
JTRS SCA: CONNECTING SOFTWARE COMPONENTS

François Lévesque (CRC, Ottawa, Ontario, Canada, francois.levesque@crc.ca)

Charles Auger (CRC, Ottawa, Ontario, Canada, charles.auger@crc.ca)

Steve Bernier (CRC, Ottawa, Ontario, Canada, steve.bernier@crc.ca)

Hugues Latour (CRC, Ottawa, Ontario, Canada, hugues.latour@crc.ca)

ABSTRACT

The portability of applications between different radio

platforms is one important benefit of the JTRS Software

Communications Architecture (SCA). Over the years, the

SCA portability features have certainly been greatly

improved. The deployment process for SCA applications is

without a doubt the most important feature for portability.

However, the specification of interconnections between the

components of an application is also crucial and often

overlooked.

The SCA provides a wide range of possibilities for

establishing connections between software components but

certain options are only valid for specific situations and,

amongst the valid options, some may lead to portability

problems. The SCA does not provide any guidance along

those lines. Finally, the SCA only provides limited support

for interconnecting applications.

In this paper, options for establishing connections between

software components are explored and categorized

according to their usage. The more portable options for

interconnecting components of an application are identified

and discussed. Also, a proposal to allow connections

between applications, within the SCA framework, is

presented. Finally, this paper concludes on a discussion

regarding the need for the SCA to provide support for

aggregated applications.

1. INTRODUCTION

When referring to computer software, portability is a term

used to describe how easy it is to change a software

application for being used with a different hardware

platform and/or operating system. In the SCA world,

portability refers to the capacity of an SCA application to be

used on different SCA platforms. In general, software

portability can be obtained using one of the following

approaches:

 The source code of a portable component is sent to

an interpreter program that behaves appropriately

for the host platform. Each different platform must

provide an interpreter.

 The source code of a portable component is

compiled for a specific platform and is executed by

a virtual machine that behaves appropriately for the

host platform. Each different platform must provide

a virtual machine.

 The source code of a portable component is

compiled for each different host platforms and is

executed natively. This process requires a

capability exchange mechanism in order to

dynamically choose the proper binary code based

on the capabilities of a specific host platform.

The SCA uses the multiple-compiles model to achieve

portability. SCA components (e.g. Devices and Resources)

are compiled for the different platforms in which they are

intended to be used. The SCA specification requires

software components to provide a description of their

requirements and capabilities, which are compared during

the process of software deployment. The requirements and

capabilities are described using XML and formatted as

specified in the SCA Domain Profile document [1].

Although this portability model allows the appropriate

implementation of an SCA component to be mapped to an

SCA platform, it doesn’t deal with the portability of the

connections that must be established between components of

an application or between devices/services of a radio node.

If it is not used properly, the SCA connection model can

lead to portability problems. In the following sections, the

SCA connection model is presented, and guidelines aimed at

achieving portability are presented.

2. SCA CONNECTION MODEL

In the SCA specification, connections are used to provide

references to components. This concept allows a component

mailto:francois.levesque@crc.ca
mailto:charles.auger@crc.ca
mailto:steve.bernier@crc.ca
mailto:Hugues.latour@drdc-rddc.gc.ca

to obtain a reference to another component for

communication and control purposes. For example, in a

connection where component_A is the source and

component_B is the destination, component_A obtains a

reference to component_B and may invoke some method to

provide data to be processed by component_B. However,

since connections are unidirectional in the SCA,

component_B is not given a reference to component_A

unless a second connection is defined for this purpose. For

the source component to receive a reference to the

destination component of a connection, it must provide a

special Applications Programming Interface (API) named

Port. To establish a connection, the connectPort method is

invoked on the source component with a reference to the

destination component as an input parameter.

Note that the orientation of an SCA connection does not

indicate the direction of data flow between two components.

