

JD785B 간편 사용자 매뉴얼

young-min.park@viavisolutions.com 비아비솔루션스 APR. 2018 Ver 1.0

장비 명칭

- JD785B 액세서리
- 키 조작 및 측정 포트 설명
- 시스템 키 설명
- Save/Load 키 설명

Product Overview

기본 지급 액세서리

조작 키 및 측정 포트 설명

Product Overview

포트 설명

- 1. 전원 입력 (12V ~ 19V DC)
- 2. VSWR, DTF, Cable Loss, RF Output for Gain & Loss 측정
- 3. Gain/Loss 측정 (Bias Tee)
- 4. Spectrum, RF Analyzer, Signal Analyzer
- 5. 소리 재생 포트 (이어폰 및 스피커)
- 6. USB Host (외장 파워 센서 및 USB 연결 포트)
- 7. USB Client (어플리케이션 소프트웨어 연결 포트)
- 8. LAN (어플리케이션 소프트웨어 연결 포트)
- 9. CPRI/OBSAI 측정 포트
- 10. GPS 안테나 연결 포트
- 11. 외부 trigger 신호 입력 포트
- 12. 외부 Frequency Reference 입력 포트 (10MHz, 13MHz, 15MHz)

전면

키 설명

전원 버튼
 기능 버튼
 숫자 버튼 및 기능 버튼
 노브 및 화살표 버튼
 스크린 메뉴 버튼
 동작 이전 단계 버튼
 화면

System 키 설명

Frequency Reference

장비의 기준 주파수를 외부에서 입력 받아 주파수 정밀도를 정확하게 측정 할 수 있습니다

Power On

전원 Off/On시 장비 기본 설정 상태 설정 Last : 전원 Off하기 전 상태의 설정 값 Factory : 공장 출하 시 설정 값 User:사용자의 설정 값

User status

-사용자의 설정 값 저장 파일 표시

Date /Time

-장비 화면에 표시되는 날짜와 시간을 설정 할 수 있는 버튼

-화면 표시 방법 선택

- YYYY/MM/DD
- MM/DD/YYYY
- DD/MM/YYYY

Sound

키 조작 음 On/Off 설정 및 볼륨 레벨 설정

Upgrade

펌웨어를 업그레이드하기 위한 버튼이며 2GB 이하의 USB에 펌웨어를 카피하고 USB 포트에 연결 후 Upgrade 버튼을 누르고 파일명을 선택하여 업그레이드를 하면 됩니다.

License manager

장비에 설치된 옵션을 확인할 수 있으며 새로운 옵션을 적용할 때 사용합니다

Installed Options : 설치된 옵션 목록 확인 Installable Options : 설치 가능한 옵션 목록 확인 Install an Option : 새로운 옵션 설치

Remarks: 새로운 옵션을 설치하기 위해서는 라이선스 키가 있어야 합니다.

Product Overview

LAN

JD785B 의 LAN 기능은 고정 IP 그리고 DHCP 방식을 지원 합니다.

고정 IP설정은 IP Address, Net Mask, Gateway 를 설정해야 합니다.

고정 IP를 설정 한 후 Apply 버튼을 눌러야 설정이 됩니다.

Display Setting

LCD의 백라이트를 설정 된 시간 후에 Off하여 배터리 시간을 연장 할 수 있습니다. 장시간 DATA를 Logging 하는 기능을 사용 한다면 Screen Saver 기능을 사용하여 배터리 사용시간을 연장 할 수 있습니다.

Screen Saver : 화면의 Backlight 시간 설정 Brightness : 화면 밝기 조정

File Manager

USB 또는 내부에 저장된 화면 캡쳐 파일, 측정 결과 값, 설정 저장 값을 볼 수 있으며 자유롭게 복사 할 수 있습니다.

Save/Load 키 설명

결과 저장 (Save)

측정 결과를 저장 합니다

Save	
Save Screen	측정 화면을 PNG파일로 저장 합 니다.
Save Result	측정 결과 값을 데이터 파일로 저장 합니다.
Save Result As CSV format	측정 결과 값을 Excel CSV 파일 로 저장 합니다
Save Setup	설정된 파라메터를 저장 합니다.
Save Limit	Limit 값을 저장 합니다.
Save Logging Data	스펙트럼 화면을 저장 할 때 사 용 합니다. (Interference Analyzer).
Save On Event	

로드 검색 결과 (LOAD)

측정 결과 또는 설정 값을 불러 오는 기능 입니다.

Load	
Load Screen	저장된 화면 파일을 분석 하기 위하여 현재 화면에 Load 하는 기능 입니다.
Load Result	화면에 Trace 불러 추가 분석을 하기 위한 기능 입니다
Load Setup	사용자 설정 값 을 로드 하는 기 능 입니다.
Load Limit	사용자 Limit값 을 로드 하는 기 능 입니다.
Load Logging Data	저장된 스펙트럼화면을 다시 확 인하는 기능 입니다.
Load MAP	JD Map Creator에서 생성된 지 도를 로드 합니다.
Load Scenario	

File Manager

Spectrum Analyzer

- Spectrum Analyzer
- Channel Power
- Occupied Bandwidth
- Spectrum Emission Mask
- Adjacent Channel Power
- Spurious Emission

VIAVI

• AM/FM Audio Demod

www.viavisolutions.com

Spectrum

Cable 연결 방법

Mode 선택

측정 화면

Mode: Spectrum	vzer	Spect	rum			Freq/Dist
Center Frequenc Channel: Channel Standard:	Doo 000 000 G Band 0 (800)	Iz Preamp: Attenuation: External Offset	د <mark>ع</mark> 20 مع [A] د 0.00 dB [On]	Freq Reference: Trigger Source: Trigger:	Internal Internal Free Run	Center Frequenc
	Scale Unit:	dBm			6	Channel Number
Mode Sweep	0.0					
Detector RMS	-20.0	a side and				Span
RBW (A) 300 kHz	-30.0	January 1	where the	wanter allerable	<u>h</u>	30.000000 MHz
VBW [A] 300 kHz	-40.0	/ V		V		Start Frequency
Sweep Time 780.13 msec	-60.0					985.000000 MH
Average : 1 1	-70.0	√			water boundary	Stop Frequency
TI:W 7	-80.0					1.015000000 G
T5: T6:	-100.0 Center : 1.0	900 000 000 GHz	Frequency	Span :	30.000 000 M	Channel tandard and 0 (800)
M1: M3: M5:	6		M2: M4: M6:			More (172)

측정 항목

- Spectrum
- Channel Power
- Occupied Bandwidth
- SEM (Spectrum Emission Mask)
- Spurious Emission
- AM/FM Demod

Spurious Emission을 제외하고 최대 주파수 범위 100MHz 이내에서 정확한 측정을 할 수 있습니 다.

숫자버튼의 글자를 선택하기 위해서는 ESC 버튼 을 누르고 선택하면 됩니다.

JD785B의 최대 입력 범위는 +25dBm(0.32Watt), DC 50V 입니다. 기지국 AMP에 직접 연결할 경 우 High Power Attenuator 를 연결하여 측정해 야 하며 일반적으로 Coupling 포트를 사용할 것 을 권고 합니다.

No	Description	Related Key
1	Frequency 설정	Freq/Dist
2	SPAN설정	Freq/Dist
3	Amplitude 설정 (Y-Scale)	Amp/Scale
4	외부 기준주파수 및 싱크 설정	Trigger System 3
5	Spectrum 설정	SweepBW/AVG
6	Marker 설정 및 Marker 테이블	Marker Peak Search
7	Trace 기능 (각각의 Trace를 Color로 표시 할 수 있다)	Trace/Display

Spectrum Analyzer

측정 규격

- 측정 주파수 범위: 9kHz ~ 8GHz
- 최대 입력: +25dBm
- RBW: 1Hz ~ 3MHz with 1-3 sequence
- Span: Zero Span, Full Span

© 2017 Viavi Solutions Inc.

8

기능 키 (1)

Spectrum Analyzer

Freq/Dist

화면의 X-Scale을 설정 하는 키입니다.

Amplitude

화면의 Y-Scale을 설정하는 키이며 장비의 입력을 보호하는 감쇄기능 및 낮은 신호를 증폭하는 기능이 포함되어 있습니다.

Amplitude	
Auto Scale	Amp/Scale
Reference Level	
0.0dBm	
Scale/Div	
10.10	
100B	
Auto Manual	
Preamp	
On Off	
Units 🕨	
dBm	Units
Extornal Offcat	dBm
On Off	1
	dBmV
	dBuV
	V
	W
	vv

Trace/ Display

화면에 여러 파형을 캡쳐하여 분석 할 수 있 으며 스펙트럼 파워 측정 방식을 설정 할 수 있습니다.

Trace/Display (1/2)	Trace
Select Trace 🕨	T1
T1	
Clear Write	Т2
	12
Max Hold	Т3
Min Hold	T4
Conturo	т
Capture	15
Trace View	Т6
On Off	
More (1/2)	
	Trace/Display (2/2)
	Trace Clear All
Detector	
Normal	Detectors
	Normal
Peak	Norman
RMS	
	Trace/Display
Negative Peak	
Sample	
Sample	

기능 키 (2)

Spectrum Analyzer

BW/AVG		Ma
BW/AVG Freq/Dist RBW 30KHz	Auto로 하면 Span에 따라서 설정 이 되고 Manual로 하면 1-3 Step 으로 1Hz에서 3MHz까지 설장 할	Ma Sel M1
AutoManualVBW30KHzAutoManualVBW/RBW10.30.010.003Average	수 있습니다. Auto로 하면 RBW에 따라 설정 되 고 Manual로 하면 1-3Step으로 설 정 할 수 있습니다. RBW에 비례하여 VBW가 설정 됩 니다. 화면에 표시되는 Trace를 설정 횟	Ma On No
1	수 만큼 Average하여 파형이 화면 에 표시 됩니다.	Del
		Mc

Marker				
Marker				
Marker (1/2)				
Select Marker M1	6개의 Ma 다.	arker를 사용 ^a	할 수 있습	늘니
Marker View On Off	- 선택한 № 비활성화	larker를 활성 합니다.	화 하거니	ł
Normal	Marker 기 정 합니다	지점의 절대 I h.	파워 값을	축
Delta	Normal Marker으	Marker와 고 [:] 차이 값을 [:]	정된 Delt 측정 합니	a 다.
Delta Pair	- Normal I 변동되는 값을 측정	Marker와 신 Delta Marl 항합니다.	호에 따리 ‹er의 차C)
Marker All Off				
More (1/2)	-	Marker (2/2 Marker ->	<u>}</u> ►	
		Frequency o On	count Off	Frequency 1Hz의 정
		Noise Mark On	er Off	Noise Ma 값으로 Ma

Peak Search	
Peak Search	

ormal Marker를 화면의 Trace중 일 높은 지점으로 이동 합니다 ak Search된 Marker를 다음 ak 값으로 이동 합니다. ak Search 된 위치에서 우측의 ak 로 Marker를 이동 합니다.
ormal Marker를 화면의 Trace중 일 높은 지점으로 이동 합니다 ak Search된 Marker를 다음 ak 값으로 이동 합니다. ak Search 된 위치에서 우측의 ak 로 Marker를 이동 합니다.
ak Search된 Marker를 다음 ak 값으로 이동 합니다. ak Search 된 위치에서 우측의 ak 로 Marker를 이동 합니다.
ak Search 된 위치에서 우측의 ak 로 Marker를 이동 합니다.
ak Search 된 위치에서 좌측의 ak 로 Marker를 이동 합니다.
면의 Trace중 제일 낮은 지점으 Marker를 이동 합니다.
면의 Trace에서 항상 자동으로
M 뒤시글 옷이 집니다.

Noise Marker 는 RBW설정과 상관 없이 RBW 1Hz의 Power 값으로 Marker 값이 표시 됩니다.

Channel Power

Spectrum Analyzer

Cable 연결 방법

Mode 선택

측정 화면

VIAVI

Definition

Channel Power는 Spectrum window 상에서 display된 trace의 일정한 span에 대한 integrated power를 측정하는 기능입니다. 측정할 대역폭을 사용자가 임의로 지정할 수 있으므로 채널파워 또는 Total Power를 측정할 때 모두 사용할 수 있습니다.

측정 규격

- Span: Up to 100MHz
- Integration BW: up to 100MHz
- Max Input: +25dBm
- RBW: 1Hz ~ 3MHz with 1-3 sequence

용어 정리

• Spectral density

1Hz 대역폭 내에서 계산된 스펙트럼 전력을 의미 합니다.

• PAR

Spectrum의 채널 대역폭의 평균 전력 대 피크 전력의 비를 의미 합니다.

Occupied Bandwidth

Spectrum Analyzer

Occupied BW Off 20 dB [A] Trigger Source: Internal Trigger: Free Bun Band 0 (800) Channel Powe M1 n n Occupied BW RBW (A) 100 kHz VBW [A] Specturm Emission Mask OO kHa Adjacent Channel Power 4.200 MH TI-W TT Spurious Emissions Te -7.87 dBm / 20.000 MH .91 dBm (99.00 % of Integrate More (1/2)

Definition

Occupied Bandwidth에서는 송신 전력의 99 %가 포함된 대역폭을 나타냅니다

:

측정 규격

- Span: up to 100MHz
- Max Input: +25dBm
- RBW: 1Hz ~ 3MHz with 1-3 sequence
- VBW: 1Hz ~ 3MHz with 1-3 sequence
- Average: 1 ~ 99

용어 정리

- Integrated power
 Span의 설정 된 전체 파워를 의미 합니다
- Occupied power
 측정 대역폭의 99%의 파워를 의미 합니다.

