HST-3000

BRI Testing

User's Guide

HST-3000

BRI Testing

User's Guide

Communications Test and Measurement Solutions 12410 Milestone Center Drive Germantown, Maryland 20876-7100 USA Toll Free 1-800-638-2049 Tel +1-240-404-2999

Fax +1-240-404-2195 www.jdsu.com

Notice Every effort was made to ensure that the information in this document was accurate at the time of printing. However, information is subject to change without notice, and JDSU reserves the right to provide an addendum to this document with information not available at the time that this document was created

Copyright © Copyright 2011 JDS Uniphase Corporation. All rights reserved. JDSU, ACTERNA, Communications Test and Measurement Solutions, and the JDSU and Acterna logo are trademarks of JDS Uniphase Corporation ("JDS Uniphase"). All other trademarks and registered trademarks are the property of their respective owners. No part of this guide may be reproduced or transmitted electronically or otherwise without written permission of the publisher.

Copyright release Reproduction and distribution of this guide is authorized for Government purposes only.

Trademarks JDS Uniphase, JDSU, Acterna, HST-3000, and HST-3000C are trademarks or registered trademarks of JDS Uniphase Corporation in the United States and/or other countries.

> Microsoft, Windows, Windows NT, Excel, HyperTerminal, and Internet Explorer are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

> Specifications, terms, and conditions are subject to change without notice. All trademarks and registered trademarks are the property of their respective companies.

Ordering This guide is a product of JDSU's Technical Information information Development Department, issued as part of the HST-3000. The catalog number for a printed user's guide is ML-061101. The catalog number for a CD-ROM containing all HST-3000 user documentation is MI -060301

Federal This equipment has been tested and found to comply with the Communications limits for a Class B digital device, pursuant to Part 15 of the Commission (FCC) FCC Rules. These limits are designed to provide reasonable **Notice** protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

> This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

> If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

In order to maintain compliance with the limits of a Class B digital device JDSU requires that quality interface cables be used when connecting to this equipment. Any changes or modifications not expressly approved by JDSU could void the user's authority to operate the equipment.

Requirements ICES-003.

Industry Canada This Class B digital apparatus complies with Canadian

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

WEEE Directive JDSU has established processes in compliance with the Compliance Waste Electrical and Electronic Equipment (WEEE) Directive. 2002/96/FC

> This product should not be disposed of as unsorted municipal waste and should be collected separately and disposed of according to your national regulations. In the European Union, all equipment purchased from JDSU after 2005-08-13 can be returned for disposal at the end of its useful life. JDSU will ensure that all waste equipment returned is reused, recycled, or disposed of in an environmentally friendly manner, and in compliance with all applicable national and international waste legislation.

> It is the responsibility of the equipment owner to return the equipment to JDSU for appropriate disposal. If the equipment was imported by a reseller whose name or logo is marked on the equipment, then the owner should return the equipment directly to the reseller.

> Instructions for returning waste equipment to JDSU can be found in the Environmental section of JDSU's web site at www.jdsu.com. If you have guestions concerning disposal of your equipment, contact JDSU's WEEE Program Management team at WEEE.EMEA@idsu.com.

Contents

About This Guide ix		
	Purpose and scope Assumptions Terminology Application-oriented user guide HST-3000 base unit user's guide Safety and compliance information Technical assistance Conventions	X X Ki Ki Ki
Chapter 1	Getting Started	1
	About ISDN BRI testing. What's new S/T Interface software option Features and capabilities About BRI interfaces and the HST emulation modes U interface. ISDN NT1/TE ISDN LT ISDN U-MON	2 2 3 4 5 5
	HST-3000 BRI Testing User's Guide	٧

	S/T interface	6
	BRI interface	6
	ISDN NT1	7
	BERT (IDSL)	7
	Status LEDs	8
	BRI connectors	10
	Instrument settings and user preferences	11
Chapter 2	BRI Testing	13
	Accessing the test configuration menus	14
	Setting up the phone book	14
	Placing circuit calls	16
	Placing a packet call	25
	Placing a self call	33
	Receiving and disconnecting a call	38
	Accepting a call	38
	Rejecting a call	
	Ignoring a call	
	Disconnecting a call	
	Transmitting DTMF tones	
	Inserting voice traffic into a call	
	Performing BER analysis of calls	
	Inserting CRC or FEBE errors	
	_	
	Monitoring BRI service from the U interface	
	Emulating a NT1 on the BRI interface	
	Testing the physical layer	
	Interpreting D channel decode messages	
	LAPD messages	
	Viewing and navigating decode messages	
	Clearing the message buffer	
	Capturing decode text in an ASCII text file	
	Restarting tests	62
	Viewing test results	
	Clearing history results	

Chapter 3	Troubleshooting	65
	Resolving problems	66
Appendix A	Test Results	69
	About test results	70
	Summary results	70
	Interface results	73
	BERT results	77
	LED results	78
	ISDN results	80
	Call 1/Call 2	
	Call states	
	Call test results	
	D-Chan Decode	85
	Time results	85
	D-Chan decode results	86
	LAPD Unnumbered frame messages	
	LAPD Supervisory frame messages	
	Q.931 messages	89
	Q.931 Cause Values	90
	Saving and printing results	97
Appendix B	BERT Patterns	99
	BERT patterns	100
Appendix C	Specifications	101
	Interface	102
	Test configurations	
	BRI testing configurations	
	Loopback modes	
	EOC loopback codes	

Glossary	105
Index	109

About This Guide

Topics discussed in this chapter include the following:

- "Purpose and scope" on page x
- "Assumptions" on page x
- "Terminology" on page x
- "Application-oriented user guide" on page xi
- "HST-3000 base unit user's guide" on page xi
- "Safety and compliance information" on page xi
- "Technical assistance" on page xii
- "Conventions" on page xiii

Purpose and scope

The purpose of this guide is to help you successfully use the features and capabilities of the HST-3000 with the ISDN basic rate interface (BRI) testing SIM. Using the option, you can place, receive, and analyze calls, test data services using BERT analysis, test voice services using a microphone/ speaker audio headset, and monitor physical (layer 1), LAPD (layer 2), and Q.931 (layer 3) results.

This guide includes task-based instructions that describe how to configure, use, and troubleshoot the HST-3000 for BRI physical transmission testing.

Assumptions

This guide is intended for novice, intermediate, and experienced users who want to use the HST-3000 BRI testing SIM efficiently and effectively. We assume that you are familiar with the ISDN communications standard and basic telecommunications safety, concepts, and terminology.

Terminology

The following terms have a specific meaning when they are used in this guide (also see "Glossary" on page 105):

- HST-3000 Handheld Services Tester 3000. In this
 user's guide, "HST-3000" is used to refer to the HST-3000
 family of products or to the combination of a base unit and
 attached SIM. "HST" is also sometimes used to refer to
 the base unit/SIM combination.
- SIM Service Interface Module. Sometimes referred to generically as the module. The SIM provides test application functionality.

Application-oriented user guide

The *HST-3000 BRI Testing User's Guide* is an application-oriented user's guide containing information about using the HST-3000 BRI testing SIM to perform test operations on ISDN lines with the basic rate interface. This guide includes an overview of testing features, instructions for using the HST-3000 in monitor and terminate test operations, and test result descriptions. This guide also contains testing specifications and contact information for JDSU's Technical Assistance Center (TAC).

This user's guide should be used in conjunction with the HST-3000 Base Unit User's Guide.

HST-3000 base unit user's guide

The *HST-3000 Base Unit User's Guide* contains overall information relating to device and general functions such as using the unit with a keyboard, peripheral support, battery charging, saving and printing results, and managing files. This guide also contains technical specifications for the base unit and a description of Acterna's warranty, services, and repair information, including terms and conditions of the licensing agreement.

Safety and compliance information

Safety and compliance information are contained in the booklet included with the HST-3000 user documentation CD-ROM jewel case.

Technical assistance

If you need assistance or have questions related to the use of this product, call or e-mail JDSU's Technical Assistance Center (TAC) for customer support. Before contacting TAC, you should have the serial numbers for your HST-3000 unit. See "Locating the serial number" in the HST-3000 Base Unit User's Guide for more information.

Table 1 lists TAC information. For the latest TAC contact information, go to www.jdsu.com, or contact your local sales office for assistance. For contact information for regional sales offices, see the back cover of this guide.

Table 1 Technical assistance centers

Region	Phone Number	
Americas	1-866-ACTERNA 301-353-1550	(1-866-228-3762) tac@jdsu.com
Europe, Africa, and Mid-East	+49 (0) 7121 86 1345 (JDSU Germany)	hotline.europe@jdsu.com
Asia and the Pacific	+852 2892 0990 (Hong Kong)	
	+8610 6833 7477 (Beijing-China)	

During off-hours, you can request assistance by doing one of the following: leave a voice mail message at the Technical Assistance number, e-mail the North American Technical Assistance Center, tac@jdsu.com, or submit your question using our online Technical Assistance Request form at www.jdsu.com.

Conventions

This guide uses naming conventions and symbols, as described in the following tables.

 Table 2
 Typographical conventions

Description	Example
User interface actions and buttons or switches you have to press appear in this type-face .	Press the OK key.
Code and output messages appear in this typeface.	All results okay
Text you must type exactly as shown appears in this type-face.	Type: a:\set.exe in the dialog box.
Variables appear in this <i>type-face</i> .	Type the new <i>hostname</i> .
Book references appear in this <i>typeface</i> .	Refer to Newton's Telecom Dictionary

 Table 3
 Keyboard/menu conventions

Description	Example
A plus sign + indicates simultaneous keystrokes.	Press Ctrl+s
A comma indicates consecutive key strokes.	Press Alt+f,s
A slanted bracket indicates choosing a submenu from menu.	On the menu bar, click Start > Program Files.

Table 4 Symbol conventions

This symbol represents a general hazard.

This symbol represents a risk of electrical shock.

This symbol represents a risk of explosion

This symbol represents a Note indicating related information or tip.

This symbol, located on the equipment or its packaging indicates that the equipment must not be disposed of in a land-fill site or as municipal waste, and should be disposed of according to your national regulations.

Table 5 Safety definitions

DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

Getting Started

1

This chapter provides basic information about the HST-3000 ISDN BRI testing option. Topics discussed in this chapter include the following:

- "About ISDN BRI testing" on page 2
- "About BRI interfaces and the HST emulation modes" on page 4
- "Status LEDs" on page 8
- "BRI connectors" on page 10
- "Instrument settings and user preferences" on page 11

About ISDN BRI testing

The HST-3000 ISDN BRI SIM enables you to install and maintain ISDN BRI services. Using the HST with the BRI SIM, you can place, receive, and analyze calls, test data services using BERT analysis, test voice services using a microphone/ speaker audio headset, and monitor physical (layer 1), LAPD (layer 2), and Q.931 (layer 3) results.

What's new This release of the ISDN BRI SIM now allows you to do the following:

- Loopback 2 B channels and the D channel for analysis when emulating central office equipment in LT (line termination) mode.
- Reguest that a device on the far end send a stream of traffic with continuous CRC errors.
- Schedule timed tests.

software option

S/T Interface If you purchase the S/T Interface software option, (part number: HST3000-ST), you can also use the ISDN BRI SIM to do the following:

- Emulate terminal equipment devices (for example, an ISDN phone or terminal adapter), and place circuit or packet calls using ISDN TE mode for the S/T interface.
- Emulate a network termination device, and passively monitor BRI service using ISDN NT1 mode for the BRI interface (S/T and U interfaces).

Features and Using the ISDN BRI SIM, you can: capabilities

- Store frequently used numbers in a phone book, and then select a number from the phone book when placing a call.
- Place and receive up to two calls simultaneously using the standard transmit-receive interfaces. After a call is established, you can insert voice traffic into the associated B Channel, or perform BERT analysis of the B Channel.
- BERT (IDSL) of the physical line.
- Perform BERT analysis of two B Channels simultaneously.
- Emulate central office equipment using Line Termination (LT) mode.
- Emulate terminal equipment devices using Terminal Equipment (TE) mode for a U interface.
- Process calls for the following switches:
 - AT&T 5ESS
 - Nortel DMS 100
 - National ISDN-1 (NI-1) and National ISDN-2 (NI-2) compliant switches
 - Siemens EWSD
- Monitor and analyze ISDN BRI service while the network is in-service.
- Isolate and locate problems by viewing D channel decode text for all captured transmitted and received frames when you monitor or terminate ISDN BRI service. After viewing the decode text, you can save the text to a file on the HST-3000.
- Place D channel packet calls on the U or S/T interface, and then send a FOX message to verify that the correct text is received on the far end of the circuit.

About BRI interfaces and the HST emulation modes

The HST ISDN BRI SIM offers six emulation modes for testing the U, S/T, and BRI interfaces. Each mode allows the HST to emulate a specific network device or devices when testing ISDN BRI service. Figure 1 illustrates the BRI interfaces.

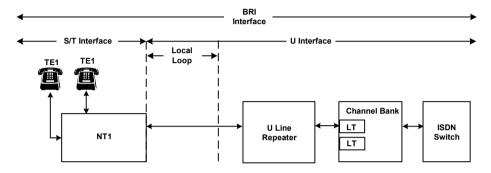


Figure 1 BRI interfaces

For details on testing ISDN BRI service using the HST, refer to Chapter 2 "BRI Testing".

U interface The U interface is the physical 2-wire echo cancelling interface spanning from the central office, to the local loop, and finally, to the customer premises. Each of the modes available for testing the U interface is described below, and illustrated in Figure 2.