In the previous example, component_A is given a reference

to component_B which could suggest that data will flow

from component_A to component_B. However,

component_A can choose to request data from

component_B in which case the direction of the data flow is

different from the connection orientation. Finally, even if

connections are unidirectional, the data flow between two

components can actually be bidirectional; component_A can

send/request data to/from component_B.

In the SCA there are two types of software assemblies that

may require component interconnections: node and

application. A SCA radio can be composed of many nodes,

each of which must provide a node assembly descriptor. The

node assembly descriptor (called DCD) indicates which

components must be started in a radio node and how they

must be connected to each other. For example, an analog-to-

digital Device may need to be connected to a timer Device.

Another example would be a connection between an

ExecutableDevice and a Log service of a same radio node.

An SCA application is composed of many components, each

of which performs a certain number of signal processing

functions. These components must be connected to each

other in order to perform the aggregated behavior of an

application. An application is described using an assembly

descriptor (called SAD) that indicates which components

must be launched and how they must be connected.

In SCA version 2.2, the components of a node assembly are

launched by a DeviceManager whereas the connections

between components are established by a different entity

named DomainManager. In the case of an application, the

ApplicationFactory is responsible for both launching and

connecting the components of the assembly. This distinction

is key to understand the different type of connections that

may be established for a node and for an application.

The SCA defines two types of connection; port-to-

component and port-to-port. As mentioned earlier, the

source of a connection is always a component that

implements the Port interface. However, the destination of a

connection may be the destination component itself (port-to-

component) or a sub-component obtained via a port of the

destination component (port-to-port). The difference

between the two types of destination is subtle and is related

to how the destination component provides the interface

needed in the connection. As explained previously, the

destination of a connection is a component with an interface

that will be used by the source component to either receive

or provide data. If the destination component implements the

needed interface by aggregation, connections will have to be

established to the sub-component implementing the

interface. However, if the destination component inherits the

needed interface, connections will be established directly to

the component.

The following pseudo-code shows the steps required to

establish a port-to-component connection between two

components.

portA1 = component_A.getPort(“Port1”)

portA1.connectPort(component_B, “toB”)

The following pseudo-code shows the steps required to

establish a port-to-port connection between two components.

portA1 = component_A.getPort(“Port1”)

portB1 = component_B.getPort(“Port1”)

portA1.connectPort(portB1, “toB1”)

In these two examples, it is assumed that references to

component_A and component_B were previously obtained.

The SCA offers five mechanisms for obtaining/identifying

the source or destination component of a connection. They

can be categorized into “direct” and “indirect” identification

mechanisms as described below.

2.1. Direct Identification Mechanisms

Direct identification mechanisms allow source or destination

components to be identified using pre-defined and static

information. The direct identification mechanisms are:

 Naming Service Name: Although it is only mandatory

for Resources, any SCA component can register to the

CORBA naming service. The name used by a Resource

for registration is composed of the name and id

attributes found in the application assembly descriptor

(SAD findcomponent.namingservice.name and SAD

partitioning.componentinstantiation.id). The Resource

name can be used in a connection definition

(findby.namingservice) to identify the source or

destination of a connection. Depending on the type of

software assembly, either the DomainManager or the

ApplicationFactory will query the CORBA naming

service to obtain an object reference to a component.

 Component Instantiation Reference: In a software

assembly descriptor, each component instance is

associated to a unique identifier

(componentinstantiation.id). This identifier can be used

to identify the source or destination component of a

connection (componentinstantiationref.refid). The

ApplicationFactory remembers the component

identifiers as there are launched and uses this

information to establish connections between

components of an application.

2.2. Indirect Identification Mechanisms

Indirect identification mechanisms offer an alternative to

using a component’s unique identifier or name to identify

source or destination components of a connection. While

direct identification mechanisms refer to static information

known at development time, indirect identification

mechanisms provide access to runtime information. The

indirect identification mechanisms are:

 Domain Finder: The domain finder identification

mechanism can be used to establish connections to radio

services (e.g. log, naming service). Services from all

nodes register to the DomainManager using a name and

a type. Since the component that implements a radio

service may be different in each radio, the component

cannot be directly identified. Therefore, connections to

radio services should be performed using a service type

and, optionally, a name. Connections to services are

specified in the assembly descriptors using the

findby.domainfinder element.