설정 키 설정 형	방법
Measure Setup 4	
Measure Setup	
Occupied BW % Power 99%	측정 대역폭 설정 (전체 파워의 몇 %인지를 설정 합니다)
Span 5.0MHz	측정 주파수의 범위 설정
Test Limit	알람 범위 설정
Average 1	화면 Trace의 Average를 설정 합니다.
Save/Recall Setting	측정 항목의 설정 값을 저장, 로드 하여 측정 하는 기능
Test Limit On Off	Test Limit On/Off 설정
RF Source	CW Tone 신호를 생성 할 수 있는 기능

Spectrum Emission Mask

Spectrum Analyzer

Mode 선택

Measure Spectrum Emission Mask

측정 화면

Definition

송출되는 carrier의 신호가, 인접 채널로의 간섭을 측정하는 ACPR 측정과 공통점이 있습니다. SEM은 기지국의 Band Pass Filter내의 인접한 채널 사이에 전력 비율을 측정합니다.

측정 규격

- Span: up to 100MHz
- Max Input: +25dBm
- RBW/VBW: 1Hz ~ 3MHz with 1-3 sequence
- Average: 1 ~ 99

용어 정리

- Reference power
 측정 대역폭의 파워를 의미 합니다.
- Frequency Offset Range
 측정 대역 범위의 시작과 끝 주파수를
 의미 합니다,
- Integration bandwidth 오프셋 주파수 범위의 스펙트럼 전력을 측정하기 위하여 적용되며 RBW 대역폭을 의미 합니다.
- Lower/Upper

측정 주파수 범위 안에서 좌측과 우측의 측정 값을 표시하며 기준설정 값과 비교하여 Pass/Fail을 표시 합니다.

Adjacent Channel Power

Spectrum Analyzer

Mode 선택

측정 화면

Definition

송출되는 Carrier 신호가 인접 밴드로 유기되는 전력량을 측정하는 것으로, 일정한 Offset frequency를 중심으로 Chip rate와 Band Width내에 포함되는 Noise Power를 측정하는 항목 입니다.

측정 규격

- Span: up to 100MHz
- Max Input: +25dBm
- RBW: 1Hz ~ 3MHz with 1-3 sequence
- VBW: 1Hz ~ 3MHz with 1-3 sequence
- Average: 1 ~ 99

용어 정리

- Integrated (Reference) power 측정 대역폭의 파워를 의미 합니다.
- Frequency Offset
 측정 대역 범위의 시작과 끝 주파수를 의미 합니다,
- Integration bandwidth 이 도세 조파스 버의이 시페

오프셋 주파수 범위의 스펙트럼 전력을 측정하기 위하여 적용되며 RBW 대역폭을 의미 합니다.

Lower/Upper

측정 주파수 범위 안에서 좌측과 우측의 측정 값을 표시하며 기준설정 값과 비교하여 Pass/Fail을 표시 합니다

Spurious Emission

Spectrum Analyzer

Definition

안테나를 통하여 송출되는 전력이 다른 시 스템에 영향을 주는지에 대하여 확인하는 항목 입니다

측정 규격

- Frequency range: 9kHz ~ 8GHz ٠
- Max Input: +25dBm ٠
- RBW: 1Hz ~ 3MHz with 1-3 sequence
- VBW: 1Hz ~ 3MHz with 1-3 sequence
- Average: 1 ~ 99 ٠
- Range: up to 20 ٠

용어 정리

Specturm Emission Mask

Adjacent Channel Power

Spurious Emissions More (1/2)

Peak Leve

- Frequency Range 측정 대역폭의 시작과 끝 주파수를 의미 합니다.
- Integration BW 각각의 범위에 대하여 RBW를 나타냅니다.
- Peak Pt. 측정 범위 내에서 Peak Point 주파수를 표시 합니다
- Maximum Peak 측정 범위 내에서 Peak Point의 파워를 표시 합니다

1

On

VIAVI

60.0

VBW [M]

OO kHa 20 71 car

TIW T2

AM/FM Audio Demodulation

Mode 선택

측정 화면

VIAVI

Definition

AM/FM 신호를 재생할 수 있으며 다른 신호와의 간섭을 오디오로 재생 확인할 수 있습니다.

측정 규격

- Frequency Range: 9kHz ~ 8GHz
- Max Input: +25dBm
- RBW: 1Hz ~ 3MHz with 1-3 sequence
- Marker: up to 6 (Demodulation can be done for single frequency point at a time)

용어 정리

- Audio Demod
 오디오 재생을 On/Off 할 수 있습니다.
- Demod at 재생 할 Marker의 선택
- **Demod Mode** 신호의 변조 유형을 선택 합니다.
- Dwell Time
 오디오 재생 시간을 설정 합니다.
- Auto Gain

재생되는 오디오의 잡음을 제거하여 소리를 깨끗하게 합니다.

Spectrum Analyzer

RF Source

Spectrum Analyzer

Cable 연결 방법

Mode 선택

Definition

CW톤의 RF신호를 생성합니다. 케이블 Loss나 안테나의 isolation을 측정하는데 유용 합니다.

이 기능은 스펙트럼 분석기 모드에서만 사용할 수 있습니다.

출력 범위

- Waveform: CW
- No of Carrier: 1
- Frequency Range: 5MHz ~ 6GHz
- Output Power: 5MHz ~5.5GHz :-60 ~0dBm

>5.5GHz ~ 6GHz : :-60 ~-5dBm

RF Source Level & SA Level 확인 방법

Spectrum Analyzer

설정 키 설정 방법

Cable 연결 방법

측정 키 설정 방법

Definition

SG 신호를 이용하여 다른 장비의 수신 감도 또는 level을 측정 할 때 SG와 SA의 Level이 얼마인지를 확인 해야 합니다.

이때 그림과 같이 SG의 출력 신호를 SA로 연결하여 측정 된 값을 External Offset으로 설정하여 균일 된 값으로 측정 할 수 있습니다.

측정 화면

WCDMA/HSDPA

- RF Analysis
- Constellation
- Code Domain Power
- Codogram
- RCSI
- CDP Table
- OTA

RF Analysis

WCDMA / HSDPA

Cable 연결 방법

측정 항목

RF Analysis의 측정은 다음 항목과 같습니다.

- Channel Power
- Occupied BW
- Spectrum Emission Mask
- ACLR
- Multi ACLR
- Spurious Emission

Multi-ACLR 은 여러 개의 Channel로 송출되는 시스템에서 ACLR을 한 화면에 측정 할 수 있도록 지원 합니다.

측정 화면(Channel Power)

Mode 설정

VIAVI

측정 화면 (Multi-ACPR)

측정 화면(ACLR)

www.viavisolutions.com

Constellation

WCDMA / HSDPA

Cable 연결 방법

Mode 설정

측정 화면

Definition

본 항목은 WCDMA I/Q Diagram의 Modulation의 품질을 확인 할 수 있습니다.

용어 정리

- CPICH Power : CPICH 코드 채널의 절대 파워를 나타냅니다.
- Rho

correlated signal power 대 receiving signal power를 비율로 표시

• EVM

모든 코드 채널의 위상 및 진폭의 Demodulator Error의 전체 평균 값.

Peak CDE

변조된 모든 채널에서 최대 Error를 가진 코드와 측정 된 코드의 상대 파워 값을 표시.

• Frequency Error

설정 주파수와 측정 된 신호의 중심 주파수 사이의 주파수 차이가냅니다.

Time Offset

GPS 신호 또는 External Sync(10ms)과 측정 된 신호의 Time Offset을 표시

- Carrier Feed thru WCDMA신호에서 Modulation 되지 않은 신호의 Power를 표시 합니다
- Scramble Code
 측정 기지국의 코드를 표시 합니다

201200	58
Measure Setup 4	
₽	
Measure Setup	
Scramble	스크램블 코드를 수동 또는
24	자동으로 검줄하는 기능 키
Auto Manual	입니다.
Detect Mode	Modulation 신호에 대한 측정
HSDPA WCDMA	선택 키 입니다.
HSDPA+	
Threshold	
-33.00dB	

서저 키 서저 바버

Code Domain Power

WCDMA / HSDPA

Cable 연결 방법

Mode 설정

측정 화면

Mode: WCDMA/HS	DPA	Code Do	imain			Measure	Setup
Center Frequency: Channel: Channel Standard:	2.162 400 000 GHz 10808 FWD Band 1 (2100-Ge	Preamp: Attenuation: External Offset:	Off 20 dB [A] 39.40 dB [On]	Freq Reference: Trigger Source: Trigger:	internal Internal Internal	Scrambi 8	e
					PASS	Auto	Manua
Detect Mode WCDMA/HSDPA	Scale Unit: dB (M1 -10			M1: ₩256,1	-9.82 dB,0.72 %	Detect N HSDPA HSDPA+	lode WCDM/
Reference Relative	-20					Thresho	ld
Scramble [A] B	-50 0		Walsh Code		511	-33.00 ¢	в
	-10					5-CCPCI	1
Threshold -33.00 dB	-30					128 (2)	(On '
5-CCPCH 128 (2) [On]	-50 0		Walsh Code		3*	PicH	
PICH 256 (2) [On]	Channel Powe	r: 39.05 dBm				256 (2)	(On]
	СРІСН		-5.83 dB	Max Active	-6.64 dB		
	P-CCPCH S-CCPCH	0	-9.82 dB	Ave Active	-13.87 dB		
	PICH		-11.79 d	B Avg Inactive	-54.84 dB		
	P-SCH	100	-8.52 dB	Scramble Co	de 8		
	S-SCH		-R 91 dR				

Definition

WCDMA 신호가 로드 된 각 코드 채널 절대,상대 코드의 파워를 측정할 수 있습니다. 각 코드 채널 적절한 수준에서 운영 및 RF 섹션의 코딩 상태를 (송신기 디자인 전반적인 문제) 식별하는 많은 도움이 됩니다.

용어 정리

Channel Power:

WCDMA 신호 채널 대역폭만큼 필터 링 된 신호의 기지국 송신 파워를 표시 합니다.

Max Active:

액티브 채널 중 W256(0), W256(1)을 제외 한 코드 중 제일 높은 코드의 파워 값.

• Average Active:

액티브 채널을 모두 평균한 파워 값

• Max Inactive:

Noise Level로 표시 되는 코드 채널 중 제일 높은 값

• Average Inactive:

Noise Level의 평균 파워 값

설정 키 설정 방법 Measure Setup Measure Setup Sc 24

Ρ

Scramble 24 Auto Manual Detect Mode HSDPA WCDMA HSDPA+ Threshold -27.0dB Auto Manual S-CCPCH ► 128(2) [Off] PICH ► 256(2) [Off] Trace/Display	스크램블 코드를 수동 또는 자동으로 검출하는 기능 키 입니다. 활성 코드 채널 임계 값 레벨 설정 S-CCPCH 채널을 활성화 해서 화면에 표시 합니다. PICH 채널을 활성화 해서 화면에 표시 합니다
Trace/Display	
View	화면을 둘로 나누어 Width
Zoom Full	만큼 확대하여 표시 합니다.
Position	700m 0 근 프시치느 처 버패
0	코드 위치를 설정 합니다.
Width	
32 64	Zoom의 사이스를 설성 합니다.
128 256	
Control Channels	Delta를 선택 시 CPICH를 기준으로 상태 값을 표시 한니다.
Normai Della	

Code Domain Power (Constellation)

Cable 연결 방법

Mode 설정

측정 화면

Code Domain

Definition

WCDMA 신호가 로드 된 각 코드 채널 절대,상대 코드의 파워를 측정할 수 있습니다.

특정 Marker의 Constellation을 측정 할 수 있습니다.

용어 정리

Channel Power:

WCDMA 신호 채널 대역폭만큼 필터 링 된 신호의 기지국 송신 파워를 표시 합니다.

- Modulation Format marker 지점의 Code의 변조 상태 표시
- Code Power Marker 지점의 코드 파워 표시
- EVM

Marker 지점의 EVM 측정 값 표시

설정 키 설정 방법

WCDMA / HSDPA

	Measure Setup 4	
	Measure Setup	
	Scramble 24 Auto Manual Detect Mode HSDPA WCDMA	스크램블 코드를 수동 또는 자동으로 검출하는 기능 키 입니다. 활성 코드 채널 임계 값 레벨
	HSDPA+ Threshold -27.0dB Auto Manual	실정 S-CCPCH 채널을 활성화 해서 화면에 표시 합니다.
	S-CCPCH ► 128(2) [Off]	PICH 채널을 활성화 해서 화면에 표시 합니다
	PICH ► 256(2) [Off]	
	Trace/Display	
	Ļ	
	Trace/Display View Zoom Full	화면을 둘로 나누어 Width 만큼 확대하여 표시 합니다.
	Position 0	Zoom으로 표시하는 첫 번째 코드 위치를 설정 합니다.
	Width 32 64 128 256 Constellation	Zoom의 사이즈를 설정 합니다.
+	On Off	Marker를 활성화하여 Modulation 상태를 측정 할 수 있습니다.