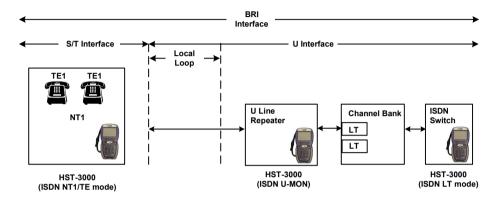


Figure 2 HST emulation modes for the U Interface

ISDN NT1/TE In ISDN NT1/TE mode, the HST emulates a NT1, while simultaneously emulating up to two TE devices. Using this mode, you can place circuit and packet calls on the U interface.

ISDN LT In **ISDN LT** mode, the HST emulates an ISDN switch. Using this mode, you can place circuit mode calls on the U interface.

ISDN U-MON In **ISDN U-MON** mode, the HST emulates a line repeater, allowing you to passively monitor ISDN BRI service on the U interface.

S/T interface The S/T interface is the standard 4-wire (2 RX, 2 TX) interface used by ISDN terminals on the terminal side of a NT1. In ISDN TE mode, the HST emulates a TE device, allowing you to place circuit and packet calls on the S/T interface (see Figure 3).

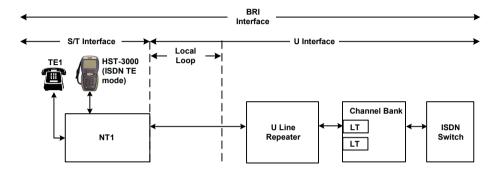


Figure 3 ISDN TE mode for the S/T Interface

BRI interface The BRI interface spans both the U interface and the S/T interface. Each of the modes available for testing the BRI interface is described below.

ISDN NT1 In ISDN NT1 mode, the HST emulates a NT1 device, allowing you to monitor ISDN service on the entire BRI interface (see Figure 4).

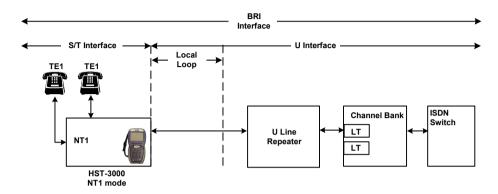


Figure 4 ISDN NT1 emulation mode

BERT (IDSL) In **BERT (IDSL)** mode, you can configure the HST to use one of the emulation modes illustrated in Figure 5, and then BER test the physical layer.

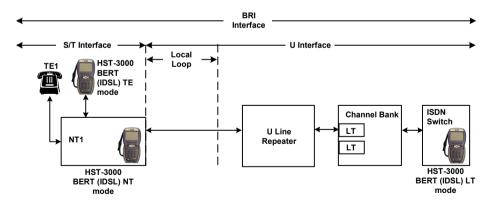


Figure 5 HST emulation modes for BER testing the BRI Interface

Status LEDs

There are six status LEDs located on the front of the HST-3000, above the LCD screen. Table 6 describes the LEDs.

Table 6 Status LEDs

LED	Description
Sync	Solid green — HST-3000 is synchronized with incoming signal; in H8 or J8 sync state, H8 or J8 Active state, H7 Pending state, or J7 sync. Solid red — At least one of the receivers does not have signal or frame synchronization. Not illuminated — HST-3000 not synchronized.
Data	Solid green — Pattern synchronization achieved for each active call or receiver.
	Solid red — Pattern synchronization was achieved for each active call or receiver and then lost.
	Not illuminated — Pattern synchronization not detected on at least one active call or receiver.
Error	Not illuminated — All results OK.
	Solid red — Error condition exists. Causes of the error appear on the Summary Results page. (See "Viewing test results" on page 63 for information about displaying the Summary Results page).
Alarm	Not supported for BRI testing.
LpBk	Solid green — B1, B2, B1+B2, or 2B+D channels have been looped up on the HST-3000 by a response to an EOC message, or the channels have been manually looped up. Not illuminated — No payload channels are currently looped.

Table 6	able 6 Status LEDs (Continued)	
LED	Description	
Batt	Not illuminated — Battery has a useful charge. Solid green — AC adapter is plugged in. Solid red — Battery is approximately 20 percent or below of full charge. Flashing red — Approximately five minutes of use remains. Immediately attach AC adapter or replace battery. Solid amber — Battery capacity indicator ("gas gauge") needs to be reset (see the HST-3000 Base Unit User's Guide).	

BRI connectors

A SIM with the BRI testing option has the physical interfaces needed to perform ISDN testing. The U and U mon connectors are located on the side of the SIM. Figure 6 shows a BRI SIM with three 8-pin modular connectors.

S/T connector

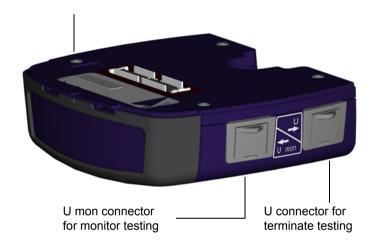


Figure 6 BRI interface connectors

DANGER: ELECTRICAL SHOCK

The S/T connector, located on the right side of the base unit when the SIM is installed, does not include a lightning protector. Connecting an outside plant line to the S/T connector during an electrical storm can result in serious injury or death. Do not connect an outside plant line to the S/T connector.

NOTE:

The BRI interface connectors are protected by flexible dust caps. The dust caps are permanent fixtures and should not be removed.

WARNING: ELECTRICAL SHOCK

Electrical shock may result in serious injury or death. Use care when connecting to telecommunications circuits, to be sure that you do not come in contact with exposed conductors or power mains.

Instrument settings and user preferences

For information about changing instrument and preference settings, such as date and time format, port settings, sound, and screen settings, see the *HST-3000 Base Unit User's Guide*.

Chapter 1 Getting Started Instrument settings and user preferences

BRI Testing

2

This chapter provides information on performing turn-up and maintenance testing using the HST-3000 BRI testing feature. Topics discussed in this chapter include the following:

- "Accessing the test configuration menus" on page 14
- "Setting up the phone book" on page 14
- "Placing circuit calls" on page 16
- "Placing a packet call" on page 25
- "Placing a self call" on page 33
- "Receiving and disconnecting a call" on page 38
- "Inserting voice traffic into a call" on page 41
- "Performing BER analysis of calls" on page 42
- "Inserting CRC or FEBE errors" on page 46
- "Monitoring BRI service from the U interface" on page 47
- "Emulating a NT1 on the BRI interface" on page 49
- "Testing the physical layer" on page 52
- "Interpreting D channel decode messages" on page 57
- "Restarting tests" on page 62
- "Viewing test results" on page 63

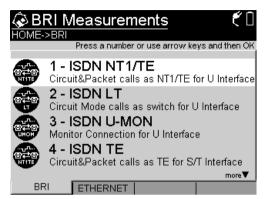
- "Clearing history results" on page 63

Accessing the test configuration menus

The following procedure describes how to view the menus you will use to configure the test settings.

To access the test configuration menus

- 1 Press the green power button to turn on the HST.
 It may take several seconds for the unit to power on.
 When a menu appears, you can continue using the unit.
- 2 Select the test application.
- 3 Press the Configure navigation key.
 The test configuration soft keys appear. You will use these keys to specify the settings for your test operations.

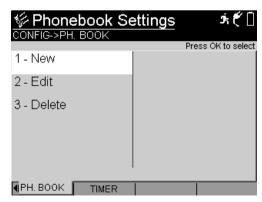

Setting up the phone book

You can define and store frequently used phone numbers in the HST phone book, and then speed dial a number when placing a call.

To set up the HST phone book

1 If the HST is off, press the green power button to power on the unit.

The BRI Measurements menu may take several seconds to appear.



- **2** Select one of the following:
 - ISDN NT1/TE
 - ISDN LT
 - ISDN TE

The HST-3000 launches the test application, and the Summary Results screen appears.

- **3** Press the **Configure** navigation key.
- 4 Press the PH. BOOK soft key.

The Phonebook Settings menu appears.

- 5 To add a new entry, select New. The Name dialog box appears.
- **6** Type the name for the entry using up to 20 characters, and then press **OK**.
 - The Number dialog box appears.
- 7 Type the phone number for the entry, and then press **OK**.

The HST stores the new phone book entry, and the Phone Book Settings tab appears.

Placing circuit calls

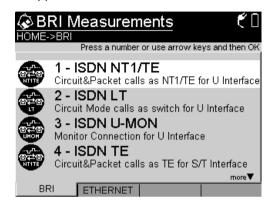
You can use the HST to place circuit calls by:

- Emulating a NT1 with one or two TE devices on the U interface (see Figure 2 on page 5).
- Emulating an ISDN switch on the U interface (see Figure 2 on page 5).
- Emulating a TE device on the S/T interface (see Figure 3 on page 6).

When you configure the HST to place a call, you specify the settings required to activate the physical layer and initialize ISDN service over the D channel (ISDN Settings).

After service is initialized, the HST establishes a data link and is ready to conduct ISDN call processing using the call settings you specify.

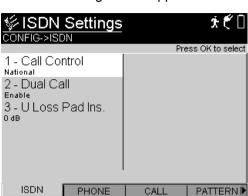
NOTE:


You will not hear a dial tone when you place voice calls from the HST using enbloc dialing. This is normal for devices placing ISDN calls.

Use the following procedure to set up the HST-3000 to place circuit calls.

To place circuit calls

1 If the HST is off, press the green power button to power on the unit.


The BRI Measurements menu may take several seconds to appear.

- 2 Select one of the following:
 - ISDN NT1/TE. Select this option to place calls while emulating an NT1 with up to two TE devices on the U interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).
 - ISDN LT. Select this option to place calls while emulating a switch or LT device on the U interface. In this mode, the HST places calls to a TE as if the calls originated by another TE on the network.
 - ISDN TE. Select this option to place calls while emulating a TE device on the S/T interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).

The HST-3000 launches the test application, and the Summary Results screen appears.

- 3 Press the Configure navigation key.
- **4** Press the **ISDN** soft key.

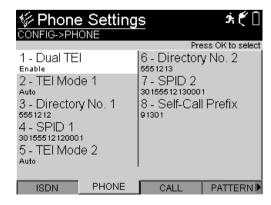
The ISDN settings menu appears.

5 Press the number key for the ISDN setting you want to configure.

CALL

PATTERN ▶

You can also use the arrow keys to select the setting you want to change, and then press the **OK** key. Press the Cancel key to exit a menu.

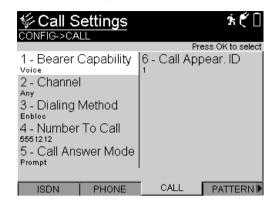

The table below describes the settings.

Setting	Parameters
Loop Address	Address on the NT device used for looping. (Available in LT mode only.)
EOC message	Code for looping an NT device. Table 26 on page 103 lists the available codes. (Available in LT mode only.)
Call Control	Type of switch protocol. National — Selects National ISDN-2 (NI-2) as the switch protocol SESSMP SESSPP DMSF NOTE: The majority of ISDN providers use the National switch protocol. 5ESS and DMS are typically used by providers who have a custom or proprietary method for implementing ISDN.

Setting	Parameters
Dual Call	 Disable — Allows one call. Enable — Allows two independent calls.
U Loss Pad Ins	Enables emulation of various cable losses. The selected cable loss affects the transmit and receive data path. (Available in NT1/TE or LT modes only.) - 0 dB — Provides no line build-out. - 2 dB — Provides -2 dB line build-out, simulating 2 dB of data loss. - 4 dB — Provides -4 dB line build-out, simulating 4 dB of data loss. - 6 dB — Provides -6 dB line build-out, simulating 6 dB of data loss.
Line Termina- tion	Specifies the line termination. (Available in TE or NT1 mode for the S/T interface only.) - Bridge — Selects Bridge. Bridge is the default setting. - 50 Ohm - 100 Ohm

6 Press the PHONE soft key.

The Phone Settings menu appears.



7 Select, and then define each of the following settings:

Setting	Parameters
Dual TEI	Allows the HST to simulate one of two independent terminal endpoint identifiers: Enable or Disable . Enable is only available if Dual Call is enabled on the ISDN Settings menu (see page 19). If you enable Dual TEI, the TEI Mode 2, Directory No. 2, and SPID 2 fields appear.
TEI Mode 1	Method of determining the terminal end- point identifier: Auto or Fixed . If you enable Dual TEI, the TEI Mode 2 field also appears.
TEI 1	Value for the terminal endpoint identifier. (Available only if TEI Mode 1 is Fixed.)
Directory No. 1	Number used to identify the line for the outgoing call. This is the caller ID of the call placed from the HST. If you enable Dual TEI, the Directory No. 2 field also appears.
SPID 1	ID number of the service profile you want to emulate. (Available only in NT1/TE mode.) If you enable Dual TEI, the SPID 2 field also appears.

8 Press the CALL soft key.

The Call Settings menu appears.