 Device That Loaded a Component: This mechanism

allows a connection with a Device that was used to load

a specific component. For example, a component may

request a connection to the FPGA Device that was used

to load a specific algorithm. Since the Device used to

load a component may change every time the

application is deployed (due to capacity state), the

connection to such a Device is made using the identifier

of the component being loaded

(devicethatloadedthiscomponentref.refid).

 Device Used by a Component: This identification

mechanism allows a connection with a Device that is

being used by a specific component. For example, an

application Component_A may request to be connected

to audio Device being used by the application

Component_B. For this to happen, Component_B must

first declare its need for an audio Device and associate it

with an identifier to which Component_A will refer for

being connected. Component_B declares its need

through requirements in terms of capabilities and

capacities. These requirements will be satisfied during

the launch of Component_B and may change from time

to time. Therefore, Component_A may sometime be

connected to a different audio Device, but it will always

be connected to the audio Device used by

Component_B.

3. SCA CONNECTIONS RESTRICTIONS

As mentioned in section 2, connections are either performed

by an ApplicationFactory or by the DomainManager. An

ApplicationFactory is responsible for establishing

connections between components of an application or

between an application component and a Device. Since the

ApplicationFactory is also responsible for launching the

components, it can gather sufficient information for allowing

the use of all five mechanisms for the identification of the

source and the destination components of a connection.

However, because the DeviceManager is responsible for

launching the components of a node, the DomainManager

cannot obtain crucial information for certain identification

mechanisms. In the current version of the SCA (2.2), the

information gathered by the DeviceManager cannot be

provided to the DomainManager because of the lack of an

API. Furthermore, since a radio manufacturer may purchase

the DeviceManager and the DomainManager from different

vendors, it is not practical to create non-standard extended

APIs to address this issue. Therefore, the connections

specified between node components cannot use the

following identification mecanishms:

devicethatloadedthiscomponentref and

deviceusedbythiscomponentref.

4. CONNECTION PORTABILITY ISSUES

Application portability is an important feature of the SCA.

However, providing many implementations of an application

is not sufficient to achieve portability. For an application to

function properly, all the connections between the

components must be established. Therefore, the connections

required for an application must be portable. Issues that

could preclude connection establishment on some platforms

supported by an application are: direct references to

Devices, different Radio Frequency (RF) chain

implementations, connections between applications,

components port names, and references to a Device used by

an implementation of a component.

4.1. References to Devices

Typically, an application has some components that need to

use Devices for data input/output purposes. Since the name

of a Device is chosen by a radio integrator, it may differ in

each radio. Therefore, using a direct identification

mechanism is not a portable solution unless Device names

are standardized. However, it is much easier to standardize

on a common subset of Device characteristics (capabilities

and capacities) [2]. Therefore, a better approach for

establishing a connection with such a Device is to have the

component, which needs access to it, declare a “use”

association. The association with a Device is specified based

on requirements. This “use” relationship would be satisfied

upon launch time and could then be used by the same

component for requesting a connection with the Device

using the deviceusedbythiscomponentref indirect

identification mechanism.

4.2. Different RF chain implementations

An application that acquires its data packets from a RF must

have access to some RF Devices. Typically, the RF signal

arriving from the antenna must be converted to digital data

through an analog-to-digital (A/D) Device. If the RF is too

high relative to the A/D sampling rate, it needs to be down-

converted to an intermediate frequency (IF) prior to the

conversion to digital data. Finally, in many cases the sample

data rate coming from the A/D may have to be lowered for

the processing of the baseband data. This is typically done

through digital down-conversion/decimation. The steps that

need to be performed for the conversion of RF signals to

baseband data sample can be implemented in various ways

which means different radios could provide different groups

of RF Devices and still offer an equivalent service.