Codogram

WCDMA / HSDPA

서저 키 서저 바버

Cable 연결 방법

Mode 설정

측정 화면

Definition

Codogram은 사용자가 시간이 흐름에 따라 코드 채널 파워 및 코드 점유 비율 추세를 볼 수 있도록 코드 도메인 파워 색상 코드를 한 줄에 표시하는 방법을 의미합니다.

화면 구성된 두 개의 상 하위 창에 각각 폭포수형 다이어그램 및 현재 코드 도메인 파워 추세를 보여 줍니다.

용어 정리

Auto Save

측정된 추세 다이어그램을 USB 메모리에 데이터 파일로 저장할 수 있습니다. 폭포수형 다이어그램이 화면 가득 때 USB에 저장하며 다시 새 데이터를 표시하면서 폭포형 화면이 위로 올라 갑니다.

Time Cursor

사용자가 CDP 데이터의 백업 시간 및 위치 정보를 읽을 수 있도록 폭포 창 위로 이동 할 수 있으며 가로줄 커서로 화면에 표시 합니다.

201200	58
Measure Setup 4	
I	
Measure Setup	
Reset/Restart	폭포 형 다이어그램 지우고 로깅을 다시 시작 할 때 사용
Auto Save codogram.cod On Off	
Time Cursor 1 On Off	
Time Interval Os	측정 시간 간격을 설정 합니다.
Scramble 24 Auto Manual	스크램블 코드를 수동 또는 자동으로 검출하는 기능 키 인니다
Detect Mode HSDPA WCDMA HSDPA+	
S-CCPCH • 128(2) [Off]	S-CCPCH 채널을 활성화하여 화면에 표시 합니다.
PICH 256(2) [Off]	PICH 채널을 활성화하여 화면에 표시 합니다

RCSI

WCDMA / HSDPA

섬정 키 섬정 방법

Cable 연결 방법

Mode 설정

Definition

RCSI는 WCDMA 주요 코드 채널 파워의 추세를 보여 줍니다. 화면 구성된 두 개의 창에 각각 주요 채널 추세 선 그래프 및 현재 코드 도메인 파워를 보여줍니다.

용어 정리

Auto Save

측정된 추세 다이어그램을 USB 메모리에 데이터 파일로 저장할 수 있습니다. 추세 다이어그램이 화면 가득 때 USB에 저장되며 다시 새 데이터를 표시하면서 추세선이 좌측으로 이동 합니다

Measure Setup 4	
Measure Setup Reset/Restart	추세 선은 지우고 로깅을 다시 시작 할 때 사용
Auto Save RCSI Off On	
Alarm Code None	Set Mask 값에 따라 Alarm 발생
Set Mask 0.0dB	Alarm Level 설정
Scramble 24 Auto Manual	스크램블 코드를 수동 또는 자동으로 검출하는 기능 키 입니다.
S-CCPCH 128(2) [Off]	S-CCPCH 채널을 활성화 해서 화면에 표시 합니다.
PICH 256(2) [Off]	PICH 채널을 활성화 해서 화면에 표시 합니다

측정 화면

	/01/07 17:2	5:46							1009
Mode: WCDMA.	/HSDPA		RCS					Measure	Setup
Center Frequen Channel: Channel Standa	cy: 2.142 6 10713 F rd: Band 1 (DO OOO GHz Pre WD Att 2100-Ge Ext	amp: enuation: ernal Offset:	On 0 dB [A] 0.00 dB [On]	Freq Refe Trigger 9 Trigger:	erence: Inte Source: Inte Inte	ernal ernal ernal	Reset/R	estart
Detect Mode HSDPA	-0.0 Sca -10.0	le Unit: dB					M1:	Auto Sar rcsi.rcs On	re Off
Reference Relative	-20.0				Γ.			Alarm C	ode G
Scramble [A] 315	-40.0			Walsh Cod	,		31	None	
	-0.0	le Unit: dB			Me	asurement C	ount: 2186	Set Mas	×
Threshold -33.00 dB	-5.0							-27.00 c	B
5-CCPCH 128 (2) [On]	-15.0			and a state	in the second			Scrambi 315	e
PICH 256 (2) [On]	-25.0 0			Count	a nyan. La sa ar		511	Auto	Manual
	Color	Code Name CPICH P-CCPCH S-CCPCH	SF W256,0 W256,1 W128,2	Max (dB) -11.18 -13.91 -12.50	Min (dB) -25.81 -30.32 -37.25	AVG (dB) -16.37 -18.91 -20.93	Alarm Set Off Off Off	Detect N HSDPA HSDPA+	Node WCDMA
	_	PICH P-SCH S-SCH	W256,2	-17.06 -13.03 -13.75	-34.18 -23.03 -21.55	-22.42 -18.11 -18.29	Off Off	More (1	12)

CDP Table

WCDMA / HSDPA

Cable 연결 방법

Mode 설정

Definition

CDP 테이블에 신호가 측정 된 활성 채널 목록을 보여 줍니다. 기지국에서 출력되는 모든 Code들의 상태를 Table로 정리 하여 보여주는 기능으로 Code들의 상태를 빠르게 확인 할 수 있습니다.

용어 정리

Reference Power

WCDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 파워를 표시 합니다.

Code Utilization

사용자가 얼마나 많은 코드 채널을 활성 채널에 의해 점유 하는지를 확인할 수 있습니다. 활성 코드 채널의 점유 비율을 보여줍니다.

설정 키 설정 방법

측정 화면

Mode: WCDMA/HS	C	P Table				Save		
Center Frequency: Channel: Channel Standard:	2.142 600 10713 FW Band 1 (21	1 000 GH: D 1 00-Ge	Preamp: Attenuation External Of	On 1: 0.08 1/set:0.00	[A] dB [On]	Freq Reference: Trigger Source: Trigger:	internal Internal Internal	Save Screen
	Referen	ce Power	: -46.52 dB	m Co	le Utilization	n: 18.95 %	Page 1/2	Save Result
Detect Mode	Code		Allocation		Mod Type	Power (dB)	Power (dBm)	
HSDPA	0	256	CRICH	2.09	QPSK	-5:01	-51.53	
	1	256	PCCPCH	3.04	QPSK	-8.12	-54.64	Contraction of the local division of the loc
	2	256	PICH	4:55	QP5K	-11.01	-57.53	Save Status
Scramble IA1	2	128	SECPCH	3.70	QPSK	-6.13	-52.65	
320	3	128	Traffic	38.76	QP5K	-31.87	-78.39	
	6	128	Traffic	22.70	-QP5K	-20.51	-67.03	Come To
	20	256	Traffic		QPSK.	-17.32	-63.84	Save To
Threshold	21	256	Traffic	13.28	QPSK	-17.93	-64.44	Internal USB
-33.00 dB	11	128	Traffic	40.03	QPSK	-16.87	-63.39	and the second second
S-CCPCH	12	128	Traffic	51.40	QPSK	-20.16	-66.68	
128 (2) [On]	52	512	Traffic		QPSK	-28.23	-74.74	
PICH	53	512	Traffic	49.37	QPSK	-25.98	-72.50	
256 (2) [On]	54	512	Traffic	28.69	QPSK	-27.30	-73.81	
	55	512	Traffic	33.97	QPSK	-29.11	-75.62	
	56	512	Traffic	36.26	QPSK	-26.72	-73.24	
	57	512	Traffic		QPSK	-26.93	-73.44	
	29	256	Traffic	42.60	QPSK	-21.77	-68.29	
	68	512	Traffic	53.76	QP5K	-23.23	-69.75	
	61	512	Traffic	43.16	QPSK	-22.35	~68.86	

Power Statistics CCDF

WCDMA / HSDPA

Cable 연결 방법

Mode 설정

측정 화면

VIAVI

Definition

WCDMA는 HSDPA (DATA) Channel을 사용하기 때문에 Modulation 상태에 따라 PAR이 높아 질 수가 있습니다. CCDF 측정에서는 WCDMA TX Signal의 power 분포에 대한 통계적인 측정 결과를 보여줍니다. 화면에는 Gaussian분포를 나타내는 guide line이 표시되며 sampling된 power data의 분포가 표시됩니다.

용어 정리

Average Power

CDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 평균 파워를 표시 합니다.

MAX Power

CDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 피크 파워를 표시 합니다.

Crest Factor

Average 파워와 MAX파워의 차이 값

설정 키 설정 방법

OTA Channel Scanner

WCDMA / HSDPA

Cable 연결 방법 Modulated Signal GPS Antenna **RF** Antenna (Omni or Directional) 0

Mode 설정

측정 화면

Definition

최대 6개의 Channel 번호를 설정 하여 동시에 Channel Power와 CPICH Power를 측정 할 수 있습니다.

용어 정리

 Channel Power WCDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 파워를 표시 합니다

 CPICH Power CPICH의 Ec/Io 값을 표시 합니다.

설정 키 설정 방법

측정 DATA를 저장 하는 기능

OTA Scramble Scanner

WCDMA / HSDPA

설정 키 설정 방법

Mode 설정

측정 화면

Definition

OTA는 무선통신상에서 기지국의 스크램블 코드 512개를 검색하여 화면에 표시 합니다.

최대 6개의 스크램블 코드의 Ec/Io 파워와 칩 단위 지연 정보를 화면에 표시할 수 있습니다.

* WCDMA 1chip period=1/(3.84Mcps) \approx 0.26us

용어 정리

Channel Power

WCDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 파워를 표시 합니다

CPICH Dominance

제일 높은 스크램블 코드와 두 번째 Ec/Io 레벨의 차이 값을 파워로 표시 합니다.

OTA Multipath Profile

WCDMA / HSDPA

Mode 설정

측정 화면

Definition

OTA 멀티패스 프로파일은 멀티 패스 신호의 CPICH의 스크램블 코드를 +/- 16 칩의 시간 도메인상에서 다중경로 신호를 보여 줍니다. 화면 아래 테이블은 최대 6개의 같은

CPICH 의 시간 도메인 상에서의 Ec/Io 파워 값과 Delay를 분석하여 값을 표시 합니다.

용어 정리

Channel Power

WCDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 파워를 표시 합니다

- Multipath Power
- 다중경로로 측정 된 모든 파워 대비 최일 높은 신호를 뺀 값을 표시 합니다

OTA Code Domain Power

Cable 연결 방법 Modulated Signal

Mode 설정

Definition

OTA 코드 도메인은 많은 정보를 제공합니다. WCDMA 코드 도메인 파워를 포함하여 기지국에 대해, 변조 정확도에 관련하여 매개 변수 및 셀 사이트의 사용과 기지국의 무선 성능을 예측하기 위한 변조 정확도와 매개 변수를 측정할 때 필요 합니다.

용어 정리

Amplifier Capacity

현재 출력 최대 전력 비율과 기지국의 파워 앰프 사용 율에 대한 비율을 보여 줍니다.

- Peak/Average Amplifier Capacity 일정한 시간 동안 Peak와 Average파워의 비율을 표시 합니다.
- Code Utilization
 코드 채널의 점유 비율을 표시 합니다.
- Peak/Average Code Utilization
 일정한 시간 동안 Peak와
 Average파워의 점유 비율을 표시 합니다.

WCDMA / HSDPA

설정 키 설정 방법

Measure Setup
Max
Amplifier Power
43dBm
CPICH Power
33dBm
CPICH
Dominance >
10dB
Multipath
Power <
-1.00dB

Mobile WIMAX

- RF Analysis
 - Channel Power Occupied BW
 - Spectrum Emission Mask
 - Spurious Emissions ACPR
- Power vs Time (Frame)
- Modulation Analysis
- Power Statistics CCDF
- OTA

- Time Offset 측정
- IF Power 측정 (Tx, RX)
- 불요파 방탐

기본 설정

Mode 설정

Mobile WiMAX

Definition

- Mobile WiMAX의 기능을 사용하기 위해서 는 우선 Band Width를 설정 해야 합니 다. SKT는 8.75MHz를 그리고 KT는 10MHz를 사용하고 있습니다. JD785B 는 Band Width 설정 만으로 모든 설정 이 Auto로 설정 하도록 되어 있습니다. RF Analysis에서 DL 만 측정 하기 위해서 는 심벌을 다음과 같이 설정 해야 합니 다.
- SKT : Start Symbol : 0 Stop Symbol : 26
- KT : Start Symbol : 0 Stop Symbol : 28

Channel Power

Mobile WiMAX

Cable 연결 방법

Definition

Channel Power 측정 기능에서는 WiMAX 신호의 5ms 프레임 전체에 대한 power를 측정해 단위 시간에 전송되는 평균파워(Frame Average Power)를 측정합니다.