9 Select, and then define each of the following settings for the next outgoing call:

Setting	Parameters	
Bearer Capability	Type of information carried by the B channel. Select one of the following: - Voice - 3.1K Audio - Data NOTE: Packet is also displayed (if you selected Disabled as the Dual Call setting in step 5 on page 18); however, you should not select the Packet setting if you are placing a circuit call. For details on placing packet calls, see "Placing a packet call" on page 25.	
Bearer Rate	Data rate on the bearer channel. (Available only if Bearer Capability is Data): - 64K - 56K	

Setting	Parameters	
Channel	Channel on which to place the call. (Available only if Bearer Capability is Voice, 3.1K Audio, or Data). Any B1 B2	
Dialing Method	Method by which the HST-3000 places the call. Overlap — You type the phone number during the test. Enbloc — HST-3000 sends the phone number you specify in the Number to Call field.	
Number to Call	Phone number you want to dial. Enter up to 30 digits, *, and #.	
Call Answer Mode	to 30 digits, *, and #. Method by which HST-300 answers incoming calls. Prompt — Prompts to accept, reject, or ignore each incoming call as it comes in. If you ignore a call, you can answer or reject the call later. Accept — Automatically accepts up to 2 incoming calls, and then rejects any additional calls. You can always check the Summary Results screen to see if a call is active on the HST. Reject — Automatically rejects all incoming calls.	

Setting	Parameters
Call Appear ID	Appearance ID included in the call header.
	 If you are using NATIONAL or DMSF call control, enter a number ranging from 1 to 255, or press the None soft- key.
	 If you are using 5ESSMP or 5ESSPP call control, enter a number ranging from 1 to 255, or press the Auto soft- key.

NOTE:

The call settings you specify apply to the next outgoing call you make using the HST. The settings do not impact currently active calls or incoming calls.

10 Do the following:

- Connect the U connector to the CO (network) side of the line.
- If you selected ISDN TE in step 2, connect the S/T connector to the S/T interface.
- **11** Verify that the Sync LED is illuminated to ensure that the HST is synchronized with a valid signal.
- **12** Verify the link is up by doing the following:
 - a Press the **Home** navigation key.
 - **b** Press the **Display** soft key, and then select **LED**.
 - c Verify the Active LED is on.
 - d Verify the TEI 1 Ready LED is on.
- 13 Press the Action soft key, and then select Send Auto SPID 1 to request a list of available SPIDs from the switch.

The HST then assigns the first available SPID or SPIDs to the call.

- 14 Optional. If you specified National as the Call Control in step 5 on page 18, and you would like to download additional call parameters from the poll switch, do the following:
 - a Press the Action soft key, and then select Poll Switch 1.
 - b Press the **Display** soft key, and then select the **ISDN** result category.

The PD Status result displays each of the following status results in succession:

Polling Switch — Indicates that the HST is establishing communication with the polling switch. If the HST does not receive a response from the switch within two seconds, the PD Status result changes to **PD No Response**.

Collecting Data — Indicates that the HST is collecting data from the polling switch.

Results Ready — Indicates that data collection is complete.

The PD Display result then displays the lines of decoded parameter download data.

- **15** Press the **Action** soft key, and then do one of the following:
 - If you specified a number to call in step 9, select Dial
 Call 1.
 - If you want to speed dial a number from the HST phone book, select Speed Dial (Call 1).
 - The Speed-Dial List appears, listing each of the entries you defined in the phone book. Press the number key for the entry you want to speed dial, or use the arrow keys to select the entry, and then press **OK**.
- **16** Verify that the call status is CONNECTED on the Summary Results, Call 1 Results, or Call 2 Results screen.

If the call status is not CONNECTED, you can view the cause code (indicating the reason the call was not connected) on the Call 1 Results or Call 2 Results screen.

17 If you want to place a second call, do the following:

- a Ensure you selected Enabled for the Dual Call setting in step 5 on page 18.
- **b** Repeat steps 6-16 starting on page 19.
- c Press the Action soft key, and then select Send Auto SPID 2 to request a list of available SPIDs from the switch. The HST then assigns the first available SPID or SPIDs to the call.
- d Press the Action soft key, and then select Dial Call 2, or Speed Dial (Call 2).

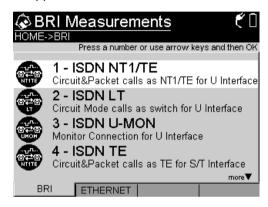
You have placed ISDN BRI circuit calls.

Placing a packet call

You can use the HST to place packet calls on the D channel by:

- Emulating a NT1 with one or two TE devices on the U interface (see Figure 2 on page 5).
- Emulating a TE device on the S/T interface (see Figure 3 on page 6).

When you configure the HST to place a packet call, you specify the settings required to activate the physical layer and initialize ISDN service over the D channel (ISDN Settings).

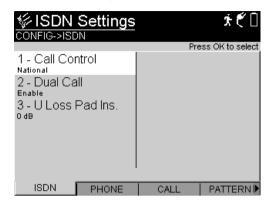

After service is initialized, the HST establishes a data link, and you can transmit an ASCII FOX message using the Send Fox action.

Use the following procedure to set up the HST-3000 to place packet calls.

To place packet calls on the D channel

1 If the HST is off, press the green power button to power on the unit.

The BRI Measurements menu may take several seconds to appear.



- 2 Select one of the following:
 - ISDN NT1/TE. Select this option to place calls while emulating an NT1 with up to two TE devices on the U interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).
 - ISDN TE. Select this option to place calls while emulating a TE device on the S/T interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).

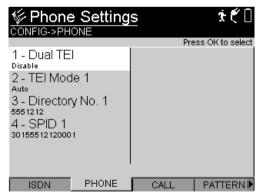
The HST-3000 launches the test application, and the Summary Results screen appears.

- 3 Press the **Configure** navigation key.
- 4 Press the ISDN soft key.

The ISDN settings menu appears.

5 Press the number key for the ISDN setting you want to configure.

You can also use the arrow keys to select the setting you want to change, and then press the **OK** key. Press the **Cancel** key to exit a menu.

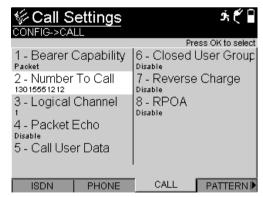

The table below describes the settings.

Setting	Parameters	
Call Control	Type of switch protocol. - National — Selects National ISDN-2	
	(NI-2) as the switch protocol – 5ESSMP	
	5ESSPPDMSF	
	NOTE: The majority of ISDN providers use the National switch protocol. 5ESS and DMS are typically used by providers who have a custom or proprietary method for implementing ISDN.	
Dual Call	Select Disable . NOTE: You can not place packet calls on the D channel if Dual Call is enabled.	

Setting	Parameters
U Loss Pad Ins	Enables emulation of various cable losses. The selected cable loss affects the transmit and receive data path. (Available in NT1/TE or LT modes only.) - 0.0 dB — Provides no line build-out. - 2.0 dB — Provides -2 dB line build-out, simulating 2 dB of data loss. - 4.0 dB — Provides -4 dB line build-out, simulating 4 dB of data loss. - 6.0 dB — Provides -6 dB line build-out, simulating 6 dB of data loss.
Line Termina- tion	Specifies the line termination. (Available in ISDN TE mode for the S/T interface only.) - Bridge — Selects Bridge. Bridge is the default setting. - 50 Ohm - 100 Ohm

6 Press the PHONE soft key.

The Phone Settings menu appears.



7 Select, and then define each of the following settings:

Setting	Parameters
Dual TEI	Accept the Disable setting. You can not enable Dual TEI when Dual Call mode is disabled for packet calls.
TEI Mode 1	Method of determining the terminal end- point identifier: Auto or Fixed . If you select Fixed, the TEI 1 setting appears.
TEI 1	Value for the terminal endpoint identifier. (Available only if TEI Mode 1 is Fixed.)
Directory No. 1	Number used to identify the line for the outgoing call. This is the caller ID of the call placed from the HST.
SPID 1	Prefix and suffix for the call's directory number. The HST assigns the prefix, directory number, and suffix as the service profile identifier (SPID) for the call. (Available only in NT1/TE mode.)

8 Press the CALL soft key.

The Call Settings menu appears.

9 Select, and then define each of the following settings for the next outgoing call:

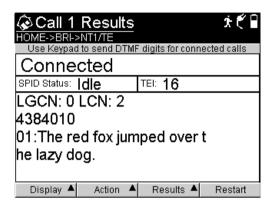
Setting	Parameters	
Bearer Capa- bility	Select Packet.	
Number to Call	Phone number you want to dial. Enter up to 30 digits, *, and #.	
Logical Chan- nel	Logical channel on the D channel to place the call on (0 through 15).	
Packet Echo	Select one of the following: Enable. The HST will transmit received packets back to the originator. Disable. Packet Echo is disabled by default.	
Call User Data	If you want to identify the data the HST is transmitting with a specific user or call: Select the setting to display the Call User Data dialog box. Type identifying text into the field provided. Select OK to store the call user data, and return to the Call Settings menu. The Call User Data is disabled by default.	
Closed User Group	If you want to secure the connection because you are testing circuits to ATMS or point-of-sales terminals: - Select the setting to display the Closed User Group dialog box. - Type the password for the circuit, ranging from 0-9999. - Select OK to store the password, and return to the Call Settings menu. The Closed User Group password is disabled by default.	

Setting	Parameters
Reverse Charge	If you want to place collect packet calls, select Enable . The Reverse Charge setting is disabled by default.
RPOA	If you want to specify a prefix to identify the ISDN's Recognized Private Operating Agency (RPOA) do this: - Select the setting to display the RPOA dialog box. - Type the setting for the circuit, ranging from 0-9999. - Select OK to store the setting, and return to the Call Settings menu. The RPOA setting is disabled by default. NOTE: For ISDN X.25, the RPOA is usually the data network identification code (DNIC) for the ISDN's long distance carrier.

10 Do the following:

- Connect the U connector to the CO (network) side of the line.
- If you selected ISDN TE in step 2, connect the S/T connector to the S/T interface.
- **11** Verify that the Sync LED is illuminated to ensure that the HST is synchronized with a valid signal.
- **12** Verify the link is up by doing the following:
 - a Press the Home navigation key.
 - **b** Press the **Display** soft key, and then select **LED**.
 - **c** Verify the Active LED is on.
 - d Verify the TEI 1 Ready LED is on.
- 13 Press Restart to clear any errors.

- **14** Press the **Action** soft key, and then do one of the following:
 - If you specified a number to call in step 9, select Dial
 Call 1
 - If you want to speed dial a number from the HST phone book, select Speed Dial (Call 1).
 - The Speed-Dial List appears, listing each of the entries you defined in the phone book. Press the number key for the entry you want to speed dial, or use the arrow keys to select the entry, and then press **OK**.
- **15** Verify that the call status is CONNECTED on the Summary Results, Call 1 Results, or Call 2 Results screen.


NOTE:

If the call status is not CONNECTED, you can view the cause code (indicating the reason the call was not connected) on the Call 1 Results or Call 2 Results screen.

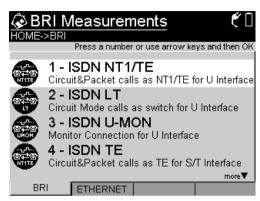
16 Press the Action soft key, and then select the Send FOX action to transmit the ASCII FOX text to the loopback port or test device on the far end of the circuit.

17 Do one of the following:

 If you transmitted the FOX text to a loopback port, verify that the HST displays the looped back text on the Call 1 Results screen.

 If you transmitted the FOX text to another test device, verify that the correct text was received on the far end.

You have placed a packet call.

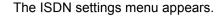

Placing a self call

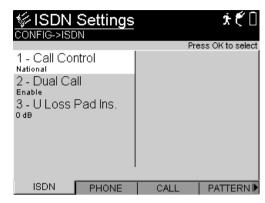
You can configure the HST-3000 to place calls to itself to verify dual call systems. After you place the calls, Call 1 can BER test Call 2.

To place a self call

1 If the HST is off, press the green power button to power on the unit.

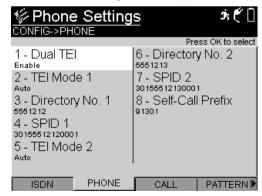
The BRI Measurements menu may take several seconds to appear.

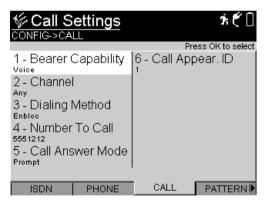



2 Select one of the following:

- ISDN NT1/TE. Select this option to place calls while emulating an NT1 with up to two TE devices on the U interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).
- ISDN LT. Select this option to place calls while emulating a switch or LT device on the U interface. In this mode, the HST places calls to a TE as if the calls originated by another TE on the network.
- ISDN TE. Select this option to place calls while emulating a TE device on the S/T interface. In this mode, the HST places calls to the network as if the calls originated from a customer-side device (such as an ISDN phone).

The HST-3000 launches the test application, and the Summary Results screen appears.


- 3 Press the Configure navigation key.
- 4 Press the ISDN soft key.


- **5** Set the Dual Call setting to **Enable**, and then configure the other ISDN settings as appropriate.
 - For details on each of the ISDN settings for circuit calls, refer to step 5 on page 18 of "Placing circuit calls".
 - For details on each of the ISDN settings for packet calls, refer to step 5 on page 27 of "Placing a packet call".
- 6 Press the PHONE soft key.

The Phone Settings menu appears.

- 7 In the Self Call Prefix setting, enter the prefix required for the type of service you are testing.
 - If you are testing Centrex service, be certain to enter the escape number used to access an outside line (for example, 9).
 - If you are testing service using ten digit numbers, be certain to enter the area code.
- 8 Configure the other Phone settings as appropriate.
 - For details on each of the Phone settings for circuit calls, refer to step 7 on page 20 of "Placing circuit calls".
 - For details on each of the Phone settings for packet calls, refer to step 7 on page 29 of "Placing a packet call".
- **9** Press the **CALL** soft key.

The Call Settings menu appears.