Figure 1 shows a scenario where the RF from the antenna is

converted into digital data through an A/D, and then down-

converted/decimated to baseband data through a Digital

Down Converter (DDC). In this scenario, the A/D and the

DDC are configurable SCA Devices. Figure 2 shows a

different RF chain where the RF is down-converted to IF by

a configurable analog hardware and then converted to

baseband data by an A/D. In this case, the analog down-

converter, the A/D, and the DDC are configurable SCA

Devices.

In both scenarios, the waveform application would have to

configure the SCA Devices to set their receiving and

transmitting frequencies, data rate, etc. However, in the first

scenario, there are two Devices to configure while in the

second, there are three. To configure a Device, the

waveform application needs to be connected to it in order to

obtain its object reference. Since the number of Devices

varies in the two scenarios, it is impossible to define a

portable application assembly descriptor because of the

different requirements with regards to connections.

To allow portability of the connections in such scenarios, an

abstraction of the RF hardware Devices could be used. A

high-level abstraction RF Device component could hide the

details of the radio RF chain. Application components would

not connect to individual RF Devices but only to the high-

level abstraction RF Device. Such an abstraction is being

defined by the Object Management Group [3] while API

definitions for all kinds of Devices are being defined by the

Systems Interface Working Group of the SDR Forum [4].

4.3. Connections between applications

Examples of SCA applications include waveforms for radio

communications, network layer applications over which

other applications can operate, or cross-banding

applications. Some of these examples require that

Figure 1

Figure 2

Freq1

Configurable

Device ADC

Configurable

Device A/D

Waveform

Application

Freq2

Configurable

Device DDC

Freq1

Configurable

Device A/D

Configurable

Device DDC

Waveform

Application

Freq2

applications communicate with each other in order to

provide a single aggregated functionality to the radio user.

The current version of the SCA (2.2) doesn’t specify how

applications may be connected to each other. It is however

possible to connect two components of different applications

using their name as registered in the CORBA naming

service. The main problem with this approach is that the

name of an application component is always concatenated to

the name of the application, which is typically chosen at run

time by the radio operator. Therefore, this kind of

connection requires that the operator use predefined names

for the interconnected applications. In addition, connecting

to components of an application actually breaks the concept

of application encapsulation. SCA applications should not

expose their internal structure for reasons of security and

portability.

4.4. Components port names

To connect to Devices, applications must use port names

which are defined by the Device developer. It is therefore

possible that port names change from one radio to another.

For this reason, port names for SCA components selected

during application deployment time should be standardized

to preserve the portability of the connections.

4.5. Association between a component and a Device

As mentioned above, a connection can be specified with a

deviceusedbythiscomponentref to indirectly identify a

Device being used by a specific component. In the SCA, the

declaration of a “use” relationship can be defined globally

for a component (component level). It can also be defined

for a specific platform supported by the component

(implementation level). However, if a connection references

a “use” relationship not defined for all implementations, the

connection establishment could fail depending on the chosen

implementation. Consequently, if a “use” relationship is

defined at the implementation level, it should be defined for

all implementations.

5. MAXIMIZING CONNECTION PORTABILITY

In order to increase the portability of application

connections, some rules should be followed for the

definition of connections:

 A Device involved in an application connection should

be referenced by using the

devicethatloadedthiscomponentref or

deviceusedbythiscomponentref XML elements in order

to allow the use of the indirect identification

mechanisms.

 Every Device used by an application should be defined

as a “use” relationship for the assembly controller

component which contains the application specific

behavior. Every connection to a Device should be done

using the deviceusedbythiscomponentref identification

mechanism for better portability. The fact that the

assembly controller contains the “use” relationships

increases portability because this is the only component

that must be changed for every new application.

Therefore, if an application component is replaced by

another one, the “use” relationship upon which

connections may depend will not be lost.

 If a Device used by a component is involved in a

connection, the “use” relationship should be defined at

the component level rather than at the implementation

level.