External Offset 설정

Mode 설정

측정 심벌 설정

측정 화면(Channel Power)

Occupied BW

Mobile WiMAX

Cable 연결 방법

Definition

Carrier의 spectrum의 shape에 대한 측정으로 total transmitted power(5ms) 중 일정한 비율 이상의 power가 포함되는 bandwidth 를 측정하는 것으로, 송신출력의 99%의 power가 포함되는 bandwidth를 기준으로 합니다

External Offset 설정

Mode 설정

측정 심벌 설정

측정 화면(Occupied BW)

Mode: Mobile WIMAX Occupied BW									
Center Frequency Channel: Channel Standard	2.000 000 000 GHz Preamp: Attenuatio ProfR1 (1.25 21 External O		Off ion: 20 dB Offset: 0.00 dE	Off Freq Reference: 20 dB [A] Trigger Source: 0.00 dB [On] Trigger:		GPS Internal Internal	Channel Power		
						PASS			
	Scale U	nit: dBm				M1: -	Occupied BW		
etect Mode FT	0.0								
landwidth 0 MHz	-10.0						Spectrum Emission Mask		
rame Length i ms	-30.0								
P Ratio 78	-50.0						Spurious Emissions		
)elay 1.00 us	-70.0	~~~!				L.,			
werage	-90.0 Center : RBW: 11	2.000 000 00 00 kHz	0 GHz Fre VBW:	equency 100 kHz	Span : 1 Sweep T	5.000 000 MHz ime: 1.5 sec	ACPR		
T1:W T2:	Occupie	d Bandwidth:	9.13 MHz						
T5: T6:	Integrati Occupie	ed Power: d Power:	-5.38 dBm / -5.42 d8m (15 MHz 99 % of Integr	ated Power)				
	Start Sy	mbol (Time):	0 (0.0 us)	Stop Symbo	ol (Time): 21	3 (2982.9 us)			

VIAVE

Spectrum Emission Mask

Mobile WiMAX

Cable 연결 방법

Mode 설정

Definition

송신신호의 주파수 프로파일을 측정하는 것으로 BS가 할당된 주파수 범위 밖으로 얼마의 에너지를 송출하고 있는가를 검증하기 위해 실시합니다. 802.16에서는 인가된 밴드에 대한 Emission mask 규격을 제시하지 않고 있으며, TTA에서는 두 가지 규격을 제시하고 있으며 사업자간 밴드에 적용되는 규격이 나머지 한 규격을 포함하고 있습니다. JD785B는 범용 규격인 사업자간 밴드에 적용되는 Emission Mask 규격을 적용하고 있습니다.

External Offset 설정

측정 화면 (Spectrum Emission Mask)

측정 심벌 설정

ACPR

Mobile WiMAX

Cable 연결 방법

Definition

송신 단에서 출력되는 신호에서 방출되는 Noise 신호의 Power를 측정 합니다.

External Offset 설정

Mode 설정

측정 화면(ACPR)

Mode: Mobile WiM	IAX	ACP	R						RF Analysis
Center Frequency: Channel: Channel Standard:	2.000 000 000 GHz ProfR1 (1.25 21	Preamp: Attenuation: External Offset	Off 15 dB [/ 36.00 dE	N] 3 [On]	Freq Re Trigger Trigger	eference: r Source: r:	GPS Internal Internal		Channel Power
							PASS		
	Scale Unit: d	≩m						M1:	Occupied BW
Mode Sweep	30.0								
etector MS	10.0	future of the second se	er interesting	~~~					Spectrum Emission Mask
BW [M] 00 kHz	-10.0 -20.0								
'8W (M) O kHz	-30.0 -40.0	and the second sec				1	Margareter	Jersen	Spurious Emissions
weep Time .08 sec	-50.0								
verage	-70.0 Center : 2.00	0 000 000 GHz	Free	uency		Span :	20.000 001	0 MHz	ACPR
T1:W T2:	Integrated Po	wer: 29.71 dBm							
T5: T6:	Frequency Offset	Integration Bandwidth	Lov dBc	ver dBm		dBc U	pper dBm		
	5.000 MHz	00.000 kHz	71.65	-41.9	P	69.88	-40.17	P	
	9 000 MU*	1 000 MHz	64.12	24 4	D D	62.96	22.25	0	

Power vs Time (Frame)

Mobile WiMAX

Cable 연결 방법

Mode 설정

측정 화면

VIAVI

Definition

WiMAX 신호를 시간 축으로 측정한 것입니다. WiMAX 프레임은 preamble, Down Link, Up Link의 순서로 전송되며 Preamble의 3개 세그먼트 중 한 세그먼트는 부 반송파가 9dB boost되어 있기 때문에 다른 버스트 구간의 파워에 비해 상대적으로 높은 출력으로 전송됩니다.

용어 정리

- Channel Power : 사용자가 설정 한 시작 심벌과 끝 심벌의 측정 파워를 표시 합니다.
- Frame Average Power
 프레임 5ms에 대한 전체 파워를 표시 합니다.
- Preamble Power Preamble 측정 구간 파워 표시
- DL Burst Power Down Link 파워 표시.
- UL Burst Power Up Link 파워 표시
- Time Offset 기준 신호와 Preamble의 Time Delay 표시.

설정 키 설정 병	방법
Measure Setup 4	
I	
Measure SetupSystem Config	
Detect Mode Auto QPSK 16QAM 64QAM Start Symbol	Modulation 측정 모드 설정
0 Stop Symbol	
28 Preamble Index 43 Auto Manual	
Full Windows More (1/2)	UL신호를 측정 시 사용하는 기능 Full : 5ms 전체 Search Windows : 외부 sync에 맞추어 -20~+50uS로 측정.
Measure Setup Delay	
0.00uS Video Filter	신호를 깨끗한 선으로
On Off	표시하여 측정 할 때 사용.

Constellation

Mobile WiMAX

Cable 연결 방법

Mode 설정

측정 화면

Mode: Mobile WiM	NX .				Cons	tellat	ion					Measure Set	up
Center Frequency: Channel: Channel Standard:	2.000 000 ProfR1 (1	.25 21	SH2 P A E	ream ttenu xtern	o: ation: al Off	C Z set: 3	off 0 dB 6.00	(A) dB (C	Dn]	Freq Re Trigger Trigger	ference: GPS Source: Internal : Internal PASS	System Confi	ia I
Detect Mode Auto											Channel Power 31.41 dBm RCE RMS/Peak	Detect Mode Auto Q 16QAM 640	QPSk QA№
10 MHz Frame Length	gth • • • • • • • • • •		Start/Stop Symbol										
CP Ratio		•	•	•	•	•	•	•	•		Frequency Error 38.21 Hz	DL Zone	
DL Zone Auto		÷	•	•	•	•	•	•	•	•	Time Offset -0.03 us	Auto P FUSC AMC	2X3
Delay 0.00 us		•	•	•	•	٠		•	•		Comment PD	Preamble Ind	lex
Preamble Index [A] 113		•		٠	•		•	٠	•		2	Auto Ma	anua
Search Type Full		•	•	•	•	*	•	•	•		Cell ID 17 Preamble Index 113	Search Type Full Win	ndow
	Star	t Symb	ol (T	ime):	8 (8	322.9	us)	St	op Sy	mbol (1	fime): 8 (925.7 us)	More (172)	

Definition

송신기의 SNR 저하로 인해 수신기의 SNR이 0.5dB 이상 저하되지 않는지를 확인하기 위해 전체 부반송파, OFDMA 프레임과 패킷에 대해 평균한 Relative constellation RMS error 7 지 정 된 각 버스트 프로파일에서 요구하는 기준을 만족하는지를 시험합니다. 송신기의 constellation error 를 측 정 할 때, DL 서브프레임 내에 multi zone이 있을 경우 BS가 프레임 전체의 전력 밀도를 일정하게 유지하려고하는 경향으로 인해 zone의 경계에서 pilot level이 shift될 수 있으므로 DL 서브프레임 내에 multi zone 이 존재하는지를 확인해야 합니다.

용어 정리

- Channel Power : 설정된 심볼의 파워 표시
- RCE RMS/PEAK

Relative Constellation Error (RCE)를 표시 하며 낮은 RCE 품질은 데이터 전송 속도에 영향을 줍니다.

- EVM RMS/PEAK Error Vector Magnitude (EVM)을 표시 합니다
- Segment ID 측정된 신호의 Segment ID 표시
- Cell ID

측정 된 신호의 Cell ID 표시

• Preamble Index 측정 된 신호의 Preamble Index 표시

설정 키 설정 병	방법
Measure Setup 4	
I	
Measure Setup	
System Config 🕨	Modulation 측정 모드 설정
Detect Mode	
Auto QPSK	
16QAM 64QAM	
Start / Stop	0~3 심벌을 제외한 DL존의 한
Symbol	심멀을 선택 압니나.
8	
DL Zone	
Preamble Index	
43	
Auto Manual	
Search Type	
Full Windows	
More (1/2)	
Measure Setup	
Channel Estimate	Preamble 신호를 기준으로
	측정 하려면 On을 설정 합니다.
Un Off	
Delay	
0.00uS	

Spectral Flatness

Mobile WiMAX

Cable 연결 방법

Mode 설정

Definition

RF 필 터 링 을 사용하는 광대역 시스템에서는 IQ Imbalance 등에 의해 주파수 특성의 Flatness가 깨어질 수 있습니다. Spectral Flatness는 WiMAX 시스템의 프로파일에 따라 사용하는 주파수 대역폭 내에서 주파수 특성의 평탄 도를 측정하는 것입니다.

용어 정리

 Average Subcarrier Power 설정 된 서브케리어의 측정 파워

측정 화면

VIAVI

Mode: Mobile WiM	AX				Sp	ectral F	latness							Modulation
Center Frequency: Channel: Channel Standard:	2.000 ProfR	000 0	00 (5 2 1	5Hz P 4 E	reamp ttenua xterna	: tion: I Offset	Off 20 dB 36.00		n]	Freq Refe Trigger 9 Trigger:	erence: Source:	GPS Intern Intern	al al	Constellation
												PASS		
Detect Mode	5.0	Scale	Unit	: dB				Ť			í	-		Spectral Flatnes
Auto	3.8													
Bandwidth 10 MHz	1.4		ŧ		-	-	_			-		1		EVM vs Subcarrier
Frame Length 5 ms	0.2 -1.0		-	21.4			2			ad Charge Mir 111				
CP Ratio	-2.2		t											EVM vs Symbol
DL Zone	-4.6													
Delay D.00 us	-7.0	-420					s	ubcarr	ier				420	
Preamble Index [A] 113	,	Averag	e Si	ibcari	ier Po	wer:	31.41	dBm						
earch Type		Sub	carr	ier		MAX		MIN		A	/G	Re	sult	
ull		420		-210		0.07 d	8	-0.08	18 18	-0.00) dB) dB		P	
		210		420		0.08 d	B	-0.09	18	-0.00	dB		P	
		Start 9	umh	ol (T	ime)-	8 (822	Zui P S	Str	n 9	wmbol (T	me)-	22 (23)	55 7 uc)	

설정 키 설정 방법

EVM vs Carrier

Mobile WiMAX

Cable 연결 방법

Mode 설정

측정 화면

VIAVI

Definition

지정된 OFDMA Symbol 구간에서 부반송파 별로 데이터를 샘플링 하여 각 부반송파 별 EVM을 보여주는 기능입니다. 그래프에는 각 Sub Carrier의 평균 EVM값을 표시하며 차트 하단에는 전체 Subcarrier에 대한 평균/최대 EVM과 RCE를 보여주고 있습니다.

용어 정리

• RCE RMS

Relative Constellation Error (RCE)의 평균 값을 표시 합니다.

RCE PEAK

Relative Constellation Error (RCE) 의 피크 값을 표시 합니다.

• EVM RMS

٠

Error Vector Magnitude (EVM)의 평균 값을 표시 합니다

EVM PEAK Error Vector Magnitude (EVM) 의 피크 값을 표시 합니다

EVM vs Symbol

Mobile WiMAX

Cable 연결 방법

Mode 설정

측정 화면

VIAVI

Definition

OFDMA Symbol에 주파수 축으로 대응되는 전체 부반송파 의 EVM을 측정해 OFDMA Symbol별로 평균한 결과를 보여줍니다.그래프에는 각 OFDMA Symbol의 평균 EVM값을 표시하며 차트 하단에는 전체 OFDMA Symbol에 대한 평균/최대 EVM과 RCE를 보여줍니다.

용어 정리

• RCE RMS

Relative Constellation Error (RCE)의 평균 값을 표시 합니다.

• RCE PEAK

Relative Constellation Error (RCE) 의 피크 값을 표시 합니다.

EVM RMS

Error Vector Magnitude (EVM)의 평균 값을 표시 합니다

• EVM PEAK

Error Vector Magnitude (EVM) 의 피크 값을 표시 합니다

설정 키 설정 형	방법
Measure Setup 4	
Measure Setup	
System Config 🕨	Modulation 측정 모드 설정
Detect Mode	
Auto QPSK	
16QAM 64QAM Start Symbol	
Start Symbol	
0	
Stop Symbol	
28	
DL Zone	
Auto PUSC	
FUSC AMC2X3	
43	
Auto Manual	
More (1/2)	
Ļ	
Measure Setup	
Search Type	
Full Windows	
Channel Estimate	Preamble 시ㅎ르 기즈ㅇㄹ
0	측정 하려면 On을 설정 합니다.
Delav	
Delay	
0.00uS	

Power Statistics CCDF

Mobile WiMAX

Cable 연결 방법

Mode 설정

측정 화면

Definition

OFDMA 전송방식은 다수의 부 반송파를 사용하는 방식이기 때문에 single carrier 전송 방식에 비해 PAR이 매우 높습니다. CCDF 측정에서는 OFDMA TX Signal에 대한 power 분포에 대한 통계적인 측정 결과를 보여줍니다. 화면에는 Gaussian분포를 나타내는 guide line이 표시되며 sampling된 power data의 분포가 표시됩니다.