NOTE:

The call settings you specify apply to the next outgoing call you make using the HST. The settings do not impact currently active calls or incoming calls.

- **10** Configure the Call settings as appropriate.
 - For details on each of the Call settings for circuit calls, refer to step 9 on page 21 of "Placing circuit calls".
 - For details on each of the Call settings for packet calls, refer to step 9 on page 30 of "Placing a packet call".
- 11 Select the BER pattern, and if you plan on inserting errors, configure the error settings (see step 3-4 on page 43 of "Performing BER analysis of calls").
- **12** Do the following:
 - Connect the U connector to the CO (network) side of the line
 - If you selected ISDN TE in step 2, connect the S/T connector to the S/T interface.
- **13** Verify that the Sync LED is illuminated to ensure that the HST is synchronized with a valid signal.
- **14** Verify the link is up by doing the following:
 - a Press the Home navigation key.
 - **b** Press the **Display** soft key, and then select **LED**.
 - c Verify the Active LED is on.
 - **d** Verify the TEI 1 Ready LED is on.
- 15 Press the Action soft key, and then select Self-Call BERT.
- **16** Verify that the call status is CONNECTED on the Summary Results, Call 1 Results, and Call 2 Results screen.

NOTE:

If the call status is not CONNECTED, you can view the cause code (indicating the reason the call was not connected) on the Call 1 Results or Call 2 Results screen.

You have placed a self call, and Call 1 is BER testing Call 2.

Receiving and disconnecting a call

If you set up the HST-3000 to prompt you whenever a call comes into the unit, a popup dialog box appears on the current results screen prompting you to accept, reject, or ignore each incoming call. If you choose to ignore a call, you can accept or reject it later using the Answer Call or Disconnect Call action (available using the Action soft key).

Accepting a call You can accept up to two calls on the HST. When you accept a call, the call automatically connects to the microphone, and the payload is dropped to the speaker. If you are using a headset, the call connects to the headset, and the payload is dropped to the headset speaker.

> When you accept a second call, it remains in an idle state. To drop its payload to the speaker, press the Action soft key, and then select Audio Call 2.

> You can insert voice traffic into the B channel associated with the call by speaking into the microphone or headset (see "Inserting voice traffic into a call" on page 41), or you can insert BER test patterns (see "Performing BER analysis of calls" on page 42).

To accept a call when prompted

Press OK

To accept a call using the Action soft key

- Display the Summary Results screen, and then verify that a call is coming into the unit.
- 2 Press the Action soft key, and then select Answer Call 1 or Answer Call 2.

The HST-3000 accepts the call.

Rejecting a call When you reject a call, the HST-3000 disconnects the call.

To reject a call when prompted

Press Cancel

To reject a call using the Action soft key

- 1 Display the Summary Results screen, and then verify that a call is coming into the unit.
- 2 Press the Action soft key, and then choose Disconnect Call 1 or Disconnect Call 2.

The HST-3000 rejects the call.

Ignoring a call When you ignore a call, the HST-3000 closes the dialog box, but keeps the incoming call alive so you can choose to answer or reject it later using the Action soft key.

To ignore a call when prompted

Press the up arrow button to select **Ignore**.

The HST-3000 ignores the call.

Disconnecting To disconnect a call a call

- 1 Press the Action soft key, and then select Disconnect Call 1 or Disconnect Call 2.
- **2** Verify that the call status is DISCONNECTED on the Summary Results, Call 1 Results, or Call 2 Results screen.

NOTE:

If the call status is not DISCONNECTED, you can view the cause code (indicating the reason the call was not disconnected) on the Call 1 Results or Call 2 Results screen. See "Q.931 Cause Values" on page 90 for descriptions of each code.

Transmitting After a call's channel is assigned, you can display the Call 1 DTMF tones or Call 2 Results screen, and then use the keypad to insert and transmit DTMF tones

> When you transmit DTMF tones, the HST temporarily disables the microphone.

To transmit DTMF tones

- 1 Place a call (see "Placing circuit calls" on page 16).
- 2 Press the **Display** soft key, and then select **Call 1** or Call 2.
- 3 Select the Action soft key, and then choose Audio Call 1 or Audio Call 2 to connect the call to the audio and speaker.
- **4** Enter the DTMF tones using the keypad.

The HST transmits the tones.

overlap dialing

Completing a Using overlap dialing, you manually complete a call after call with connecting to the switch.

To complete a call using overlap dialing

- 1 Place a call (see "Placing circuit calls" on page 16). In step 9 of that procedure, select **Overlap** as the Dialing Method.
- 2 Press the Action soft key, and then select Dial Call 1 or Dial Call 2.
- **3** Type the number using the keypad.

When the LT device recognizes the number, CONNECTED appears on the display.

Inserting voice traffic into a call

When you place or receive a voice call using the HST, you can use the microphone on the HST or a headset to insert voice traffic into the call's B channel.

To insert voice traffic into a call

- 1 If you are using an audio headset, connect the headset to the headset connector on the top panel of the HST.
- 2 Do one of the following:
 - If you are placing a call, specify the ISDN and call settings for the call (see "Placing circuit calls" on page 16).
 - If you are receiving a call, accept the call (see "Accepting a call" on page 38).
- 3 Verify that the call is connected on the Summary Results, Call 1 Results, or Call 2 Results screen. The call status must be CONNECTED.

NOTE:

If the call status is not CONNECTED, you can view the cause code (indicating the reason the call was not connected) on the Call 1 Results or Call 2 Results screen.

- 4 If you are not analyzing voice traffic on another call, the HST automatically connects the call to the speaker and microphone or the headset.
 - If you are currently BER testing or idling another call, and if Audio Call 1 and Audio Call 2 are not activated, select the **Action** soft key, and then choose **Audio Call 1** or **Audio Call 2** to connect the call to the speaker and microphone or the headset.
- **5** Speak into the microphone or the headset.

Voice traffic is inserted into the call.

NOTE:

You can only insert voice traffic into a single call at a time. If two calls are active, you can stop transmitting voice traffic on one call using the IDLE Call 1 or IDLE Call 2 action, and then insert voice traffic on the other call. The idle call remains active, allowing you to insert voice traffic at a later time, or perform BERT analysis of the call's B channel.

Performing BER analysis of calls

When you place or receive calls in NT1/TE, LT, or TE mode, you can perform BER analysis of the associated B channels. In addition to providing general ISDN results, the HST provides statistics collected on the D channel and results based on the BER analysis of the B channels.

NOTE:

When you BER test two connected calls simultaneously, the HST uses the same BER pattern for each call; however, you can specify different error insertion settings for each individual call.

To BER test B channels for connected calls

- **1** Do one of the following:
 - If you are placing a call, specify the ISDN and Call settings for the B channel (see "Placing circuit calls" on page 16).
 - If you are receiving a call, accept the call (see "Accepting a call" on page 38).
- 2 Press the Configure navigation key.
- 3 Press the **PATTERN** soft key, and then specify the pattern to insert into the B channels (see "BERT patterns" on page 100 for a complete list of available patterns).

- 4 To indicate how bit errors will be inserted for the call (a single error, multiple errors, or at a specific rate), do the following:
 - a Press the ERROR soft key.The Error Settings menu appears.

b Press the number key, on the keypad, that corresponds to the setting you want to configure.

The table below shows the available settings.

Setting	Parameters
Errors	Select Bit Error
Rate Type	Select Rate Type, and then indicate how bit errors will be inserted. (Available only if Errors is Bit Error). - Single - Rate - Multiple NOTE: If you are BER testing more than one call, you can specify a different rate
	type for each call, and then insert the error or errors for each call using the actions described in step 8 on page 44.
Error Count	If you selected Multiple as the Rate type, enter the number of errors to be inserted.

Setting	Parameters	
Rate	If you selected Rate as the Rate type, select the insertion rate for bit errors.	

- 5 Verify that the Sync LED is illuminated to ensure that the HST is synchronized with a valid signal.
- 6 Press the **Home** navigation key.
- 7 To start transmitting the BERT pattern, press the **Action** soft key, and then select **BERT Call 1** or **BERT Call 2**.
- 8 Optional. To insert errors into the B Channels for each connected call, press the Action soft key, and then select one of the following:
 - Bit Error (Call 1) or Bit Error (Call 2)—Inserts a single bit error. This action appears if you selected Single as the rate type for the call in step 4.
 - # Bit Errors (Call 1) or # Bit Errors (Call 2)—Where # represents the number of bit errors that will be inserted. This action appears if you selected Multiple as the Rate type for the call in step 4.
 - Enable Bit Errors at Rate (Call 1) or Enable Bit Errors at Rate (Call 2)—Where Rate represents the actual rate you specified. This action appears if you selected Rate as the Rate type for the call in step 4.

The error is inserted into the B Channel.

- **9** *Optional.* To loop the HST-3000, press the **Action** soft key, and then do the following:
 - a Select Loop Action, and then press the right arrow key to display a list of channels to loop.
 - **b** Use the up and down arrow keys to choose the channel to loop, and then select **OK**.

- 10 Optional. If you want to transmit a different BERT pattern, change the method of bit error insertion, transmit CRC or FEBE errors, or insert voice traffic into the B channel, do the following:
 - a Press the Action soft key, and then select IDLE Call 1 or IDLE Call 2.

The HST stops transmitting the BERT pattern, and the call remains active.

b Do one of the following:

То	Do This
Transmit a different BERT pattern	 Specify the pattern to insert into the B channels. See step 3 on page 42. Press the Action soft key, and then select BERT Call 1 or BERT Call 2 to begin transmitting the new pattern.
Indicate how bit errors will be inserted	 Specify the method (see step b on page 43). Press the Action soft key, and then select BERT Call 1 or BERT Call 2 to begin transmitting the pattern. Press the Action soft key, and then select an action to insert the error into the B channel.
Insert voice traffic	 Press the Action soft key, and then select Audio Call 1 or Audio Call 2. Speak into the microphone on the HST or the headset.

То	Do This
Insert CRC or FEBE errors	 Specify CRC or FEBE as the error type (on the Error Settings menu).
	 Press the Action soft key, and then select an action to insert the errors into the B channel.

11 To disconnect the call, press the **Action** soft key, and then select **Disconnect Call 1** or **Disconnect Call 2**.

BERT analysis of the call is complete.

Inserting CRC or FEBE errors

In LT mode, you can insert a continuous stream of CRC or FEBE errors into the BRI U interface.

To insert CRC or FEBE errors

1 If the HST is off, press the green power button to power on the unit.

The BRI Measurements menu may take several seconds to appear.

Select ISDN LT.

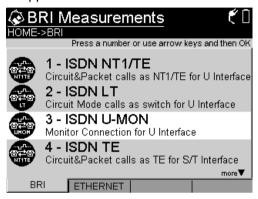
The HST-3000 starts the test.

- 3 Press the Configure navigation key.
- 4 Press the **ISDN** soft key, and then specify the ISDN settings (see step 4 and step 5 on page 18 of "Placing circuit calls").
- 5 Press the **ERROR** soft key.

The Error Settings menu appears.

- **6** Specify **CRC** or **FEBE** as the Errors setting.
- 7 Connect the U connector to the CO (network) side of the line.
- 8 Press the Home navigation key to display results.
- **9** To insert errors into the BRI U interface, press the **Action** soft key, and then select one of the following:
 - Enable CRC Error—Inserts a continuous stream of CRC errors. This action appears if you selected CRC Error as the error type in step 6.
 - Enable FEBE Error—Inserts a continuous stream of FEBE errors. This action appears if you selected FEBE Error as the error type in step 6.

The errors are inserted into the BRI U interface.


Monitoring BRI service from the U interface

The HST-3000 allows you to monitor and analyze ISDN BRI service from the U interface while the network is in-service. During the test, the HST emulates a repeater, and monitors all D channel frames present. It then decodes the received D channel information.

To monitor ISDN BRI service from the U interface

1 If the HST is off, press the green power button to power on the unit.

The BRI Measurements menu may take several seconds to appear.

2 Select ISDN U-MON.

The HST-3000 starts the monitor test.

3 Optional. To specify the switch protocol (call control) or clock source the HST uses while emulating a repeater, press the Configure navigation key, and then specify the following settings:

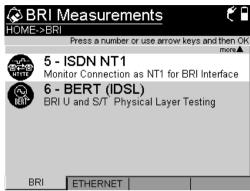
Setting	Parameters
Call Control	Type of switch protocol. - National — Selects National ISDN-2 (NI-2) as the switch protocol. National is the default setting. - 5ESSMP - 5ESSPP - DMSF
Clock Source	InternalExternal

- 4 Connect the U connector to the CO (network) side of the line.
- 5 Connect the U mon connector to the CPE (customer) side of the line.
- 6 Press the Home navigation key, and then press the Restart soft key to clear all alarms and begin the test.
- 7 Press the Display soft key, and then select D-Chan Decode

D-channel decode messages appear in the Decode results category. For information about interpreting these messages, see "Interpreting D channel decode messages" on page 57.

8 To stop a running test, press the **Cancel** key.

You have finished monitoring BRI service from the U interface.


When repeater power is present, the total nominal voltage drop from the U connector to the U mon connector, and from the U mon connector to the U connector, is 11 volts.

Emulating a NT1 on the BRI interface

The HST-3000 allows you to monitor and analyze BRI service from the U and S/T interface while the network is in-service. During the test, the HST emulates an NT1 device and monitors all D channel frames present. It then decodes the received D channel information.