 No connection should be allowed from external

applications (e.g. user interface) to the components of

an application. External applications should connect to

the external ports of an application. The external ports,

defined in the application assembly descriptor, should

be mapped to the ports of the assembly controller to

allow connections without breaking the encapsulation.

This measure isolates an application user from the

application’s internal structure which can consequently

be changed without affecting portability.

6. INTER-APPLICATION CONNECTION

As mentioned in section 4.3, some applications need to

communicate together in order to provide an aggregated

functionality to the radio user. An application can potentially

be connected to another application since it implements the

PortSupplier interface. However, there are two problems

preventing portable connections between applications.

First, each application is created by an ApplicationFactory

which can only create one type of application. Therefore,

when an application needs to be connected to another

application, the second application must already have been

created. Since the order in which applications are created is

controlled by the radio operator, it is impossible to automate

the launch of two (or more) applications in a specific

sequence. The second problem, as mentioned in section 4.3,

comes from the fact that the encapsulation of an application

must be broken to allow a connection between two

applications. This approach limits the portability of

connections since the structure of an application may change

over time.

Under these constraints, the only way to connect two

applications within an SCA radio is that each application be

implemented as a single Resource and launched together

from the same SAD. But this would require that an SCA

application be created for every possible combination (i.e.

application-to-application connection), which is simply

impractical. Moreover, this approach prevents an application

designer from defining fine-grained reusable components.

6.1. Potential Solutions

A first solution could consist in having one of the

applications involved in a connection register as a radio

service (e.g. network layer application). With this approach,

the connection could identify this application using the

domainfinder identification mechanism. This would

however require a new type of service called “application”

to indicate that the connection requires a reference to an

application. This solution would preserve application

encapsulation which is good for maintenance and portability.

The drawback is that the application registering as a service

would have to be created before the second application

involved in the connection. In addition, the name of the

second application would have to always be the same.

A better solution would be to add support for the concept of

aggregate applications to the SCA. An aggregate application

is composed of two or more applications. Just as an

application is composed of several components, each

performing a specific task in the data processing of the

application, an aggregate application is composed of several

applications, each implementing a self-contained task. For

example, an aggregate application could be a bridge

between two different waveforms.

To include this concept in the SCA, the ApplicationFactory

behavior could be altered to launch an aggregate application

in addition to the standard applications. A new assembly

descriptor would be needed to indicate which applications

compose the aggregate application and how they must be

inter-connected. With this solution, the radio operator would

only select the name of the aggregate application which

would automatically be used for assigning names to the

aggregated applications. In addition, connections would be

established between applications, thus preserving

encapsulation. Finally, this solution is relatively simple since

it is a generalization of the existing SCA concepts.

7. SUMMARY

One of the goals of the JTRS Software Communications

Architecture is to achieve waveform application portability.

The specification of interconnections between components

of an SCA application is an aspect that may influence the

portability of the application, and should therefore not be

overlooked.

In the SCA, the concept of connection is used to provide

references to components for communication purposes. SCA

v2.2 offers five ways of identifying the source or destination

component of a connection, some of which may or may not

be used depending if the connection must be established for

a node or an application.

This paper presented and analyzed the SCA connection

model in regards to connection portability. Portability issues

that can preclude connection establishment have been

described and recommendations have been made to

maximize the portability of connections. Finally, the concept

of aggregate application was introduced as a solution to the

lack of inter-application connection mechanisms.

8. REFERENCES

[1] Software Communications Architecture Specification,

Appendix D - Domain Profile (MSRC-5000SCA Appendix D
rev 2.2)

[2] Software Communications Architecture Specification,

Attachment 2 To Appendix D – Common Properties
Definitions (MSRC-5000SCA Attachment 2 to Appendix D
rev 2.2)

[3] Object Management Group, Software Radio Domain Special

Interest Group, http://swradio.omg.org/swradio_info.htm

[4] Software Defined Radio Forum, System Interface Working

Group, http://www.sdrforum.org/tech_comm.html

