
— Component selection based on component requirements

— Application Programming Interfaces
« POSIX compliancy for OS APIs
« Device state management ITU X.731 ISO/IEC 10164-2
 SCAAPI Supplement

* Public submission process for new API
— SDRF and OMG initiative

— Communications Middleware
e Minimum CORBA

Component Implementation
Granularity

For ultimate portability, each component should be recompiled
for every possible platform element configuration

— Various combinations of processors, OS, and middleware !
— Deployment manager selects proper combination

When FPGASs are used, a certain level of component
aggregation is required
— No Dynamic Loader available for FPGAs
— Components must be combined into a single loadable image
« otherwise one component per FPGA

Implementation granularity depends on FPGA capabilities and
radio reconfiguration flexibility required

— FPGA image can be composed of many application components
providing increasing application performance but decreasing
reconfiguration flexibility and increasing development cost

CENTRE be RECHéRS“IES SURLL

Component Implementation
DAB Example

- Base software implementation
Time & Freq D-QPSK
Sync Decoding

Block Block Q-PSK Freq
Deinterleave Decoder Demapping Deinterleave
Time Viterbi

Component Implementation
DAB Example - 2

- Mapping 1
Time & Freq | D-QPSK
E Sync Decoding
FPGA

5 . 5

{
Block Block Q-PSK Freq
Deinterleave Decoder Demapping Deinterleave

DSP
or

Time Viterbi
Deinterleave 8l Decoder) MPEG player | GPP

Component Implementation
DAB Example - 3

- Mapping 2
m—
Sync Decoding

Y - Y - Y - Y

Block Block Q-PSK Freq
Deinterleave Decoder Demapping Deinterleave
Time Viterbi

CENTRE pe RECHERCHES sur es ,
COMMUN

Component Implementation
DAB Example -4

- Mapping 3
Time & Freq | D-QPSK
_ Sync Decoding
FPGA .

Y - Y - Y

| | |
Block Block Il QPsK ‘ Freq ‘
Deinterleave Decoder Demapping Deinterleave
S DSP
Time iterbi
Deinterlecave 8l Decoder | MEEGIDayEr | e ,

CENTRE pe RECHERCHES sur es ,
COMMUN

Quality of Service

In some instances, the platform configuration could support
multiple implementations of a same component

— Java or C++
— FPGA or GPP code

SCAv2.2 does not offer a QoS mechanism to select best
Implementation

— SCA loads components according to assembly descriptor file

Modifications to the SCA is needed
— QoS requirements to be included in SAD

Tools such as the CRC Waveform Application Builder
(WAB), Component Editor and Waveform Optimizer could be
used to address QoS requirements

Software Accelerators

While FPGA offer increased performance (processing
speed and lower power consumption) over DSP and GPP,
current use limits portability

— Development cost is increased since FPGA programming is
platform specific

— Optimum granularity level is difficult to estimate

A better use of FPGA would be to consider them as a bank
of selectable signal processing functions

— Similar to math coprocessor, DirectX, MMX

Deployment manager compares application component list
with Software Accelerator functions provided by the FPGA

— When a match is made, FPGA component is used instead of
loading DSP or GPP component

CENTRE ot RECI—&RS-IES SUR L

Software Accelerators — 2

Software accelerator concept requires certain modifications
to current SDR implementations

FPGA implementations require the use of an internal data
bus to individually address each function and connect them
as defined in the application description

A standard component descriptor is required to identify
functions provided by the FPGA

Conclusion

Application Portability is an essential element for SDR technology

— It is the mean by which true segregation of development roles wil be
acheived

Multiple compile is most suitable approach for heterogeneous
platforms

— One implementation per platform element configuration
* Processor + OS

Portability requires a certain level of standardization, offered by
the SCA.

— Open specification Deployment Architecture
— Application Programming Interfaces (*)
— CORBA middleware

The concept of Software Accelerator in FPGA should be explored
to provide higher application performance without reducing

portability
CENTRE pe RECHERCHES syr ts
COM