To monitor BRI service from the BRI interface

1 If the HST is off, press the green power button to power on the unit. The BRI Measurements menu may take several seconds to appear.

2 Select ISDN NT1.

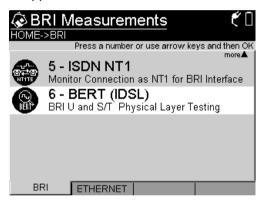
3 Optional. To specify the switch protocol (call control), line termination, or cable loss the HST uses while emulating an NT1, press the Configure navigation key, and then specify the following settings:

Setting	Parameters
Call Control	Type of switch protocol. - National — Selects National ISDN-2 (NI-2) as the switch protocol. National is the default setting. - 5ESSMP - 5ESSPP - DMSF
Line Termina- tion	 Sets the line termination. Bridge — Selects Bridge. Bridge is the default setting. 50 Ohm 100 Ohm

Setting	Parameters
- U Loss Pad Ins	Sets the cable loss for the transmit and receive data path. - 0 dB — Provides no line build-out. 0.0 dB is the default setting. - 2 dB — Provides -2 dB line build-out, simulating 2 dB of data loss. - 4 dB — Provides -4 dB line build-out, simulating 4 dB of data loss. - 6 dB — Provides -6 dB line build-out, simulating 6 dB of data loss.

- 4 Connect the **U** connector to the CO (network) side of the line.
- 5 Connect the S/T connector to the S/T interface towards the TF device.
- 6 Press the Home navigation key, and then press the Restart soft key to clear all alarms and begin the test.
- 7 Press the **Display** soft key, and then select the following:
 - D-Chan Decode to display D-channel decode messages in the Decode results category. For information about interpreting these messages, see "Interpreting D channel decode messages" on page 57.
 - Interface to display interface results for the network side of the BRI interface (under the To CO column), or the customer side of the BRI interface (under the To CPE column).
- 8 To stop a running test, press the **Cancel** key.

You have finished monitoring BRI service from the BRI interface.

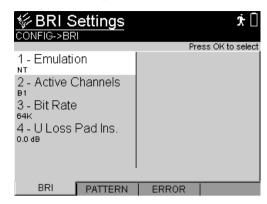

Testing the physical layer

You can use the HST-3000 to perform bit error rate tests (BERT or BER testing) and insert CRC and FEBE errors to check the functioning of the physical line on the U interface.

To test the physical layer on the U interface

1 If the HST is off, press the green power button to power on the unit.

The BRI Measurements menu may take several seconds to appear.



2 Select BERT (IDSL).

The HST-3000 launches the test application.

- 3 Press the Configure navigation key.
- 4 Press the BRI soft key.

The BRI Settings menu appears.

5 Press the number key for the BRI setting you want to configure.

You can also use the arrow keys to select the option you want to change, and then press the **OK** key. Press the **Cancel** key to exit a menu.

The table below describes the parameters.

Setting	Parameters
Emulation	Sets the emulation mode for the HST. - LT — Emulate an LT device. - NT — Emulate an NT device. - TE — Emulate a TE device.

Setting	Parameters
Active Channels	 The BRI channels you want to test: B1. Starts a BER test, sending the pattern on the B1 channel. B2. Starts a BER test, sending the pattern on the B2 channel. B1,B2. Starts a dual BER test, sending identical patterns on the B1 and B2 channels. 2B. Starts a 128K BER test, sending one pattern over both bearer channels. 2B+D. Starts a BER test, sending one pattern over both bearer channels and the D channel (available in LT mode only).
Bit Rate	Bit rate over the tested channel: 56K or 64K .
Loop Address	Address on the NT device used for looping. (Available in LT mode only.)
EOC Message	Code supplied by the LT for looping an NT device. Table 26 on page 103 lists the available codes. (Available in LT mode only.)
U Loss Pad Ins	Enables emulation of various cable losses. The selected cable loss affects the transmit and receive data path. - 0 dB — Provides no line build-out. - 2 dB — Provides -2 dB line build-out, simulating 2 dB of data loss. - 4 dB — Provides -4 dB line build-out, simulating 4 dB of data loss. - 6 dB — Provides -6 dB line build-out, simulating 6 dB of data loss.

6 Press the **PATTERN** soft key.

7 Select and then define each of the following settings:

Setting	Parameters
Pattern	Test pattern to inject. Table 22 on page 100 lists available test patterns.
User Bit Patt	User-defined bit pattern, 3-32 characters of zeros and ones. (Available only if Pattern is set to User Bit Pattern.)

8 Press the **ERROR** soft key.

Select and then define each of the following settings:

Setting	Parameters
Errors	Type of error to inject. - Bit Error - CRC Error - FEBE Error
Rate Type	Method by which bit errors are inserted. (Available only if Errors is Bit Error.) - Single - Rate - Multiple
Count	Number of errors to insert. (Available only if Rate Type is Multiple.)
Rate	Insertion rate of errors. (Available only if Rate Type is set to Rate.)

- 9 Optional. If you want to run a timed test, press the Event soft key to display the Event Settings menu, and then do the following:
 - a Select Timed Test, and then select Enable.

- The Timed Test Dur setting appears and the timed test icon appears in the upper right corner of the display screen.
- b To specify how long the test should run, select Timed Test Dur, and then enter the test duration in hours, minutes, and seconds.
- **10** Connect the **U** connector on the HST-3000 to the CO (network) side of the line.
- **11** Verify that the Sync LED is illuminated to ensure that the HST is synchronized with a valid signal.
- **12** Verify that the Data LED is illuminated to ensure that the HST has obtained pattern synchronization.
- 13 Press the **Home** navigation key to display results.
- **14** To insert errors into the line, press the **Action** soft key, and then select one of the following:
 - Enable Bit Error—Inserts a single bit error. This
 action appears if you selected Single as the rate type
 in step 8.
 - Enable # Bit Errors—Where # represents the number of bit errors that will be inserted. This action appears if you selected Multiple as the Rate type in step 8.
 - Enable Bit Error Rate—Where Rate represents the actual rate you specified. This action appears if you selected Rate as the Rate type in step 8.
 - Enable FEBE Error—Inserts a continuous stream of FEBE errors. This action appears if you selected FEBE Error as the error type in step 8.
 - Enable CRC Error—Inserts a continuous stream of CRC errors. This action appears if you selected CRC Error as the error type in step 8.

The error or errors are inserted into the line.

15 *Optional.* To loop the HST-3000 while in NT mode, press the **Action** soft key, and then do the following:

- a Select **Loop Action**, and then press the right arrow key to display a list of channels.
- **b** Use the up and down arrow keys to choose the channel to loop, and then select **OK**.

BER testing is complete.

Interpreting D channel decode messages

When you monitor or terminate ISDN BRI service, you can isolate and locate problems by viewing D channel decode messages for all captured transmitted and received frames.

The decode messages fall into two categories:

- Messages concerning the establishment and maintenance of the D channel link (layer 2 messages). These are often referred to as LAPD (Link Access Procedure D-Channel) messages.
- Messages concerning the ISDN calls, such as the reason a call is rejected, who is disconnecting a call, and the call's bearer capability (layer 3 messages). These are often referred to as Q.931 messages.

Figure 7 illustrates a sample Q.931 message indicating that a call is being setup.

```
TE->NT:C SAPI:000 TEI:064
TIME: 12:14:51.628
   Ns=004 Nr=005 P/F=1
M 05 SETUP
I 04 BEARER CAPABILITY.....Len=
 80 Coding Standard......CCITT
    Transfer Capa......Speech
 90 Transfer Mode......Circuit
    Transfer Rate......64 kbit/s
 A2 Laver 1 Protocol.....u-law
I 18 CHANNEL ID.....Len= 1
 83 Indicated Channel.....Preferred
    Channel Selection......ANY
    Channel Identifier.....Not D-CH
I 6C CALLING PARTY NUMBER......en= 9
 21 Type of Address.....National
    Numbering Plan ID......ISDN
 80 Presentation Ind......Allowed
    Screen Ind.....user-not screened
    5551212
I 96 Shift.....Locking Codeset=6
I 7B CALL APPEARANCE.....Len= 1
 81 Call Appearance = 001
Hex:00 81 08 0B 08 01 08 05 04 03 80
   90 A2 18 01 83 6C 09 21 80 35 35
   35 31 32 31 32 96 7B 01 81
```

Figure 7 Sample Q.931 message

You can easily determine the source of each message by looking at the message prefix on the first line. Messages originating from a TE device begin with $\mathtt{TE}-\mathtt{NT}$; messages originating from a NT device begin with $\mathtt{NT}-\mathtt{TE}$. The message in Figure 7 originated from a TE device.

Each call processed by the D channel is assigned a unique call reference number, which is reported on the fourth line of each decode message. The message in Figure 7 has a call reference number of 00008. All messages exchanged in

reference to the call have the same call reference number. When viewing decode messages on a D channel processing a number of calls, it is important to verify the call reference number for each message because messages for each call are not presented as a group. A message indicating one call has been connected may be followed immediately by a message indicating a different call has been disconnected.

For details on viewing and navigating through D channel decode messages, see "Viewing and navigating decode messages" on page 60.

For descriptions of each individual decode message, see "D-Chan decode results" on page 86.

LAPD messages are useful when verifying the status of the messages D channel link. Complaints prompting you to look at LAPD messages include:

- The D channel does not go in service.
- D channel communications are lost for no known reason.
- Callers are experiencing excessive delays or timeouts when trying to place calls.

Using the LAPD messages, you can determine why a D channel link is not established, if a link is being terminated, and why a link is being terminated. Three types of frames are transmitted in LAPD: Information frames, which carry detailed call information, Unnumbered frames, which are used to establish or terminate D channel communications, and Supervisory frames, which are used to maintain link communications after a link has been established.

For detailed descriptions of unnumbered frame messages. see "LAPD Unnumbered frame messages" on page 86. For detailed descriptions of supervisory frame messages, see "LAPD Supervisory frame messages" on page 88.

Q.931 Q.931 messages are useful for observing the call setup messages process, and identifying key information about each call, such as the called party number, transfer capability (which indicates whether the call is a voice or data call), and the channel selection (the B channel carrying the call).

> Each Q.931 message begins with a message prefix on the first line which indicates where the message originated. Messages originating from a TE device begin with TE->NT: messages originating from a NT device begin with NT->TE. The call reference number for the message appears on the fourth line. The fifth line indicates the type of message being sent (for example, SETUP or CONNECT).

> Finally, information elements pertaining to the call are listed. For SETUP messages, the elements roughly correspond to the settings required to place a call from the HST, such as the ISDN and Call settings listed in "Placing circuit calls" on page 16. Additional call settings are also listed in the SETUP messages.

> For DISCONNECT messages, the cause or reason for the call being disconnected is reported. For example, if the call is disconnected simply because one of the users hangs up the phone, the cause is reported as a Normal Clearing.

If a call cannot be connected, and as a result a RELEASE message is issued in response to a SETUP request, the RELEASE message reports the cause for the disconnection.

For detailed descriptions of Q.931 messages, see "Q.931" messages" on page 89.

navigating decode messages

Viewing and The D-Chan Decode Results screen displays decode text messages in the order they are received on the HST.

To navigate through the messages

Use the up and down arrows to scroll through the text of a message.

- Use Previous (<) to view the previous message in the message buffer.
- Use Next (>) to view the next message in the message huffer
- Use Home (2nd fnc + <) to view the first message in the message buffer.
- Use End (2nd fnc + >) to view the last message in the message buffer.

NOTE:

You can easily determine how many messages have been captured by looking at the Message count (for example. Message 2 of 125), located to the right above the decode text on the D-Chan Decode Results screen.

Clearing the The HST decode message buffer can store up to 32,000 bytes message buffer of decode text data. When you monitor or terminate ISDN BRI service, the HST captures D Channel frames and displays the associated decode text messages until the buffer becomes full. When the buffer is full, the HST stops capturing frames. You can clear the message buffer, enabling the HST to continue capturing frames.

To clear the HST message buffer

 On any results screen (for example, the D-Chan Decode Results screen), press the **Action** soft key, and then select Clear D-Chan Decodes.

The message buffer is cleared.

NOTE:

You can easily determine how full the buffer is by looking at the % Full indicator, located to the left above the decode text on the D-Chan Decode result category screen.

decode text in an ASCII text file

Capturing You can capture all of the decode text stored in the message buffer and store it in an ASCII text file. You can then view the text file at a later time. For details on viewing text files on the HST, refer to the HST-3000 Base Unit User's Guide.

To capture decode text

- 1 Press the Results soft key.
- 2 Select Capture D-chan decodes.

A dialog box appears prompting you to enter the file name for the .txt file.

- 3 Enter the name of the file.
- 4 Press the Ok key.

The decode text is captured in the ASCII text file.

Restarting tests

When you use the HST-3000 to place and receive ISDN BRI calls, pressing the **Restart** soft key clears statistical and historical results and restarts your test.

Pressing Restart does not:

- Disrupt current calls.
- Clear D-channel decode text. A separate Clear Buffer action is available for clearing the decode message buffer (see "Clearing the message buffer" on page 61).

NOTE:

You can use the Clear History action to clear history results while continuing to accumulate statistical results (see "Clearing history results" on page 63).

Viewing test results

The following procedure describes how to view test results.

To view test results

- 1 Configure and run a test.
- 2 Press the **Home** navigation key.
- 3 Press the Display soft key.
 The test categories appear.
- 4 Select a category.

The test results for the selected category appear. For descriptions of test results, see "Test Results" on page 69.