용어 정리

- Average Power CDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 평균 파워를 표시 합니다.
- MAX Power

CDMA 신호 채널 대역폭으로 필터링 된 신호의 장비 수신 피크 파워를 표시 합니다.

Crest Factor

Average 파워와 MAX파워의 차이 값

설정 키 설정 방법

Time Offset 측정

Mobile WiMAX

Definition

Mobile WiMAX 신호는 TDD(5ms)를 기준으로 신호가 동기 되어 있습니다. 기지국 또는 기지국과 중계기간에 TDD 기준으로 얼마나 delay가 발생하는지를 측정 할수있습니다. 옥내 형 기지국일 경우 GPS B/D에서 TDD 신호를 연결하여 측정 하고 옥외 형일 경우는 GPS 안테나를 연결하여 측정 합니다.

설정 키 설정 방법

Mode 설정

VIAVI

측정 화면

											Manager	ature .
Mode: Mobile WiM/	4X			Power	's Time	(Fram	2)				measures	setup
Center Frequency: Channel: Channel Standard:	2.345 000 0 ProfR1 (1.25	00 GHz P A 21 E	reamp: Attenuatio xternal (C on: O Offset: O	in dB .00 dB		Freq R Trigge Trigge	eference: r Source: r:	GPS GPS GPS		Delay 0.00 us	
	Scale I	Joit: dBrr	1								Video Fill	er
Detect Mode Auto	-20 -30										On	
Bandwidth 10 MHz	-40 -50											
Frame Length 5 ms	-60 -70 <mark>17</mark> 1011				la is s					, Maria		
CP Ratio 178	-80 - 1976) -90	VrHn j		hiq aya	line	1	<u>ha</u> na a	dinalit dita	Nativita	it la film		
DL/UL Symbols	-100					1111						
29/18	-110											
29/18 Delay 0.00 us	-110 -120 -44.64	us			Tim	e (us)			52	35.72 us		_
29/18 Delay 0.00 us Video Filter Off	-110 -120 -44.64 Channe	us I Power :		79.55 d	Tim Bm	e (us)			52	85.72 us		
29/18 Delay 0.00 us Video Filter Off Preamble Index [A] 59	-110 -120 -44.64 Channe Frame 4	i us I Power: Average I	- Power: -	79.55 d 81.68 d	Tim Bm Bm	e (us) Prean	ble Pov	ver: -71,8	521 521 0 dBm	85.72 us		
29/18 Delay 0.00 us Video Filter Off Preamble Index (A) 59 Search Type Full	- 110 - 120 -44.64 Channe Frame DL Burs IQ Orig	l us I Power: Average I st Power: in Offset		79.55 d 81.68 d 79.55 d 54.25 d	Tim Bm Bm Bm B	e (us) Prean UL Bu Time	ible Pov rst Pow Offset:	ver: -71.8 er: -93.2 0.53	521 0 dBm 8 dBm us (22.80	85.72 us		

수신대역 불요파 측정

Mobile WiMAX

Definition

OFDMA Symbol 구간에서 Sub-Carrier 별로 데이터를 샘플링 하여 측정 하면 Down Link와 Up Link를 구별하여 측정 할 수 있습니다.

SA모드에서는 DL과 UL신호가 10MHz Band 안에 공존하기 때문에 불요파를 측정할 수 없습니다.

불요파를 측정 하기 위해서는 UL의 중간 Symbol에 Trigger를 설정하여 WiMAX 10MHz 대역으로 들어오는 Noise 신호를 측정 할 수 있습니다. Channel Power 모드 에서도 같은 측정을 할 수 있습니다.

DL 구간이 설정 되어 Noise 신호가 보이지 않는 상태

SKT 27(DL) + 15/2(UL) = 34 Symbol KT 29(DL) + 18/2(UL) = 38 Symbol

Mode 설정

Spectrum

중계기 IF Power 측정

Mobile WiMAX

Definition

중계기의 Donor(SKT) 또는 MHU(KT) 에서 출력 및 입력 레벨을 설정 합니다. 이때 DL 및 UL의 주파수 대역이 다르며 symbol의 개수도 서로 다릅니다. DL IF 파워를 측정 할 때는 기지국 측정 할 때와 설정이 같지만 UL을 측정 할때 Trigger 신호를 입력하지 않고 측정 심벌 조정만으로 간단하게 측정 할 수 있습니다. UL의 파워를 측정 할 때 8.75MHz는 0~ 14 Symbol을 설정 하고 10MHz을 설정 할 때는 0~ 18 Symbol을 설정 하면 구간 파워를 측정 할 수 있습니다.

Mode 설정

LTE - FDD

- RF Analysis
- Power vs Time (Frame)
- Data Channel
- Control Channel
- Subframe
- Frame

VIAVI

• Power Statistics CCDF

www.viavisolutions.com

기본 설정

LTE - FDD

Mode 설정

RF Analysis – Channel Power

LTE - FDD

Cable 연결 방법

Mode 설정

VIAVI

Definition

채널 파워는 정의된 주파수 채널에 포함된 LTE - FDD 무선 신호의 세기를 측정하는 것으로 고속 푸리에 변환(FFT)를 통해 추출된 스펙트럼 데이터를 이용해 채널 대역폭 내의 파워 스펙트럼 밀도(PSD)를 적분하는 방식으로 구해집니다.

측정 화면(Channel Power)

www.viavisolutions.com

RF Analysis – Occupied BW

LTE - FDD

Cable 연결 방법

Definition

Carrier의 spectrum의 shape에 대한 측정으로 total transmitted power(5ms) 중 일정한 비율 이상의 power가 포함되는 bandwidth 를 측정하는 것으로, 송신출력의 99%의 power가 포함되는 bandwidth를 기준으로 합니다

측정 화면(Occupied BW)

Mode 설정

RF Analysis – Spectrum Emission Mask

LTE - FDD

Cable 연결 방법

Mode 설정

VIAVI

Definition

송신신호의 주파수 프로파일을 측정하는 것으로 BS가 할당된 주파수 범위 밖으로 얼마의 에너지를 송출하고 있는가를 검증하기 위해 실시합니다. 802.16에서는 인가된 밴드에 대한 Emission mask 규격을 제시하지 않고 있으며, TTA에서는 두 가지 규격을 제시하고 있으며 사업자간 밴드에 적용되는 규격이 나머지 한 규격을 포함하고 있습니다. JD785B는 범용 규격인 사업자간 밴드에 적용되는 Emission Mask 규격을 적용하고 있습니다.

측정 마스크 타입 설정

측정 화면(SEM)

RF Analysis - ACLR

LTE - FDD

Cable 연결 방법

Definition

송신 단에서 출력되는 신호에서 방출되는 Noise 신호의 Power를 측정 합니다.

측정 화면(ACLR)

Mode 설정

RF Analysis – Spurious Emission

LTE - FDD

Cable 연결 방법

Definition

안테나를 통하여 송출되는 전력이 다른 시 스템에 영향을 주는지에 대하여 확인하는 항목 입니다

측정 화면(Spurious Emission)

Mode: LTE - FDD		Spurious	Emissions			RF Analysis
Center Frequency: Channel: Channel Standard:	910.000 000 MHz Band 1 (2100)	Preamp: Attenuation: External Offset:	Off 20 (M) 0.00 dB (Off)	Freq Reference Trigger Source Trigger:	e: Ext 10M Internal Internal	Channel Powe
	Scale Unit: d	ßm			M1:	Occupied BW
Mode FFT	-10.0					
Detector RMS	-20.0 -30.0					Spectrum
RBW [M] 100 kHz	-40.0					Emission Mask
VBW [M] 100 kHz	-60.0					ACLR
Sweep Time	-80.0	MMM Internet	in the water in the	new with the second	Malanarahanta	
Average: 1 1	-100.0 Center: 910.	000 000 MHz	Frequency	Spar	: 10.000 000 MHz	Multi-ACLR
	Frequency R	ange Measi	urement Pei width	ak Frequency	Peak Level	
		banu				1997 IV

Mode 설정

Power vs Time (Frame)

LTE - FDD

Cable 연결 방법

Mode 설정

측정 화면

Definition

P vs T는 LTE 전체 Frame을 한번에 측정할 수 있는 기능으로 시간 축에서 각각의 Slot에 Power가 배열 되었는지 확인 할 수 있습니다.

용어 정리

- Frame Average Power 프레임 10ms에 대한 전체 파워를 표시 합니다.
- Subframe No.

Subframe은 LTE 10ms에 10개가 있습니다. Power를 측정 하기 위하여 0~9까지 설정 할 수 있습니다.

- Subframe Power 설정된 Subframe에 대한 Power 표시
- First Slot Power

지정된 Subframe내에 홀수 Slot의 Power 값 표시

• Second Slot Power 지정된 Subframe내에 짝수 Slot의 Power 값 표시

Data Channel

LTE - FDD

Cable 연결 방법

Mode 설정

측정 화면

VIAVI

Definition

LTE downlink frame에 대해 Resource Block별로 Modulation Error를 분석할 수 있는 기능을 제공합니다. "# of CFI"에서 설정한 PDCCH symbol을 제외한 나머지 심볼을 기준으로 측정 결과를 표시합니다.

용어 정리

RB Power

선택된 RB의 동일 심볼에 해당되는 SC에 대해 RE power를 측정하는 방식으로 Normal CP일 경우 14개의 심볼에 대해 Average한 power를 표시합니다.

Modulation Format

선택된 RB의 modulation format을 자동 검출해 검출된 결과를 화면에 표시합니다.

IQ Origin Offset

I-Q space에서 검출된 각 symbol의 위치가 전체적으로 특정한 방향으로 편이가 발생한 경우 편이의 정도를 dB값으로 표시합니다.

EVM RMS

RB내의 각 RE에 대해 EVM을 산출해 각 RE의 EVM에 대해 제곱평균을 취한 값을 표시합니다.

EVM Peak

RB내의 RE 중 EVM이 가장 나쁜 RE의 EVM값과 time-frequency grid값을 표시합니다.

설정 키 설정 방법

Control Channel

LTE - FDD

Cable 연결 방법

Mode 설정

측정 화면

Mode: LTE		Control Channel			Modulation
Center Frequency: Channel: Channel Standard:	2.000 000 000 GHz Band 1 (2100)	Preamp: Off Attenuation: 15 dB External Offset: 40.00	Freq Refere [A] Trigger Sou dB [On] Trigger:	ence: Internal urce: Internal Internal PASS	Data Channel
	Channel Summa	ry Subfr	rame #: 0		Control Channe
Detect Mode	Cell ID: 1	Group ID: 0 Sector	ID: 1 No of Control(CFI): 1 (Ox6db6db6d)	
Auto	Channel	EVM (%)	Power (dBm)	Modulation Type	
Bandwidth	P-SCH	1.28	8.52	Z-Chu	Subframe
10 MHz	S-SCH	1.09	8.52	BPSK	and the second s
PHICH Ng	PBCH	0.95	8.52	QPSK	
1/6	PCFICH	1.01	6.06	QP5K.	
CELIAI	PHICH	1.04	6.11	BPSK	Frame
	PDCCH	0.99	7.16	QP5K	
Antenna nort	RS	1.06	6.09	QPSK	
0	I-Q Diagram	P-SCH			
PDSCH MIMO Off PDSCH Thrachold		- Mod	Julation Format: Z-	-Chu	
-20.00 dB		Fred	quency Error: -1	16.70 Hz 1.008 ppm	
PDCCH Threshold -10.00 dB		i i i i i i i i i i i i i i i i i i i	Origin Offset: –6	i6.85 d8	
Cyclic Prefix		EVN	RMS: I.	28 % (1.28%)	
Call ID (A)		EVN	Peak: 3.	12 % (3.18%)	
centro [M]			e Symbol	#6,SC #285	

Definition

선택된 Subframe내의 control channel에 대한 Modulation Error와 Power를 측정할 수 있습니다. 각 control channel에 대한 summary 정보와 특정 control channel에 대한 상세 정보가 제공됩니다.

용어 정리

Modulation Format

선택된 RB의 modulation format을 자동 검출해 검출된 결과를 화면에 표시합니다.

Frequency Error

DC-subcarrier와 사용자가 설정한 주파수와의 편차를 나타냅니다.

• IQ Origin Offset

I-Q space에서 검출된 각 symbol의 위치가 전체적으로 특정한 방향으로 편이가 발생한 경우 편이의 정도를 dB값으로 표시합니다.

• EVM RMS

RB내의 각 RE에 대해 EVM을 산출해 각 RE의 EVM에 대해 제곱평균을 취한 값을 표시합니다.

• EVM Peak

RB내의 RE 중 EVM이 가장 나쁜 RE의 EVM값과 time-frequency grid값을 표시합니다.

