
- SCA ADVANCED FEATURES -

OPTIMIZING BOOT TIME, MEMORY USAGE, AND

MIDDLEWARE COMMUNICATIONS

Steve Bernier, M.Sc.,

Senior Architect & Project Leader,

Advanced Radio Systems,

Communications Research Centre Canada

Outline

1. Introduction

2. Boot time optimizations

3. Memory footprint optimizations

4. Middleware optimizations

5. Future SCA Core Frameworks

6. Conclusion

2

1. Introduction

The 1st Generation of SCA Core Frameworks

 Most CFs come from the JTRS early Steps (2a, 2b, 2c)

 Implement SCAv2.0, most CFs are not full-featured

 SCARI-Open

 Still trying to understand the SCA specification

 Long boot times, use lots of memory

The 2nd Generation of SCA Core Frameworks

 Implement SCAv2.2

 Most CFs have been through JTAP testing

 SCARI2-Open

 SCARI++ designed for embedded systems

 Faster boot times, still use lots of memory
3

1. Introduction

The 3rd Generation of SCA Core Frameworks

 Implementation of SCAv2.2 and 2.2.2

 Much faster boot times, much smaller memory footprints

 SCARI-GT

 Include lessons learned from early SCAv2.2 platforms

 Provides a number of optimizations

Optimizations fall into 3 categories

1. Boot time

2. Memory usage

3. Middleware performance

4

2. Optimizations for faster boot times

For flexible SDR, you need a file system

 Applications are made of several components

 Components are made of several files (XML profiles,

Binaries)

 Running an application implies the deployment of all the

application components

 Bottom line: the SCA is very file-intensive

Common boot time issues

 Checking for the Integrity of a file system takes for ever!

 Embedded file systems are very slow

5

2. Optimizations for faster boot times

Addressing the problems associated with file

system integrity

 Make most of your file system READ-ONLY

 Get a robust file system driver

 Use a journaling file system

Speeding up file access

 Make the DomainManager use the native file system

when possible

Test Scenario File

Size

Time without

acceleration

Time with

acceleration

Improvement

Linux Desktop 3Ghz

Pentium without NFS

4 MB 355 ms 20 ms ~94%

INTEGRITY PPC405 SBC

using NFS

1.5 MB 2.5 sec 1.5 sec ~40%

6

2. Optimizations for faster boot times

Speeding up file access (continued)

 Allow DeviceManager to perform an optimized registration

 DeviceManager provides digested information to

DomainManager

 Can save over 19 CORBA calls per registering Device,

including calls to read remotely from slow file systems

7

Test Scenario Standard

Registration

One call

Registration

Improvement

Linux Desktop, 1 Device 0.56 sec 0.19 sec ~ 66%

Linux Desktop, 4 Devices 1.53 sec 0.24 sec ~ 84%

LynxOS PPC405, 1 Device 0.86 sec 0.13 sec ~ 85%

LynxOS PPC405, 4 Devices 2.33 sec 0.22 sec ~ 91%

2. Optimizations for faster boot times

Speeding up file access (continued)

 Allow ExecutableDevice to use native file access

 Allow ExecutableDevice to use a file system cache

8

Test Scenario File

Size

Cache miss

W/O local file

acceleration

Cache miss

with local file

acceleration

Cache

hit

Linux Desktop

3Ghz Pentium

without NFS

4 MB 355 ms 20 ms 9 ms

INTEGRITY PPC405

SBC using NFS

1.5 MB 2.5 sec 1.5 sec 35 ms

3. Optimizations for faster boot times

Optimizing the parsing of XML profiles

 A Core Framework must read several XML profiles

during the boot up and deployment of an application

 One option is to use Xerces-C COTS parser

 Slow and big

 Another option is to use digested XML profiles

 Small and fast

 Relies on proprietary format

 Digested format can be generated by tools or on-the-

fly by a Core Framework

9

3. Optimizations for faster boot times

Optimizing the parsing of XML profiles (cont’d)

 Yet another option is to use a hand-crafted XML parser

 Small and fast

 Does not rely on a digested format

 Following table provides metrics for a test to read a

.prf.xml file containing 50 properties

10

Parsers Static

Memory

Dynamic

Memory

Parsing

Speed

Xerces-C++ 3,000 KB 66 KB 6.7 ms

Digested profile reader 300 KB 8 KB 1.1 ms

Specialized profile

reader

420 KB 10 KB 1.7 ms

3. Optimizations for faster boot times

Smaller footprints: address-space collocation

 SCA components are made of SCA interface

implementation, CORBA stubs and skeletons, and OS

system calls

 Same kind of SCA components are largely made of the

same pieces

 Up to 70% of the pieces are the same for all SCA

Resources

 Using a ResourceFactory provides enormous

footprint savings

 Collocating the DomainManager and the DeviceManager

into a single address space saves 50% of the footprint

 A DeviceFactory is a must for SCA NEXT!

11

4. Middleware optimizations

The need for middleware

 Every distributed system needs a form of middleware to

allow communications between different software

entities

 The middleware for SCA is CORBA

 CORBA supports pluggable transports that shields the

developer from the actual transport APIs

12

4. Middleware optimizations

Speeding up communications between

components

 The following table presents metrics gathered running a

ping test using different pluggable transports

 Does not require changing a single line of source

code to switch transport

13

Parsers Double

Sequence

Octet

Sequence

Number of Elements in the sequence 1024 2048 1024 2048

Average Round Trip Time in usec for PPC405/INTEGRITY

using TCP/IP

3334 7272 1428 1767

Average Round Trip Time in usec for PPC405/INTEGRITY

using INTCONN

2215 4728 1042 1273

Average Round Trip Time in usec for PPC405/INTEGRITY

using direct method invocation thanks to a ResourceFactory

244 492 155 231

5. Future SCA Core Frameworks

The next generation of Core Frameworks will

provide static deployment optimizations

 Instead of optimizing each task required for the

deployment of an application, what if we could skip

some tasks?

 A Core Framework could keep information regarding

previous decisions taken to deploy an application and

skip several steps

 File caching is a form of static deployment

optimization

14

5. Future SCA Core Frameworks

The next generation of Core Frameworks will

provide static deployment optimizations (cont’d)

 Once an application has been mapped to a platform, why

not use a static ApplicationFactory?

 Can easily be generated by tools

 Static deployment optimization can provide more

deterministic behavior that can be validated

 It can also help reduce time to deploy an application

and the memory footprint requirements

 SCARI-RT Core Framework

15

6. Conclusion

With the latest Core Frameworks, an SCA Radio

can now boot in a few seconds

The requirements in memory represent a fraction

of the first generation SCA platforms

With the assistance of specialized tools, it’s only

going to get better…

16

Questions?

steve.bernier@crc.gc.ca

www.crc.ca/sdr

The Communications Research Centre of Canada

(CRC)

17