Clearing history results

The following procedure describes how to clear history results in the LED and Summary categories.

To clear history results

- 1 Configure and run a test.
- **2** Press the **Home** navigation key.
- 3 Press the **Results** soft key.
- 4 Select Clear History.

The HST-3000 clears any history results in the LED and Summary categories. Statistical results are not cleared and continue to accumulate.

Chapter 2 BRI Testing Clearing history results

Troubleshooting

3

This chapter describes how to identify and correct problems related to the BRI testing with the HST-3000. Topics discussed in this chapter include the following:

- "Resolving problems" on page 66

Resolving problems

Table 7 describes situations that you may encounter when using the HST-3000 to test ISDN BRI service, and then helps you resolve the situation.

 Table 7
 Issues and resolutions

Issue	Description	Resolution
No dial tone detected on HST	You will not hear a dial tone when you place voice calls from the HST using enbloc dialing. This is normal for devices placing ISDN calls.	N/A.
Is my call connected?	When placing or receiving a call on the HST, you want to verify that the call is connected.	Check the call status on one of the following screens: - Summary Results - Call 1 Results - Call 2 Results
Call will not connect	Calls may not connect because the HST is not configured properly for the outgoing call, or for a variety of other reasons (such as an invalid call reference value).	Verify the following: - Make sure you specified the number you want to call as the Number to call (under Call Settings); not the Directory number. - Make sure you specified the correct call control protocol (under ISDN Settings). The majority of ISDN providers use the NATIONAL (NI-1 or NI-2) protocol. - If the HST is configured correctly for the call, check the cause code on the Call 1 Results or Call 2 Results screen.

 Table 7
 Issues and resolutions (Continued)

Issue	Description	Resolution
Decode messages are not captured.	The HST stops capturing decode messages when the message buffer is full.	Clear the message buffer (see "Clearing the message buffer" on page 61).
HST-3000 does not synchronize to ISDN line.	Sync LED does not illuminate solid green when attached to the ISDN line.	 Verify the correct mode is selected for what the HST-3000 is trying to emulate (NT1/TE, LT, NT1 for BRI interface). Verify the test cord is plugged into the jack on the BRI SIM corresponding to the selected mode. Most CPE turn-up testing is performed with the HST-3000 configured as an NT1/TE with the test cord in the U 2-wire interface jack.

Chapter 3 Troubleshooting *Resolving problems*

Test Results

A

This appendix describes the test result categories and the results within each category that are available when performing ISDN BRI tests. Topics discussed in this appendix include the following:

- "About test results" on page 70
- "Summary results" on page 70
- "Interface results" on page 73
- "BERT results" on page 77
- "LED results" on page 78
- "ISDN results" on page 80
- "Call 1/Call 2" on page 83
- "D-Chan Decode" on page 85
- "Time results" on page 85
- "D-Chan decode results" on page 86
- "Q.931 Cause Values" on page 90
- "Saving and printing results" on page 97

About test results

After you start a test, the Summary result category automatically displays a large "All Summary Results OK" message if no errors or alarms have been detected. If errors are detected, the Summary results are displayed. To view test results in other categories, see "Viewing test results" on page 63.

The following sections describe the test results for each of the categories. The test results for each category are listed alphabetically.

Summary results

The Summary category automatically displays error results that are non-zero, key results that are out-of-specification, or key informational results. This allows quick access to the results without having to search each category. Table 8 describes the results that appear in the Summary category.

Table 8Summary results

Result	Definition
Aborted Frm Count LT Aborted Frm Count NT Aborted Frm Count	Counts the aborted ISDN frames detected, excluding Out of Frame aborts.
Active NT Active	Value of activation overhead bit.
Bit Errors	Number of received bits that have a value opposite that of the corresponding transmitted bits, after pattern synchronization has been achieved.
Call Failure Count	Number of calls placed but did not connect.

 Table 8
 Summary results (Continued)

Result	Definition
Call1/Call2 State	Displays one of the following call states: Idle Incoming Outgoing Connected Releasing Alerting Proceeding Dialing NOTE: See Table 13 on page 83 for descriptions of each state.
CRC Err Frm Count LT CRC Err Frm Count NT CRC Err Frm Count	Counts number of CRC errored frames on the D channel.
CRC Errors LT CRC Errors NT CRC Errors	Number of Cyclical Redundancy Check-6 NEBEs (nearend block errors) detected since the beginning of the test. A CRC algorithm is performed on a frame on the transmitting end. It is then recalculated at the receiving end. If the measurements are not equal, it indicates an error occurred in the frame.
D-Channel 1 Ready D-Channel 2 Ready	Displays "Active" if the data link is established; "Inactive" if the data link is not established.
D-Channel 1 Ready History D-Channel 2 Ready History	Displays "Inactive" if the data link was established, but was lost.

 Table 8
 Summary results (Continued)

Result	Definition
FEBE Errors LT FEBE Errors NT FEBE Errors	Number of Cyclical Redundancy Check-6 FEBEs (farend block errors) detected since the beginning of the test. A CRC algorithm is performed on a frame on the transmitting end. It is then recalculated at the receiving end. If the measurements are not equal, it indicates an error occurred in the frame.
Invalid SAPI Count	Number of frames with unap- proved Service Access Point Identifier.
Pattern Losses	Number of pattern synchronization losses.
Pattern Slips	Number of pattern synchronization slips.
Pattern Sync	Indicates the pattern synchro- nization status for a call you are BER testing.
Short Frm Count LT Short Frm Count NT Short Frm Count	Counts the short ISDN frames detected. A short frame is a frame with less than 3 octets plus an FCS.
SPID 1 Status SPID 2 Status	Indicates if SPID successfully assigned.

 Table 8
 Summary results (Continued)

Result	Definition
TEI 1 Ready TEI 2 Ready	Indicates if Layer 2 successful on TEI. If TEI Not Assigned, Awaiting TEI, Link Not Established, Inactive, Awaiting Establishment, Timer Recovery, Awaiting Release, TEI Denied, Link Unknown, then Layer 2 not achieved and indicator is off.

Interface results

The Interface category lists results related to the physical interface. Table 9 describes the results that appear in the Interface category

NOTE:

When you display the category in ISDN NT1 mode, results for the network side of the BRI interface appear in the To CO column; results for the customer side of the BRI interface appear in the To CPE column.

Table 9 Interface test results

Result	Description
ACT	Value of activation overhead bit.
AIB	Value of transmitted alarm indication overhead bit.

 Table 9
 Interface test results (Continued)

Result	Description
BPV Errors	Number of bipolar violations (BPVs) detected in the received signal (that are not BPVs embedded in valid B8ZS sequences) since start of test. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
BPV Errored Secs	Number of seconds during which BPV errors were detected. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
CRC Errored Secs	Number of seconds during which CRC errors were detected.
CRC Errors	Number of Cyclical Redundancy Check-6 NEBEs (near-end block errors) detected since the beginning of the test. A CRC algorithm is performed on a frame on the transmitting end. It is then recalculated at the receiving end. If the measurements are not equal, it indicates an error occurred in the frame.
DEA	Value of transmitted deactivation overhead bit.
FEBE Errored Secs	Number of seconds during which FEBE errors were detected.
FEBE Errors	Number of Cyclical Redundancy Check-6 FEBEs (far-end block errors) detected since the beginning of the test. A CRC algorithm is performed on a frame on the receiving end. It is then recalculated at the transmitting end. If the measurements are not equal, it indi- cates an error occurred in the frame.

 Table 9
 Interface test results (Continued)

Result	Description
Frame Errors	Number of frame errors received since start of test. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
Frame Errored Secs	Number of seconds during which frame errors were detected. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
Invalid SAPI Count	Number of frames received with an invalid SAPI (service access point identifier). Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
Layer1 State	Displays the current interface activation state. Its major activation states are awaiting signal, synchronized, and alerting. For the LT result, displays current J state for the LT side of line. For the NT result, displays current H state for the NT side of line.
Loop State	Displays current loop state and channel looped. Valid results include the following: No Loop, Loop B1, Loop B2, Loop B1+B2, 2B+D. Appears in NT1/TE mode only.
PS1	 Normal indicates that at least 28 volts is present on the line. Reversed indicates reversed polarity of the voltage. Not present indicates that less than 28 volts is present on the line. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.

 Table 9
 Interface test results (Continued)

Result	Description
PS2	 Normal indicates that at least 36 volts is present on the line.
	 Reversed indicates reversed polarity of the voltage.
	 Not present indicates that less than 36 volts is present on the line.
	Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.
Repeater Power	Indicates if high-voltage current is present for the repeater. Voltage threshold is 42 V ±3 V. Appears in NT1/TE mode only.
Rx EOC Address	Value received in the address portion of an EOC message.
Rx EOC Message	Embedded Operations Channel message. Valid results include the following: Loopback B1, Loopback B2, Loopback 2B+D, Normal, Request Corrupt CRC.
Rx Level VPP	Current present on the S/T interface, expressed in volts peak-to-peak. Appears in TE mode for the S/T interface only.
Sealing Curr Active	Indicates if low-voltage sealing current is present on the U interface. Appears in NT1/TE mode only.
Tx EOC Address	Value transmitted in the address portion of an EOC message.
Tx EOC Message	Embedded Operations Channel message. Valid results include the following: Loopback B1, Loopback B2, Loopback 2B+D, Normal, Request Corrupt CRC.

 Table 9
 Interface test results (Continued)

Result	Description
Valid Frame Count	Number of valid LAPD frames since the start of the test. Appears in TE mode for the S/T interface or NT1 mode for the BRI interface only.

BERT results

The BERT category lists results related to bit error rate tests. Table 10 describes the results that appear in the BERT category.

Table 10 BERT results

Result	Description
% Error Free Seconds	Ratio of error free seconds to the total number of seconds during which pattern synchronization was maintained through any part of the second.
Bit Error Rate	Ratio of bit errors to received pattern data bits.
Bit Errors	Number of received bits that have a value opposite that of the corresponding transmitted bits, after pattern synchronization has been achieved.
Error Free Seconds	Seconds during which pattern synchronization was maintained through the entire second and no bit error occurred.
Error Seconds	Counts test seconds where one or more bit errors occurred.

Table 10 BERT results (Continued)

Result	Description
Pattern	Pattern selected on the HST for BER tests.
Pattern Losses	Number of pattern synchronization losses.
Pattern Slips	Number of pattern synchronization slips.
Pattern Sync	Indicates if pattern synchronization is achieved.
Round Trip Delay	Calculates round trip delay. The result is given in milliseconds. Only applicable when the Delay pattern is selected during test set up.
Sync Loss Seconds	Number of seconds, after initial pattern synchronization, where pattern synchronization was not present for any length of time.

LED results

The LED category shows the current and historical status for alarms. Table 11 describes the results that appear in the LED category.

Table 11 LED results

Result	Description
Active	Indicates the HST is sending an activation overhead bit.
Call 1Pattern Sync	Illuminates if pattern synchronization was not lost on Call 1.
Call 2 Pattern Sync	Illuminates if pattern synchronization was not lost on Call 2.

 Table 11
 LED results (Continued)

Result	Description
Call 1Pattern Sync History	Illuminates if pattern synchronization was previously detected on Call 1.
Call 2 Pattern Sync History	Illuminates if pattern synchronization was previously detected on Call 2.
TEI 1 Ready TEI 2 Ready	Indicates if Layer 2 successful on TEI. If TEI Not Assigned, Awaiting TEI, Link Not Established, Awaiting Establishment, Timer Recovery, Awaiting Release, TEI Denied, Link Unknown, then Layer 2 not achieved and indicator is off.
TEI 1 Ready History TEI 2 Ready History	Indicates if TEI achieved but later lost Layer 2.
Pattern Sync	Pattern synchronization achieved.
Pattern Sync History	Indicates if pattern synchronization was achieved and then subsequently lost.
Repeater Power	Indicates if high-voltage current is present for the repeater. Voltage threshold is 42 V ±3 V.
Sealing Curr Active	Indicates if active sealing current is present on the U interface.
Sync'd	Frame synchronization detected.

ISDN results

The ISDN category shows results pertaining to the throughput of frames and their utilization. Results in this category accumulate after test restart. Table 12 describes the results that appear in the ISDN category.

Table 12 ISDN test results

Result	Description
Aborted Frm Count	Counts the aborted ISDN frames detected, excluding Out of Frame aborts.
Average % Utilization	The average percent of link utilization on the D channel since the start of the test. Calculated as (total octets in frames ÷ total octets received).
Call Clearing Count	Number of calls placed and subsequently disconnected.
Call Connect Count	Number of calls placed and subsequently connected.
Call Failure Count	Number of calls placed but did not connect.
Call Placement Count	Number of calls placed.
CRC Err Frm Count	Counts number of CRC errors within a frame on the D channel.
Erred Frame Count	Number of valid frames with one or more of the following error conditions: undefined control field "S" or "U" frames with incorrect length, or "I" frame with a long information field.
Frame Reject Frames	Number of frame-reject (FRMR) frames used to indicate that an improper frame has arrived.

 Table 12
 ISDN test results (Continued)

Result	Description
Invalid SAPI Count	Number of frames with unapproved Service Access Point Identifier.
LAPD State 1 LAPD State 2	Displays one of the following messages about the process of establishing the data link: TEI Unassigned Assign Await. TEI Est. Await. TEI TEI Assigned Await. Est. Mult. Frm. Est. Timer Recovery Link Unknown
Max % Utilization	The maximum percent of link utilization on the D channel in any one second since the start of the test.
PD Display	Displays decoded lines of call parameters downloaded from a poll switch.