설정 키 설정 방법

Subframe

LTE - FDD

Cable 연결 방법

Mode 설정

측정 화면

Mode: LTE		Sub	frame			Modulation
Center Frequency: Channel: Channel Standard:	2.000 000 000 GHz P A Band 1 (2100)	reamp: ttenuation; cternal Offs	Off 15 dB [A] et: 40.00 dB [C	Freq Reference Trigger Source Dn] Trigger:	: Internal : Internal Internal	Data Channel
					PASS	
	Subframe #: 0					Control Chann
Detect Mode	Channel	EVM (%)	Power (dBm)	Modulation Type	REG/RBs	
Auto	P-SCH	1.06	8.52	Z-Chu		
Randwidth	S-SCH	1.08	8.52	BPSK		
10 MHz	PBCH	1.06	8.51	QPSK		Subframe
DUICH No.	PCFICH	1.04	6.05	QPSK		
PHICH NG	PHICH	1.15	6.09	BPSK		
170	PDCCH	1.03	7.15	QPSK	90/G	
CFI [A]	RS	1.07	6.09	QPSK		Frame
1	PDSCH_QPSK	1.55	0.10	QPSK	25/B	
Antenna port	PDSCH_QAM16	1.25	8.43	QAM16	25/B	
0	PDSCH_QAM64			QAM64		1
PDSCH MIMO Off	Unallocated				0/B	
PDSCH Threshold -20.00 dB	SubFrame Power: RS TX Power:	33.74 6.09 d	dBm Frequ IBm Time	ency Error: -15.05 Error: 0.10 us	Hz7-0.008 ppm	
PDCCH Threshold -10.00 dB	Data EVM RMS: Data EVM Peak:	1.30 x (1 5.39 x (5	.45%) 5.75%) @ 5	ymbol #3,5C #251		
Cyclic Prefix Normal	RS EVM RMS: RS EVM Peak:	1.07 % (1 3.02 % (3	1.28%) 3.17%) @ 5	symbol #11,5C #30	14	
Cell ID [A]	Cell ID: 1	Gn	oup ID: 0	Sector ID:		

Definition

LTE signal 한 서브프레임에 대한 modulation error summary 와 subframe 내에 포함된 각 physical channel의 출력과 Modulation Error를 측정합니다.

용어 정리

Subframe Power

Transmission bandwidth내에 포함되는 SC의 심볼파워의 합을 subframe 구간 동안 평균한 값 표시.

• Frequency Error

DC-subcarrier와 사용자가 설정한 주파수와의 편차를 나타냅니다.

• Rx Tx Power

각 subframe에서 전송하는 Reference Signal의 평균 파워를 표시합니다. 각 subframe 내의 RE 중에서 RS를 전송하는 RE의 power만을 평균해서 표시합니다.

RS EVM

지정된 subframe 내의 RS의 평균 EVM을 표시합니다.

DATA EVM

지정된 subframe에서 PDSCH Channel 전송에 할당된 RE의 평균 EVM을 측정합니다. 따라서 이 측정결과에는 PBCH와 PSCH, SSCH를 전송하는 RE는 포함되지 않습니다.

Frame

LTE - FDD

Cable 연결 방법

Mode 설정

Definition

LTE signal 한 프레임에 대한 modulation error summary와 frame내에 포함된 각 physical channel의 출력과 Modulation Error를 측정합니다.

용어 정리

frame Power

한 frame내에 포함된 각 physical channel의 전체 Power의 합을 의미 합니다.

 OFDM Symbol Power 각 subframe의 4번째 심볼에 속하는 모든 SC의 심볼 power의 합을 표시합니다.

OFDM Sym Tx Pwr =

```
RETP RETP
```

all N_{RB}N_{RBSC}RE location of 4th symbol within subframe

측정 화면

Mode: LTE		Fr	ame			Modulation
Center Frequency: Channel: Channel Standard:	2.000 000 000 GHz P A Band 1 (2100) E	reamp: attenuation: xternal Offs	Off 15 dB [A] et: 40.00 dB [C	Freq Reference: Trigger Source Dn] Trigger:	Internal Internal Internal	Data Channel
					PASS	
	Subframe #: 3					Control Chan
Detect Mode	Channel	EVM (%)	Power (dBm)	Modulation Type	REG/RBs	
Auto	P-SCH	1.15	8.54	Z-Chu		
Randwidth	S-SCH	1.12	8.54	BPSK		-
10 MHz	PBCH	1.16	8.54	QPSK		Subframe
DUICH No.	PCFICH	1.26	6.08	QPSK		
PHICH NG	PHICH	1.03	6.13	BPSK		
176	PDCCH	1.08	7.18	QPSK	900/G	-
CFI [A]	RS	1.09	6.12	QPSK		Frame
1	PDSCH_QPSK	1.63	0.12	QPSK	250/B	
Antenna port	PDSCH_QAM16	1.26	8.55	QAM16	250/B	
0	PDSCH_QAM64			QAM64		
PDSCH MIMO	Unallocated				0/8	1.00
off						
PDSCH Threshold -20.00 dB	Frame Avg Powe OFDM Symbol Po	r: 33.90 wer: 33.85	dBm Frequi dBm IQ Or	ency Error: -15.421 igin Offset: -44.40 (-127-0.008 ppm 19	
PDCCH Threshold -10.00 dB	EVM RMS: EVM Peak:	1.28 % (6.00 % (1.33%) 5.00%) e 5	ymbol #3,5C #287		
Cyclic Prefix Normal	Data EVM RMS: Data EVM Peak:	1.31 % (6.00 % (1.41%) 5.00%) e-5	symbol #3,5C #287		
Cell ID [A]	Cell ID: 1	Gr	oup ID: 0	Sector ID:		

Power Statistics CCDF

LTE - FDD

설정 키 설정 방법

Cable 연결 방법

Mode 설정

Definition

CCDF는 출력 전력의 분포도를 측정 합니다. QoS의 저하 없이 넓은 면적의 서비스를 하기 위하여 기지국의 출력을 최적화 하기 위한 기능 입니다.

용어 정리

- Average Power
 지정된 Frame Length동안 측정 된 평균 Power 표시.
- Max Power 지정된 Frame Length동안 측정 된 Peak Power 표시.
- Crest Factor 평균 Power와 MAX Power의 차이 값 표시

Measure Setup 4	
Measure Setup	
CCDF Length	측정 Time 설정 * CCDE Length - 개소(n) * 10ms
16	

측정 화면

NB-IoT 개요

NB-IoT 개요

Signal Structure

- UL and DL bandwidth of 180KHz
- Frequency error is specified to be ±0.1 PPM
- OFDMA with 12 x 15KHz or 48 x 3.75KHz sub-carriers
- Uplink
 - Narrowband Physical Uplink Shared Channel, NPUSCH (BPSK, QPSK)
 - Narrowband Physical Random Access Channel, NPRACH
 - Narrowband demodulation reference signal, NDRS

• Downlink

- Narrowband Physical Downlink Shared Channel, NPDSCH (QPSK) EVM ≥ 17.5%
- Narrowband Physical Broadcast Channel, **NPBCH** (QPSK)
- Narrowband Physical Downlink Control Channel, NPDCCH (QPSK)
- Narrowband reference signal, NRS (sub-frame 0, 4, and 9), SISO or MIMO 2x2 with TAE \leq 65ns
- Narrowband synchronization signal (NPSS and NSSS) including Cell ID

NB-IOT Uplink (UL) operating band Downlink (DL) operating Duplex BS receive Operating band Mode Band UE transmit BS transmit UE receive FUL low - FUL high FDL low - FDL high 1920 MHz 1980 MHz 2110 MHz - 2170 MHz HD-FDD 1 -1710 MHz - 1785 MHz 3 1805 MHz - 1880 MHz HD-FDD 5 824 MHz -849 MHz 869 MHz - 894MHz HD-FDD 8 -915 MHz 925 MHz - 960 MHz 880 MHz HD-FDD 729 MHz – 746 MHz 12 699 MHz 716 MHz HD-FDD 13 777 MHz 787 MHz 746 MHz - 756 MHz HD-FDD 716 MHz 734 MHz - 746 MHz 704 MHz -17 HD-FDD 875 MHz - 890 MHz 19 830 MHz 845 MHz _ HD-FDD 20 832 MHz _ 862 MHz 791 MHz - 821 MHz HD-FDD 26 814 MHz 849 MHz 859 MHz - 894 MHz -HD-FDD 703 MHz 748 MHz 758 MHz - 803 MHz 28 HD-FDD

Source: 3GPP 36.802, 36.104, 36.211

운용 모드 및 주파수

- In-Band 앵커 캐리어의 배치 알고리즘
 - □ BW 10MHz (50 PRBs) 일 때

▫ LTE BW에 따른 NB-IoT 할당 표

LTE Bandwidth	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
NB-IoT 동기화 를 위한 LTE PRB 인덱스	2, 12	2, 7, 17, 22	4, 9, 14, 19, 30, 35, 40, 45	2, 7, 12, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95

물리채널 (다운링크)

・다운링크 물리채널 시간영역 다중화

- NPSS (Narrowband Primary Synchronization Signal):
 - 동기 신호
- **NSSS** (Narrowband Secondary Synchronization Signal):
 - 물리 셀 아이 디(PCI, Physical Cell Identity)

VIAVI

LTE-RS

NB-IoT 표준 기술 규격 (3GPP TS 36.141 V14.2.0)

- Maximum Output Power:
 - Standalone NB-IoT: ± 3dB 이내
 - In-Band NB-IoT: ± **3.5dB** 이내
- 점유대역폭: 200KHz 이내
- NB-IoT RB power dynamic range (In-band or Guard band): 6 dB 이상
- 주파수 허용 편차: ±0.05 ppm이내
- NPDSCH EVM(QPSK): **17.5%** 이하
- ACLR:
 - Standalone NB-IoT: 40 dB (ACLR1) / 50 dB (ACLR2)

Channel bandwidth of NB-IoT: BW _{Channel} [kHz]	서비스 중심 주파수에서의 옵셋	측정 필터 대역폭	ACLR limit
200	300 kHz	Square (180 kHz)	40 dB
200	500 kHz	Square (180 kHz)	50 dB

- Time alignment error (NRS): 65 ns 이내
- Operating band unwanted emission:

Frequency offset of measurement filter -3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement	Measurement bandwidth
$0 \text{ MHz} \le \Delta f < 0.05 \text{ MHz}$	0.015 MHz \leq f_offset < 0.065 MHz	Note 1	30 kHz
0.05 MHz $\leq \Delta f < 0.15$ MHz	0.065 MHz \leq f_offset < 0.165 MHz	Note 2	30 kHz
0.15 MHz $\leq \Delta f < 0.2$ MHz	0.165 MHz \leq f_offset < 0.215 MHz	-12.5 dBm	30 kHz
$0.2 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.215 MHz \leq f_offset < 1.015 MHz	Note 3	30 kHz
규격 없음 (Note 6)	1.015 MHz \leq f_offset < 1.5 MHz	-24.5 dBm	30 kHz
$1 \text{ MHz} \le \Delta f \le \min(\Delta f_{max'} \text{ 10 MHz})$	1.5 MHz \leq f_offset < min(f_offset _{max} , 10.5 MHz)	-11.5 dBm	1 MHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz \leq f_offset < f_offset _{max}	-15 dBm	1 MHz

NB-IoT 기술 규격 (국립전파연구원 지침)

800MHz 대역과 1.8GHz 대역에 이동통신용 NB-IoT 기술 기준 안 신설 (안 제4조6항_국립전파연구원) 본 문서는 전용 기지국에 대한 규격이며 인수시험은 In-Band, Guard-Band는 LTE 기술기준에 따라 검사를 하고 Stand alone(전용기지국)에 본 규격을 적용 합니다.

- □ SKT, LGU+ : 800MHz 사용
- □ KT 1800MHz 사용
- 인접대역 간섭으로 인한 경계 대역 설정
 - LTE 지정 주파수 경계부터 10 MHz: 225 KHz, 20 MHz:245 KHz 이격
- 안테나 공급전력: (점유 주파수 대역폭 X 0.4/KHz) W 이하
- 주파수 허용 편차: ±(지정 주파수 x 5 X 10⁻⁸) 이내
- 점유 주파수 대역폭: 200 KHz 이하
- 인접채널 누설전력:
 - □ CF <u>+</u>300 KHz (**40dBc**)
 - □ CF <u>+</u>500 KHz (**50dBc**)
- 대역외 발사
 - □ ±0.215 ~ 0.265 MHz @ 30 KHz: -14dBm 이하
 - □ ±0.265 ~ 0.365 MHz @ 30 KHz: -14dBm 이하
 - □ ±0.365 ~ 0.415 MHz @ 30 KHz: -14dBm 이하
 - □ ±0.415~1.215 MHz @ 30 KHz: [-14-15x(Δf-0.415)] dBm 이하
 - □ ±1.215 ~ 1.7 MHz @ 30 KHz: -26dBm 이하
 - □ ±1.7~10.7 MHz @ 1 MHz: -13dBm 이하
- 스퓨리어스 발사
 - □ 30 MHz ~ 1GHz @ 100 KHz: -13 dBm 이하
 - □ 1 GHz ~ 12.75 GHz @ 1 MHz: -13 dBm 이하
 - □ 879 MHz ~ 849 MHz @ 100 KHz: -76 dBm 이하
 - □ 898 MHz ~ 900 MHz @ 100 KHz: -32 dBm 이하

NB-IoT 측정

• In Band

VIAVI

www.viavisolutions.com

NB-IoT (In-Band)

측정 화면 Measure Type: Frame

• Frame

	Even numbered frame (10ms)								Odd numbered frame (10ms)											
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

측정 화면 Measure Type: Subframe

• Subframe: #0 (NPBCH)