 Table 12
 ISDN test results (Continued)

Result	Description
PD Status	Displays each of the following results in succession as the HST collects call parameters from a poll switch: - Polling Switch — Indicates that the HST is establishing communication with the polling switch. If the HST does not receive a response from the switch within two seconds, the result changes to PD No Response. - Collecting Data — Indicates that the HST is collecting data from the polling switch. - Results Ready — Indicates that data collection is complete.
Reject Frame Count	Number of reject frame (REJ) supervisory frames used by a data link layer entity to request retransmission of 'I' frames starting with the frame numbered N(R).
Rx Frame Count	Counts the number of frames received.
Short Frm Count	Number of the short ISDN frames detected. A short frame is a frame with less than 3 octets plus an FCS.
SPID 1 Assigned SPID 2 Assigned	SPID number assigned by the LT (NT1/TE mode only).
Valid Frame Count	Number of valid LAPD frames received since the start of the test.

Call 1/Call 2

The Call 1 and Call 2 categories show the progression of incoming and outgoing calls using call states. A display area is also provided which simulates the display area of an ISDN telephone, listing the phone number and the name of the caller. If a call's channel is assigned, you can transmit DTMF tones for the displayed call using the keypad.

Call states Table 13 lists the valid call states that may appear for a call as a Call Status result.

Table 13 Call states

State	Indicates
Alerting	An outgoing call has been routed to the destination ISDN device or phone, and is in the process of ringing. NOTE: Some ISDN devices (for example, the HST), do not literally ring.
Connected	An incoming or outgoing call is established.
Dialing	LT device is ready to accept overlap dialing.
Idle	The HST is ready to place or receive the call.
Incoming	An incoming call is waiting to be accepted, rejected, or ignored.
Outgoing	The HST is in the process of initializing an outgoing call.
Proceeding	A switch has recognized and is processing the outgoing call.
Releasing	The HST is in the process of releasing the call.

Call test results Table 14 lists the call test results.

Table 14 Call 1/Call 2 results

Result	Description
TEI	Displays the TEI assigned by the network.
Call 1/Call 2	 Displays the current status of the call: Call Status — Displays current call status. Call Type — Displays DATA or VOICE call type. Caller ID — Displays the number from where the call is being placed. Channel # — Displays the Bearer Channel being used by the call. Cause Code — Displays the plain English text for the Cause Code. Location — Displays the location of the Cause Code.
Call 1/Call 2 State	Displays the current call state. See Table 13 on page 83 for descriptions of each state.
SPID Status	Displays the SPID status. This result can have the values: Valid, Invalid, Unassigned.

D-Chan Decode

The D-Chan Decode category lists results related to the hexadecimal codes recovered from ISDN frames. Table 15 describes the results that appear in the D-Chan Decode category.

Table 15 D-Chan Decode results

Result	Description
Current Decode Frame	Indicates current frame being decoded.
D Channel Buffer % Full	Percentage utilization of available memory for D channel messages.
Decode Frame Count	Counts number of frames decoded.
Frame Decode	Displays textual translations of messages received and transmitted on the D-channel. Messages are captured in the order they are transmitted and/or received.

Time results

The time category lists the current date, time, and the amount of elapsed time since test restart. Table 16 describes the results that appear in the Time category.

Table 16 Time test results

Result	Description
Date	Current day and month.
Elapsed Time	Amount time in hours, minutes, and seconds (hh:mm:ss) since the last test restart.

Table 16 Time test results (Continued)

Result	Description
Time	Current time of day in hours, minutes, and seconds (hh:mm:ss).

D-Chan decode results

The D-Chan Decode category displays ISDN Call Control messages from a D Channel Decode message buffer. You can scroll through the text using the arrow keypad.

For an overview on interpreting decode messages, see "Interpreting D channel decode messages" on page 57.

frame messages

LAPD Table 17 lists each of the LAPD unnumbered frame decode Unnumbered messages. For an overview of LAPD messages, see "LAPD messages" on page 59.

Table 17 LAPD unnumbered frame decodes

Message	Sent to
SABME (Set Asynchronous Balanced Mode with Extended Sequence Numbering)	 Establish initial D channel communications. An affirmative response from the link partner is a UA message. A negative response (indicating the link partner is not ready to establish a link) is a DM message.
UA (Unnumbered Acknowledgement)	Acknowledge one of the following: A SABME message from the device initiating D channel communications. A DISC message from the device terminating the D channel link.

 Table 17
 LAPD unnumbered frame decodes (Continued)

Message	Sent to	
DISC (Disconnect)	Disconnect or terminate the D channel link. This message should not be confused with the Q.931 DISCONNECT message which is used to disconnect a call.	
DM (Disconnect Mode)	 Indicate one of the following: The link partner is not ready to establish a D channel link with the device sending a SABME message. The link partner cannot terminate the link (in response to a DISC message), typically because communications have already been disconnected. 	
FRMR (Frame Reject)	Indicate that an unrecoverable link-level problem has occurred. This message is transmitted when retransmitting a frame will not correct the problem, and indicates a potential high level protocol issue between the link partners.	
UI (Unnumbered Informa- tion)	Request an exchange of information between the link partners.	

frame

LAPD Table 18 lists each of the LAPD supervisory frame decode Supervisory messages. For an overview of LAPD messages, see "LAPD messages" on page 59.

messages Table 18 LAPD supervisory frame decodes

Message	Sent to
RR (Receiver Ready)	Keep the signal alive between the link partners, and acknowledge receipt of frames. RR messages are the most common messages observed in D channel decodes. When there are no call-related messages to send, the link partners transmit RR frames to make sure the link stays in service. NOTE: When you are viewing a large number of decode messages to troubleshoot call processing, you can typically ignore the RR messages since they are simply used to keep the D channel signal alive.
RNR (Receiver Not Ready)	Indicate that a link partner is experiencing difficulty (such as buffer depletion), and cannot accept any additional information frames (call related messages) at this time. RNR messages should occur rarely, and should be investigated immediately when they occur.
REJ (Reject)	Force re-transmission of bad frames. Frequent REJ frames indicate miscommunication on the D channel, typically due to errored frames during transmission.

Q.931 Table 19 lists each of the Q.931 decode messages. For an messages overview of Q.931 messages, see "Q.931 messages" on page 60.

Table 19 Q.931 decodes

Message	Sent to	
SETUP	Originate a call.	
CALL PROCEEDING	Indicate that a SETUP message has been received, and that the device is attempting to process the call.	
ALERTING	Indicate that a SETUP message has been received, and that the device is attempting to process the call.	
CONNECT	Indicate that the call has been completed and that the calling party is connected with the called party.	
CONNECT ACK	Acknowledge that the CONNECT message has been received.	
DISCONNECT	Disconnect the call. Can be sent from the calling device or the called device. NOTE: DISCONNECT messages report the cause for the disconnection.	
RELEASE	Release the call in response to a DISCONNECT message, or because a call cannot be connected. NOTE: If a call cannot be connected, and as a result a RELEASE message is issued in response to a SETUP request, the RELEASE message will report the cause for the disconnection.	
RELEASE COMPLETE	Acknowledge that a RELEASE message has been received, and disconnect the call. NOTE: A call is not disconnected until the RELEASE COMPLETE message is observed.	

Q.931 Cause Values

Cause values indicating the reason a call is disconnected are displayed on the D Channel Decode Results screen and the Call 1/Call 2 Results screen.

For each disconnected call, the D Channel Decode Results screen displays the following cause value information in either the DISCONNECT or RELEASE message:

- A location code, indicating where the disconnect originated (for example, on a private network or a transit network).
- A class code, indicating the type of disconnect (for example, due to a protocol error).
- The cause value issued by the ISDN Network. This value corresponds to a Q.931 cause code (see the cause codes listed in Table 20 on page 91).
- An abbreviated description indicating the reason the call was disconnected.

The Call 1/Call 2 Results screen simply provides the cause value and an abbreviated description of the cause of the disconnect.

NOTE:

The cause codes listed in Table 20 on page 91 do not appear on the D Channel Decode Results or Call 1/Call 2 Results screens. The codes correspond to those listed in the International Telecommunications Union (ITU) Q.931 standards.

Table 20 lists and explains the most commonly encountered cause codes for ISDN BRI calls.

Table 20 Common Q.931 Cause Codes

Cause Code	D Channel Decode Description	Call 1/Call 2 Description	Typically Indicates
16	Normal clearing	NORMAL CALL CLEARING	No fault is detected; the call is finished.
18	No user responding	NO USER RESPONSE	The receiving equipment did not respond to the call attempt within the allowed time.
28	Invalid number format	INVALID NUMBER FORMAT	The receiving equipment considers the number to be incomplete or in an incorrect format. For example, numbers sent as a subscriber plan are expected to be 7 digits or less; numbers sent as national dialing plans are expected to be more than 7 digits.
31	Normal unspecified	NORMAL UNSPECIFIED	Any number of unspecified conditions, but may indicate the call is terminating into a "fast busy" (all trunks are busy).

 Table 20
 Common Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description	Typically Indicates
57	Bearer capability not authorized	BEARCAP NOT AUTHORIZED	The calling party has requested a call type or service that is not implemented on the receiving equipment for the line. Often seen when trying to place voice calls on data only lines or data calls on voice only lines.
88	Incompatible destination	INCOMPATIBLE DES- TINATION	The destination device is not capable of supporting the type of call requested. Usually seen when trying to place data calls to a voice phone.

 Table 20
 Common Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description	Typically Indicates
100	Invalid information element contents	INVALID INFO ELEMENT CONTENT	A protocol problem where the receiving equipment does not understand one of the fields inside of the call setup message. If you receive this message, do the following: - Verify that the call control is correct for the call. - Contact a Tier 2 or Tier 3 technician or switch vendor to isolate and resolve the problem.
102	Recovery on timer expiry	RECOVERY ON TIMER EXPIRY	No response received to generated messages. Often seen when B channels are not active.

Table 20 lists less frequently encountered cause codes for ISDN BRI calls.

Table 21 Q.931 Cause Codes

Cause Code	D Channel Decode Description	Call 1/Call 2 Description
1	Unassigned Number	UNASSIGNED NUMBER

Table 21Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description
2	No route to specified network	NO ROUTE TO TRANSIT NETWORK
3	No route to destination	NO ROUTE TO DESTINATION
6	Channel unacceptable	CHANNEL IS UNACCEPTABLE
7	Call awarded delivered in est. ch.	CALL AWARDED
17	User busy	USER BUSY
19	User alerting no answer	ALERTING BUT NO ANSWER
22	Number changed	NUMBER CHANGED
26	Non-selected user clearing	NON-SELECTED USER CLEARING
27	Destination out of order	DESTINATION OUT OF ORDER
29	Requested facility rejected	REQUEST FACILITY REJECTED
30	Response to STATUS ENQuiry	RESPONSE TO STATUS ENQUIRY
34	No channel available	NO CIRCUIT/CHAN AVAILABLE
35	Queued	QUEUED
38		NETWORK OUT OF ORDER
41	Temporary failure	TEMPORARY FAILURE
42	Network congestion	NETWORK CONGESTION
43	Access information discarded	ACCESS INFO DISCARDED

Table 21Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description
44	Requested circ/channel not avail.	REQ. CHANNEL NOT AVAILABLE
47	Resources unavailable- unspecified	RESOURCE UNAVAILABLE
49		QUALITY OF SERVICE UNAVAIL
50	Requested facility not subscribed	REQ FACILITY NOT SUBSCRIBED
52	Outgoing calls barred	OUTGOING CALLS BARRED
53	Service Operation violated	
54	Incoming calls barred	INCOMING CALLS BARRED
58	Bearer capability not presently available	BEARCAP NOT AVAILABLE
63	Service or option not available	SERVICE NOT AVAILABLE
65	Bearer service not implemented	BEARER SERVICE NOT IMPLE- MENTED
66	Channel type not implemented	CHANNEL TYPE NOT IMPLE- MENTED
69	Requested facility not implemented	REQ FACILITY NOT IMPLE- MENTED
70	Only restricted dig. info. bearer	RESTRICTED DIGITAL ONLY
79	Service/option not implemented unspecified	SERVICE NOT IMPLEMENTED
81	Invalid Call Reference value	INVALID CALL REFERENCE VALUE

Table 21Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description
82	Identified channel does not exist	CHANNEL DOES NOT EXIST
83		NO CALL ID
84		CALL ID IN USE
85		NO CALL SUSPEND
86		CALL CLEARED
90	Destination address missing	NO DESTINATION ADDRESS
91	Transit network does not exist	TRANSIT NETWORK NOT EXIST
95	Invalid message unspecified	INVALID MESSAGE
96	Mandatory information element missing	INFO ELEMENT MISSING
97	Message type nonexistent or not implemented	MESSAGE TYPE NON-EXISTENT
98	Message not compatible with call state	MESSAGE NOT COMPATIBLE
99	Info element nonexistent or not implemented	INFO ELEMENT NON-EXISTENT
101	Message not compatible with call state	MESSAGE NOT COMPATIBLE
111	Protocol error unspecified	PROTOCOL ERROR
127	Interworking unspecified	INTERWORKING

 Table 21
 Q.931 Cause Codes (Continued)

Cause Code	D Channel Decode Description	Call 1/Call 2 Description
0		UNKNOWN CAUSE VALUE

Saving and printing results

For information about saving and printing test results, see the *HST-3000 Base Unit User's Guide*.