Mode: NB-IoT In Ba	ind		NB-Io	T Modulati	on Analysis			Marker	1.570
Center Frequency: Channel: Channel Standard:	889.00 2600 F Band G	0 000 MHz VD ilobal	Preamp: Attenuatio External (Off on: 20 Offset: 41.	f F dB [A] 1 00 dB [On] 1	e: GPS e: Internal Internal	Marker View	W Of	
	_	Channel	ummany	s	ubframe #: 0	Subframe	Power: 35.85 dBm	Channel	
Detect Mode		Cell ID: 175	unnary					-	
FDD 10 MHz		Channe	el 🛛	EVM (%) Pov	ver (dBm)	Modulation Type	NPBCH	
NB-IoT Mode		NPSS					Z-Chu		
NB-IoT PRB Index		NSSS					Z-Chu		
19		NPBCH		3.29		26.27	QPSK		
Measure Type		NPDSC	н				QPSK		_
Subframe		NRS0					QPSK		
		NRS1					QPSK		
		I-Q Diagrar	n	NPBCH				_	_
				Mo	dulation Forma	at: QPSK			
				Fre	quency Error:	0.90 Hz			
			•	+		0.001 p	pm		_
			•	IQ	Origin Offset:	-43.19			
				EVI	EVM RMS:		(3.29%)		
		-	•	EVI	M Peak:	10.67 9	6 (10.67 %)		_
								-	

• Subframe: #1/2/3/4/6/7/8 (NPDSCH/RS)

VIAVI 2017-07-20 14	1:50:03 N 37' 26 <mark>" 48.5</mark>	t FW193075	.060)	8 -	즢 D 💶 84%
Aode: NB-IoT In Band	NB	-IoT Modulation Ana	lysis		Marker
Center Frequency: 889.0 Channel: 2600 Channel Standard: Band	00 000 MHz Pream FWD Attenu Global Extern	np: Off Jation: 20 dB [A] Jal Offset: 41.00 dB [Freq Reference Trigger Source On] Trigger:	e: GPS : Internal Internal	Marker View
	Channel Summar	y Subfram	ne #: 1 Subframe I	Power: 36.09 dBm	Channel
Detect Mode	Cell ID: 175	-			NINDECCU
-DD 10 MHz	Channel	EVM (%)	Power (dBm)	Modulation Type	NPDSCH
NB-101 Mode	NPSS			Z-Chu	
NB-IoT PRB Index	NSSS			Z-Chu	
19	NPBCH			QPSK	
Measure Type	NPDSCH	0.90	26.35	QPSK	
Subframe	NRS0	0.83	28.30	QPSK	
	NRS1			QPSK	
	I-Q Diagram	NPDSCH			
		IQ Origin EVM RMS: EVM Peak:	In Format: QPSK y Error: 1.33 Hz 0.001 p Offset: -60.11 0.90 % : 4.06 %	pm (1.11 %) (4.06 %)	

	Even numbered frame (10ms)								Odd numbered frame (10ms)							►				
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

측정 화면 Measure Type: Subframe

• Subframe: #5 (NPSS)

VIAVI 2017-07	-20 14:	54:53 N 37' 26 <mark>" 48.0</mark>	3 E126	19:075	.060)		® .	Ð	82%
Mode: NB-IoT In Ba	and	NI	3-IoT Moo	dulation Ana	lysis			Mark	er
Center Frequency: Channel: Channel Standard:	889.00 2600 F Band G	0 000 MHz Prear ND Atten ilobal Extern	np: uation: nal Offset	Off 20 dB [A] : 41.00 dB [Freq Trigg On] Trigg	Reference er Source er:	e: GPS : Internal Internal	Mark	er View Ofi
		Channel Summa	ry	Subfram	ie #: 5 S	ubframe l	Power: 35.62 dBm	Chan	nel
Detect Mode FDD 10 MHz		Cell ID: 175						NPSS	
NB-IoT Mode		Channel	EV	/M (%)	Power	dBm)	Modulation Type		
In band		NPSS		0.78	25.0	56	Z-Chu		
NB-IoT PRB Index		NSSS					Z-Chu		
19		NPBCH					QPSK		
Measure Type		NPDSCH				-	QPSK		
Subframe		NRSO				-	QPSK		
		NRS1					QPSK	J	
		I-Q Diagram	N	PSS					
				Modulatio Frequency	n Format: / Error:	Z-Chu 0.66 Hz			
						0.001 p	pm		
				IQ Origin (Offset:	-63.39			
			-	EVM RMS:		0.78 %	(3.52 %)		
		· · · · · · · · · · · · · · · · · · ·		EVM Peak		2.10 %	(17.19%)		

• Subframe: #9 (NSSS)

Center Frequency: 1.840 000 Channel: 1550 FWD Channel Standard: Band Glob Detect Mode FDD 20 MHz NB-IoT Mode In band NB-IoT PRB Index 44 Measure Type Subframe	Channel Summary IID: 38 Channel NPSS NPBCH NPDSCH	Off Off Dffset: 41.00 dB [v] Subfram EVM (%)	Freq Referen Trigger Sourc On] Trigger: •• #: 9 Subframe Power (dBm) 30.25	e: Internal Internal Internal Power: 37.62 dBm Modulation Type Z-Chu Z-Chu	Marker View On Channel NSSS
Detect Mode FDD 20 MHz Cell NB-IoT Mode In band NB-IoT PRB Index 44 Measure Type Subframe	Channel Summary IID: 38 Channel NPSS NNPSS NNPBCH NNPDSCH	Subfram EVM (%) 	ee #: 9 Subframe Power (dBm) 30.25	Power: 37.62 dBm Modulation Type Z-Chu Z-Chu	Channel NSSS
Detect Mode Cell FDD 20 MHz NB-IoT Mode In band NB-IoT PRB Index 44 Measure Type Subframe	I ID: 38 Channel / NPSS / NSSS / NPBCH / NPDSCH /	EVM (%) 	Power (dBm) 30.25	Modulation Type Z-Chu Z-Chu	NSSS
NB-IoT Mode In band NB-IoT PRB Index 44 Measure Type Subframe	NPSS NSSS NPBCH NPDSCH	0.65	30.25	Z-Chu Z-Chu	
NB-IoT PRB Index 44 Measure Type Subframe	NSSS NPBCH NPDSCH	0.65	30.25	Z-Chu	
Measure Type Subframe	NPDSCH		1	QPSK	
	NIRSO			QPSK OPSK	
[NRS1			QPSK	
[I-Q Diagram	NSSS			
		Modulatio Frequency	on Format: Z-Chu y Error: 0.81 H 0.000	lz ppm	
		IQ Origin 0 EVM RMS:	Offset: -80.35 0.65 %	6 (0.65 %)	
		EVM Peak:	2.07 9	6 (2.07 %)	

	Even numbered frame (10ms)									◀	Odd numbered frame (10ms)									
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

NB-IoT(In-Band) 서비스 PRB 찾기

• LTE-FDD Demodulation에서 DATA Channel을 선택하여 확인

(In-Band #19)

VIAVI 2017-07	-20 14:43:32 N 37' 26 <mark>" 4</mark>	8.46 E126/51	9:075.06	0)	<u>છ</u> ે ન્ટ	1 10 87%
Mode: LTE - FDD		Data C	hannel			Marker
Center Frequency: Channel: Channel Standard:	889.000 000 MHz Pre 2600 FWD Att Band Global Ext	eamp: enuation: ternal Offset:	Off 30 dB [M] 41.00 dB [On]	Freq Reference: Trigger Source: Trigger:	GPS Internal Internal	Marker View
						011
HOLD	Resource Block	Power	Subframe #: 0		Marker: RB#19	RB Number
Detect Mode FDD 10 MHz	Scale Unit: dBm 60.0					19
PHICH Ng 1/6	20.0					
MBMS Off	0.0					
CFI [A] 1	-40.0		Resource Bloc	ck	49	
Antenna Port [A]	-					
ANTO ANTI	I-Q Diagram of Cur	rent Block	Subframe #: 0	RB#19		
On DDSCH Threshold			RB Power:	29.64 dBm		
-20.00 dB			Modulation Form	nat:		
			IQ Origin Offset:			
Cyclic Prefix Normal			EVM RMS:			
Cell ID [A]			EVM Peak:			
175						

(In-Band #44)

NB-IoT 측정

• Guard Band

VIAVI

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 73

NB-IoT (Guard-Band)

・측정 순서

측정 화면

Spectrum Emission Mask

VIAVI 2017-07	-25 15:36:09	Test FW	9.075.06	50)	INT 📎 🚭	100% 💶 🍡 💽					
Mode: NB-IoT Guar	rd Band	Spectrum I	Spectrum Emission Mask								
Center Frequency: Channel: Channel Standard:	889.000 000 MHz 2600 FWD Band Global	Preamp: Attenuation: External Offset:	Off 20 dB [M] 51.00 dB [On]	Freq Reference: Trigger Source: Trigger:	Internal Internal Internal	Spectrum					
					PASS						
	Scale Unit: dB	m		NB-loT (G	uard Band)	Spectrum					
Mode FFT Detector	50.0 40.0 30.0				•						
RMS	20.0			~~		Modulation					
RBW [A] 100 kHz	0.0					, and your					
VBW [A] 100 kHz	-10.0 -20.0 -30.0 -40.0	mar Mary Mary Mary Mary Mary Mary Mary Ma		mynny							
Average: 1 1	-50.0 Center: 889.0	00 000 MHz	Frequency	/ Sp	an: 50.000 000 MHz						
Bandwidth 10 MHz	Reference P	ower: 45	.81 dBm								
	Frequency Of	fset Range	Measurement Bandwidth	Lower Peak	Upper Peak						
	0.05 MHz - 5.0 5.05 MHz - 10 10.05 MHz - 2	05 MHz 05 MHz 0.00 MHz	100 kHz 100 kHz 100 kHz	-13.70 dBm P -23.19 dBm P -24.99 dBm P	-22.08 dBm P -25.06 dBm P -23.82 dBm P						

LTE-FDD 규격과 같음

E-UTRA bands <1GHz, Category B에 해당되는 Channel Bandwidth 5, 10, 15, 20 MHz 인 LTE Signal에 대한 SEM 규격

주파수 offset (RBW filter 의 -3dB point 부터)	Channel BW/2인 지점부터의 주파수 offst	요구 규격	RBW
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	-7dBm ~ -14dBm	100 kHz
5 MHz ≤ ∆f < 10 MHz	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm	100 kHz

E-UTRA bands >1GHz, Category B에 해당되는 Channel Bandwidth 5, 10, 15, 20 MHz 인 LTE Signal에 대한 SEM 규격

주파수 offset (RBW filter 의 -3dB point 부터)	Channel BW/2인 지점부터의 주파수 offst	요구 규격	RBW
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	-7dBm ~ -14dBm	100 kHz
5 MHz ≤ ∆f < 10 MHz	5.05 MHz ≤ f_offset < 10.05 MHz	-14 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-16 dBm	1 MHz

측정 화면 Measure Type: Frame

• Frame

	5 15.45.45	TEST FVV19.	075.0001				
Mode: NB-IoT Guard	Band	NB-IoT Modulati	on Analysis		Measure	etup	
Center Frequency: 3 Channel: 2 Channel Standard: 3	889.000 000 MHz 2600 FWD 3and Global	Preamp: Off Attenuation: 20 External Offset: 41.	Freq JB [A] Trigg 00 dB [On] Trigg	Reference: ger Source: ger:	GPS Internal Internal	Bandwidt	h 🗖
						Subframe	No
	Channel	iummary	F	rame Power:	32.82 dBm	Subiranie	NO
Detect Mode	Cell ID: 175					5	
	Channe	EVM (%	Power	(dBm) N	Nodulation Type	5	
Guard band	NPSS	0.82	25.8	81	Z-Chu		
NB-IOT CE	NSSS	3.22	28.	56	Z-Chu		
884.402500 MHz	NPBCH	I 0.71	26.4	43	QPSK		
Measure Type	NPDSC	H 0.82	26.4	43	QPSK		_
Frame	NRS0	0.83	28.3	36	QPSK		
	NRS1			-	QPSK		
	I-O Diagra	n NPDSCH					
	•	A Contraction of the second se	dulation Format: quency Error: Origin Offset: 4 RMS:	QPSK 1.82 Hz 0.002 ppm -66.16 0.82 % (0.8	33 %)	MB-101 Ce Frequency 884.40250 Measure T Frame	nter / 10 MHz Type Subframe

	◀		Eve	en nun	nberec	d frame	e (10m	is)			Odd numbered frame (10ms)									
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

측정 화면 Measure Type: Subframe

• Subframe: #0 (NPBCH)