Appendix A Test Results Saving and printing results

BERT Patterns

B

This appendix describes the patterns available for BER testing. Topics discussed in this appendix include the following:

- "BERT patterns" on page 100

BERT patterns

Table 22 shows the BERT patterns available for ISDN BRI testing.

Table 22 ISDN BERT patterns

Pattern	Description
All Ones	Provides a fixed test pattern of all ones. Generally this pattern is used to stress span repeater current regulator circuits. It can also be used as an AIS in unframed circuits, a keep alive signal, or an idle code.
All Zeros	Provides a fixed test pattern of all zeros.
Delay	Used for measuring round trip delay. Delay pattern measurement requires a transmitter/receiver loopback, with the transmit rate equal to the receive rate. This test measures round trip delay once per second (or until the previous delay measurement is complete) for the length of the test, provided pattern sync is present. Normal BER test results (such as bit errors and pattern sync) are not available during delay testing.
511	Selects the 2 ⁹ -1 Pseudorandom pattern, which generates a maximum of 7 sequential 0s and 9 sequential 1s.
2047	Selects the 2 ¹¹ -1 Pseudorandom pattern, which generates a maximum of 10 sequential 0s and 11 sequential 1s. Simulates live data for circuits 56 kbps and lower.
2^15-1	Selects the 2 ¹⁵ -1 pseudorandom pattern, which generates a maximum of 14 sequential 0s and 15 sequential 1s. Simulates live data for 56 kbps to 2Mbps circuits.
2^20-1	Selects the 2 ²⁰ -1 pseudorandom pattern, which generates a maximum of 19 sequential 0s and 20 sequential 1s. Simulates live data.
2^23-1	Selects the 2^{23} -1 pseudorandom pattern, which generates a maximum of 22 sequential 0s and 23 sequential 1s.
User Bit Pattern	Selects a user-defined pattern from 3 to 32 bits long.

Specifications

C

This appendix contains specifications for the BRI testing option. Topics discussed in this appendix include the following:

- "Interface" on page 102
- "Test configurations" on page 102

Interface

This section describes interface specifications.

Interface specifications Table 23

Parameter	Specification
Line interface	2B1Q per ANSI T1.601 (1992), providing 0 dB, 2 dB, 4 dB, 6 dB line build-out.
PS1	At least 28 volts is present on the line.
PS2	At least 36 volts is present on the line.
Maximum voltage	42 V <u>+</u> 3 V

Test configurations

This section describes configurations available for BRI testing.

configurations tions.

BRI testing Table 24 lists specifications for BRI testing option configura-

BRI configuration specifications Table 24

Parameter	Specification	
Operating modes	Terminate, Monitor	
Tests	Bit error rate test (BERT)	
Error types	Frame, CRC, FEBE	

modes

Loopback Table 25 describes the available loopback modes.

Table 25 Loopback modes

Mode	Loopback Type	Loopbacks Available
LT BERT	Transmission of EOC loopback requests to the NT (manual loopback not available)	See Table 26.
NT BERT	Manual or auto response to loop-back requests	None, B1, B2, B1+B2, 2B+D
U Monitor	N/A	N/A

EOC loopback Table 26 describes the EOC (Embedded Operations **codes** Channel) message codes for various testing modes.

Table 26 EOC message codes

Loopback Type	Loopbacks Available
Return to Normal	Removes the current loopback and any bad CRCs.
B1 Loopback	Requests far-end loopback of B1 channel.
B2 Loopback	Requests far-end loopback of B2 channel.
2B+D Loopback	Requests far-end loopback of B1, B2 and D channels.
Send Bad CRC	Requests far-end device to send a continuous stream of traffic with bad CRC.

Appendix C Specifications *Test configurations*

Glossary

В

Base Unit — The HST-3000 base unit houses the keypad, display screen, battery, and some connectors. Service interface modules (SIMs) connect to the base unit to provide testing functionality.

B-Channel — Bearer Channel. Portion of the BRI interface that typically carries information. See Circuit mode calls.

BERT — Bit Error Rate Test. A known pattern of bits is transmitted, and errors received are counted to figure the BER. The Bit Error Rate test is used to measure transmission quality.

BRI — Basic Rate Interface. An ISDN configuration which consists of two B-channels that

can carry voice or data at rate of 64Kbps, and one D-channel, which carries call-control information.

BRI interface — The interface spanning both the U interface (central office side) and the S/T interface (customer premises side) of the network.

C

Cause Code — Reason an ISDN call was disconnected.

Circuit mode calls — Calls placed on the B channels of the BRI interface.

CRC — Cyclic Redundancy Check. A code word used to confirm that a bit stream contains valid data.

D

D-Channel — Portion of BRI interface that provides signaling. May also be used to carry packet calls for data transfers. See Packet mode calls.

DNIC — Data network identification code. An address used to reach a host computer system residing on a packet switched network. A DNIC is often used as the prefix that identifies the RPOA when dialing packet calls. See RPOA.

Е

EOC — Embedded Operations Channel. A portion of the ISDN signal that contains instructions for a network device. EOC commands are often used to loopback an NT device on the far end.

ES — Errored Second. A second during which at least one error or alarm occurred.

F

FEBE — Far End Block Error. A block error detected at a device on the customer premises.

Frame Check Sequence —

Bits added to the end of a frame for error detection.

FTP — File Transfer Protocol. A protocol used for exchanging files over the Internet.

ı

ISDN — Integrated Services
Digital Network. A set of
communications standards
allowing a single wire or optical
fiber to carry voice, digital
network services and video.

ı

LAPD — Link Access Procedure-D. A protocol for ISDN connections.

LBO — Line Build Out. An optional attenuation which can be applied to the output signal to simulate long lengths of cable.

Loopback — A command instructing a network device to return a received signal. You can issue EOC commands from the HST to loopback the received signal on a far end NT device.

LT — Line Termination. A mode in which the HST-3000 simulates a line termination device, such as a central office switch.

Ν

NT1 — Network Termination type 1. A mode in which the HST-3000 simulates the ISDN device responsible for the termination of the ISDN transmission facility at the customer premises. X.25, the prefix is typically the data network identification code (DNIC) for the ISDN's long distance carrier.

Ρ

Packet mode calls — Calls placed on the D channel of the BRI interface for data transfers.

Pattern — A fixed or pseudorandom string of ones and zeroes used to perform a BER test. ISDN signals must have certain patterns to achieve synchronization between two devices.

Pattern sync — The condition when the received test pattern matches the transmitted test pattern. In order to detect pattern sync the instrument must be transmitting a known test pattern in at least one channel (if framed) or continuously (if unframed).

Q

Q.931 — A message-oriented protocol used on ISDN networks.

RPOA — Recognized Private Operating Agency. Some RPOAs require that you specify the RPOA's identifying prefix before the directory number when placing a call. For ISDN

S

Short Frame — An ISDN frame with less than 3 octets plus a frame check sequence.

SIM — Service Interface Module. SIMs connect to the HST-3000 base unit to provide testing functionality.

SPID — Service Profile ID. Identifies the types of services and features supported for a given ISDN device. SPIDs are optional in the ISDN standard, but usually required in North America.

S/T interface — The standard 4-wire (2 RX, 2 TX) ISDN interface used by ISDN terminals on the terminal side of a NT1.

Т

TE — Terminal Equipment. A mode in which the HST-3000 simulates a a termination device, such as an ISDN telephone.

TEI — Terminal Endpoint Identifier. The ID of an ISDN device on the customer premises.

U

U interface — The physical 2-wire echo cancelling interface spanning the local loop and the customer premises.

U Loss Pad Insertion — An optional attenuation which can be applied to the output signal to simulate long lengths of cable.

Index

A	ISDN NT1 emulation mode 7 testing configurations 102	
Accepting calls 38		
Accessing configuration menus 14	С	
Alarm LED 8	Call 1/Call 2 results 83	
Audio headset, using to insert voice	Calls	
traffic 41–42	accepting 38	
	BERT analysis 42–46	
В	Call 1/Call 2 results 83 call reference numbers 59	
_	disconnecting 39	
B channel inserting voice traffic 41	idle 42	
performing BERT analysis 42–46	ignoring 39 inserting voice traffic 41–42	
Base unit	interpreting D channel decode	
defined 105	text 57	
user's guide xi	placing circuit 16–25 placing packet 25–33	
Batt LED 9	placing self 33–37	
BER testing ISDN BRI calls 42–46	receiving 38	
physical layer 52–57	rejecting 39 states 83	
BERT (IDSL) LT mode, illustrated 7	transmitting DTMF tones 40	
BERT patterns 99–100	viewing cause codes 41	
BERT results 77	Cause codes described 90	
BRI	viewing 41	
interface, illustrated 7		
interfaces, illustrated 4–7		

Clearing	
Clearing decode message buffer 61 history test results 62, 63 statistical test results 62 Compliance information xi Configuration menus, accessing 14 Connectors 10 Conventions xiii CRC errors, inserting 46	Emulating NT1 on BRI interface 49–51 Emulation modes, illustrated 4–7 EOC loopback codes 103 Error LED 8 Errors BERT analysis of a call 42 BERT analysis of physical layer 52
D	inserting CRC and FEBE 46, 52
D channel decode messages call reference numbers 59 capturing to .txt file 62 clearing the message buffer 61 determining source of 58 interpreting 57 LAPD supervisory frames 88 LAPD unnumbered frames 86 Q.931 frames 89 sample message 58 viewing and navigating 60 viewing number captured 61	Features, ISDN BRI 2 FEBE errors, inserting 46
	H Headset, using to insert voice traffic 41–42
Data LED 8	History test results, clearing 63
Decode results 85	HST emulation modes 4–7
call reference numbers 59 capturing messages to .txt file 62 clearing the message buffer 61 determining source of 58 interpreting 57 LAPD supervisory frame decodes 88 LAPD unnumbered frame decodes 86 Q.931 decodes 89 sample message 58 viewing and navigating 60 viewing number of messages captured 61 Disconnecting calls 39 Documentation, base unit user's guide xi DTMF tones, transmitting 40	Idle calls BERT 45 voice 42 Ignoring calls 39 Inserting voice traffic into calls 41–42 Interface results 73 Interfaces, BRI 4–7 Interpreting D channel decode messages 57 ISDN BRI connectors 10 D channel decode message descriptions 86 features 2 line specifications 102

ISDN LT mode, illustrated 5 ISDN NT1 mode, illustrated 7 ISDN NT1/TE mode, illustrated 5 ISDN results 80 ISDN TE mode, illustrated 6 ISDN U-MON mode, illustrated 5	N Navigating decode text 60 NT1 emulation 49–51 O Overlap dialing 40		
L	3		
LAPD frames about decode messages 59 interpreting decodes 57 supervisory messages 88 unnumbered messages 86 LED results 78 LEDs alarm 8 batt 9	Phone book, setting up 14–16 Placing circuit calls 16–25 packet calls 25–33 self calls 33–37		
data 8 error 8 Ipbk 8	Q Q.931 frames		
sync 8 Loopback modes, specifications 103 LpBk LED 8	about decode messages 60 cause codes 90 decode message descriptions 89 information elements 60 interpreting decodes 57 sample message 58		
M	sample message 30		
Messages, D channel decode call reference numbers 59 capturing to .txt file 62 clearing the buffer 61 determining source of 58 interpreting 57 LAPD supervisory frames 88 LAPD unnumbered frames 86 Q.931 messages 89 sample 58 viewing and navigating 60 viewing number captured 61 Microphone, using to insert voice traffic 41–42 Monitoring BRI service at U interface 47–49	Receiving calls 38 Rejecting calls 39 Repeater power 49 Restarting tests 62 Results BERT 77 clearing 62 clearing history 63 Decode 85 Interface 73 ISDN 80 LED 78 saving and printing 97 summary 70 time 85 viewing test results 63		

	Testing		
S	accessing configuration menus 14		
S/T interface illustrated 6 ISDN TE emulation mode 6 software option 2	emulating NT1 on BRI interface 49–51 monitoring from U interface 47– 49		
Safety information xi	physical layer 52–57		
Settings BERT 55 BRI 53 Call 21, 30 Error 55 ISDN 18, 27 Phone 20, 29	placing circuit calls 16–25 placing packet calls 25–33 placing self calls 33–37 test results 69–97 viewing results 63 Text file, capturing decodes to 62 Time results 85		
Software options	Transmitting DTMF tones 40 Troubleshooting 65–67 U U and U mon connectors 10 U interface		
S/T Interface 2			
Specifications BRI testing configurations 102 EOC loopback codes 103 interface 102 Loopback modes 103			
States, call 83			
Status LEDs 8	illustrated 5		
Summary results 70	inserting CRC or FEBE errors 46		
Supervisory frames decode message descriptions 88 interpreting decodes 57	Unnumbered frames decode message descriptions 86 interpreting decodes 57		
Sync LED 8	User documentation, base unit user's guide xi		
T	V		
Terminate testing 52–57	Viewing decode messages 60		

Voice traffic, inserting into call 41–42

Communications Test and Measurement Regional Sales

North America Toll Free: 1 800 638 2049 Tel: +1 240 404 2999

Fax:+1 240 404 2999

Latin America

Tel: +55 11 5503 3800 Fax:+55 11 5505 1598 **Asia Pacific** Tel: +852 2892 0990

Fax:+852 2892 0770

EMEA

Tel: +49 7121 86 2222 Fax:+49 7121 86 1222 www.jdsu.com

21109871-002 Revision 000, 01/2011 English