Mode: NB-IoT Guard Band NB-IoT Modulation Analysis Measure Setup Center Frequency: Channel: Standard: Channel: Standard: Band Global Preamp: Attenuation: 20.00 B(A) External Offset: Attenuation: 20.00 B(A) Trigger Source: Internal Inte	VIAVI 2017-07-	25 13:	52:24	st FW	(9.075	.060)		INT 😢 🗖	ם 🔹 🔁	III) 100%
Center Frequency: Channel: Cannel: Channel: Channel: Channel: Channel: Subfradard: Band Global Preamp: Attenuation: External Offset: 41.00 dB [A] Freq Reference: Trigger: Trigger: Trigger: Internal Internal Bandwidth Channel: Channel: Channel: Channel: Detect Mode Guard band Channel: Chanel: Channel: Channel: Channel: Channel: Channel: Channe	Mode: NB-IoT Guar	d Band	I	NB-IoT Mod	Measure	Setup				
Channel Summary Subframe #: 0 Subframe Power: 35,85 dBm Subframe No Detect Mode FDD 10 MHz Cell ID: 175 0 0 NB-IoT Mode Guard band NP55 Z-Chu 0 NB-IoT CF 884.402500 MHz NPBCH 3.29 26.27 QPSK Measure Type NPBCH 3.29 26.27 QPSK NR50 QPSK NR51 QPSK PSK I-Q Diagram NPBCH QPSK Reasure Type I-Q Diagram NPBCH Modulation Format: QPSK PSK I-Q Diagram NPBCH Reasure Type Reasure Type I-Q Diagram NPBCH Reasure Type Reasure Type I-Q Diagram NPBCH Frequency Error: 0.90 Hz I-Q Origin Offset: -43.19 EVM RMS: 3.29 % (3.29 %) Frame Subframe EVM Peak: 10.67 % (10.67 %)	Center Frequency: Channel: Channel Standard:	889.00 2600 F Band G	0 000 MHz Pre VD Atte ilobal Ext	amp: inuation: ernal Offset	Off 20 dB [A] : 41.00 dB [e: GPS : Internal Internal	Bandwic	ith 📼		
Detect Mode FDD 10 MHz Cell ID: 175 0 NB-IoT Mode Guard band NPSS Z-Chu 0 NB-IoT CF NPSCH 3.29 26.27 QPSK 0 NRS0 QPSK 0 0 0 0 Subframe NRS0 QPSK 0 <t< td=""><td></td><td></td><td>Channel Sumr</td><td>nary</td><td>Subfram</td><td>ne #: 0 Su</td><td>ubframe I</td><td>ower: 35.85 dBm</td><td>Subfram</td><td>e No</td></t<>			Channel Sumr	nary	Subfram	ne #: 0 Su	ubframe I	ower: 35.85 dBm	Subfram	e No
Channel EVM (%) Power (dBm) Modulation Type NB-IoT Mode Guard band NPSS Z-Chu NB-IoT CF NSSS Z-Chu NB-IoT CF NPDCH 3.29 Z6.27 QPSK Measure Type NPSCH QPSK Subframe NRS0 QPSK I-Q Diagram NPBCH QPSK I-Q Origin Offset: QPSK I-Q Origin Offset:	Detect Mode		Cell ID: 175						0	
NB-IoT CF NPSS Z-Chu NB-IoT CF NSSS Z-Chu NB-IoT CF NPBCH 3.29 26.27 QPSK Measure Type NPDSCH QPSK NRS1 QPSK I-Q Diagram NPBCH POPSK I-Q Diagram NPBCH NPBCH I-Q Diagram NPBCH Reasure Type I-Q Diagram I-Q Origin Offset: -43.19 I-Q Origin Offset: -43.19 Frame Subfra I-Q Diagram I-Q Origin Offset: -43.19	ND IST Made		Channel	EV	/M (%)	Power (dBm)	Modulation Type	0	
NB-IoT CF 884.402500 MHz NSSS Z-Chu Measure Type NPDSCH QPSK Subframe NRS0 QPSK NRS1 QPSK I-Q Diagram NPBCH Modulation Format: QPSK I-Q Diagram Modulation Format: QPSK I-Q Diagram NPBCH Reasure Type I-Q Diagram NPBCH QPSK I-Q Diagram NPBCH Reasure Type Reasure Type I-Q Diagram I-Q Origin Offset: -43.19 Frequency I-Q Origin Offset: -43.19 EVM RMS: 3.29 % (3.29 %) Frame	Guard band		NPSS					Z-Chu		
NPBCH 3.29 26.27 QPSK Measure Type NPDSCH QPSK Subframe NRS0 QPSK NRS1 QPSK I-Q Diagram NPBCH Modulation Format: QPSK I-Q Diagram MPBCH Modulation Format: QPSK I-Q Diagram NPBCH Reasure Type Reasure Type I-Q Diagram I-Q Diagram EVM RMS: 3.29 % (3.29 %)	NB-IOT CE		NSSS					Z-Chu		
Measure Type NPDSCH QPSK Subframe NRS0 QPSK NRS1 QPSK I-Q Diagram NPBCH NB-IoT Center Frequency Error: 0.99 K I-Q Diagram Modulation Format: QPSK I-Q Diagram NPBCH NB-IoT Center Frequency Error: 0.90 Hz I-Q Diagram I-Q Diagram Modulation Format: QPSK I-Q Diagram NPBCH NB-IoT Center Frequency Error: 0.90 Hz I-Q Diagram I-Q Origin Offset: -43.19 Measure Type I-Q Diagram EVM RMS: 3.29 % (3.29 %) Frame	884.402500 MHz		NPBCH		3.29	26.2	7	QPSK		
Subframe NRS0 QPSK NRS1 QPSK QPSK I-Q Diagram NPBCH NB-IoT Center Frequency NB-IoT Center Frequency I-Q Diagram NPBCH 884.402500 MHz I-Q Diagram Indext (Comparing the second se	Measure Type		NPDSCH					QPSK		_
I-Q Diagram NPBCH NB-IoT Center Modulation Format: QPSK PSK Modulation Format: QPSK S84.402500 MHz I-Q Diagram Modulation Format: QPSK I-Q Diagram I-Q Diagram Measure Type I-Q Dirigin Offset: -43.19 Measure Type I-Q Dirigin Offset: -43.19 Frame Subfra I-Q Dirigin Offset: 10.67% (10.67%) Frame Subfra	Subframe		NRS0					QPSK		
I-Q Diagram NPBCH Modulation Format: QP5K Frequency Error: 0.90 Hz Image: Constraint of the second s			NRS1					QPSK		
Modulation Format: QPSK Frequency Modulation Format: QPSK 884.402500 MHz Image: Construction of the second secon			I-Q Diagram	NP	всн				NDLT	
					Modulatio Frequency IQ Origin EVM RMS: EVM Peak	on Format: y Error: Offset:	QPSK 0.90 Hz 0.001 p -43.19 3.29 % (10.67 %	pm (3.29%) (10.67%)	Measure Frame	500 MHz Type Subframe

• Subframe: #1/2/3/4/6/7/8 (NPDSCH/RS)

VIAVI 2017-07	-25 13:	53:03	Tes	t FW	(9.075	.060)		INT 📎 🗖	5 •• s•• I	III : 100%
Mode: NB-IoT Guar	d Band		NE	3-IoT Moo		Measur	e Setup			
Center Frequency: 889.000 000 MHz Channel: 2600 FWD Channel Standard: Band Global			Prean Atten Extern	np: uation: nal Offset	Off 20 dB [A] : 41.00 dB [Off Freq F 20 dB [A] Trigge 41.00 dB [On] Trigge		e: GPS : Internal Internal	Bandwie 10 MHz	dth 🛛
		Channel	Summa	rv	Subfram	ie#:1 9	ubframe	Power: 36.09 dBm	Subfran	ne No
Detect Mode		Cell ID: 175		.,					з	
NR IoT Mode		Channe	el	EV	'M (%)	Power	(dBm)	Modulation Type	5	
Guard band		NPSS					-	Z-Chu		
NB-IOT CE		NSSS					-	Z-Chu		
884.402500 MHz		NPBCH	1				-	QPSK		
Measure Type		NPDSC		0.90		26.	35	QPSK		_
Subframe		NRS0		0.83		28.	30	QPSK		
		NRS1					-	QPSK		
		I-Q Diagra	m	NPE	SCH				NDIST	Canton
					Modulatio Frequency IQ Origin (EVM RMS: EVM Peak:	n Format: · Error: Offset:	QPSK 1.33 Hz 0.001 p -60.11 0.90 %	pm (1.11 %) (4.06 %)	NB-101 Frequer 884.402 Measure Frame	500 MHz Type Subfram

측정 화면 Measure Type: Subframe

• Subframe: #5 (NPSS)

• • • • • • • • • • • • • • • • • • • •	13.55.19 es	t FW(9.075)	.060)		100% 🎞 🎝 آ
Mode: NB-IoT Guard B	and NB	-IoT Modulation Anal	Measure Setup		
Center Frequency: 88 Channel: 26 Channel Standard: Ba	9.000 000 MHz Pream 600 FWD Attenu and Global Extern	np: Off Jation: 20 dB [A] hal Offset: 41.00 dB [Freq Ref Trigger S On] Trigger:	erence: GPS Gource: Internal Internal	Bandwidth
	Channel Summa	ry Subfram	ie #: 5 Subf	rame Power: 35.62 dBm	Subframe No
Detect Mode	Cell ID: 175	-			-
FDD TU MHZ	Channel	EVM (%)	Power (dB	m) Modulation Type	
NB-IOT Mode Guard band	NPSS	0.78	25.66	Z-Chu	
NB-IOT CE	NSSS			Z-Chu	
884.402500 MHz	NPBCH			QPSK	
Measure Type	NPDSCH			QPSK	
Subframe	NRS0			QPSK	
	NRS1			QPSK	
	I-Q Diagram	NPSS			ND Ist Center
		Modulatio Frequency IQ Origin (EVM RMS: EVM Peak	n Format: Z v Error: 0 Offset: -(0	-Chu .66 Hz .001 ppm .33.39 .78 % (3.52 %) .10 % (17.19 %)	NB-101 Center Frequency 884.402500 MHz Measure Type Frame Subframe
					-

• Subframe: #9 (NSSS)

VIAVI 2017-07	-25 13:5	^{3:31} Te	st FW	(9.075	.060)		100 🔟	- (III) 100%
Mode: NB-IoT Guar	d Band	1	B-IoT Mo	dulation Ana	lysis			Measur	e Setup
Center Frequency: Channel: Channel Standard:	889.000 2600 FW Band Gl	000 MHz Prea D Attei obal Exte	Preamp: Off Freq Reference: 1 Attenuation: 20 dB [A] Trigger Source: 1 External Offset: 41.00 dB [On] Trigger: 1					Bandwi 10 MHz	dth 🛛
		Channel Summ	ary	Subfram	ie #: 9 S	ubframe l	Power: 36.06 dBm	Subfrar	ne No
Detect Mode	с	ell ID: 175						0	
ND IST Made		Channel	E١	/M (%)	Power (dBm)	Modulation Type	9	
Guard band		NPSS					Z-Chu		
NB-IoT CF	· _	NSSS		0.72	28.7	0	Z-Chu		
884.402500 MHz	L	NPBCH					QPSK		
Measure Type	Ľ	NPDSCH					QPSK		
Subframe	L	NRS0					QPSK		
	L	NRS1					QPSK		
		I-O Diagram	N	SSS					
				Modulatio Frequency IQ Origin (EVM RMS: EVM Peak:	n Format: / Error: Offset:	Z-Chu 0.78 Hz 0.001 p -64.10 0.72 % 2.05 %	pm (0.72 %) (2.05 %)	NB-101 Frequer 884.402 Measur Frame	center ncy 500 MHz e Type Subfram

	Even numbered frame (10ms)							Odd numbered frame (10ms)												
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

NB-IoT 측정

• Stand Alone

NB-IoT (Standalone)

・측정 순서

Measure 1	RF Analysis	Channel Power, Occupied BW, Spectrum Emission Mask, ACLR, Spurious Emissions
	Modulation Analysis	Subframe 또는 Frame을 설정하여 측정

Measure Setup 4	Subframe No 0	측정 할 subframe 설정. 이 메뉴는 <i>Measure Type</i> 이 subframe 일 때만 활성화 됩니다.
	Measure Type Frame Subframe	측정 결과를 Subframe 또는 Frame으로 설정할 수 있습니다.

측정 화면

Channel Power

• ACLR

VIAVI 2017-07	-17 14:03:0	01		W(🔳 🚫 🗖	- 1	11 829
Mode: NB-IoT Stan	dalone			AC	LR						RF A	nalysis
Center Frequency: Channel: Channel Standard:	884.402 50 2554 FWD Band Globa	0 MHz al	Preamp: Attenuatio External C	on: Offset:	Off 20 dB [M 41.00 dB] [On]	Freq Ref Trigger S Trigger:	erence: iource:	Intern Intern Intern P/	al al al ASS	Char	nnel Power
Mode Sweep Detector	50.0 40.0 30.0	e Unit: dB	m		- Harrison	Marria				M1:	Occu	ipied BW
RBW [A] 30 kHz	10.0				1	-					Emis	sion Mask
VBW [A] 30 kHz Sweep Time	-20.0 -30.0	mythingt	he have a strate	w.w.w	ŕ		mark	muna	muhu	waw.w	ACLF	ł
19.40 ms Average: 5 5	-50.0 Cen	ter: 884.4	02 500 MHz		Free	quency		Sp	an: 1.500	000 MHz	Spur Emis	ious sions
	Ref	erence P	ower:	38.5	51 dBm							
	Freq	uency	Integrat Bandwid	ion dth	dBc	ower dE	m	ا dBc	Jpper dBr	n		
	300.0 500.0	00 kHz 00 kHz	180.00 k 180.00 k	:Hz :Hz	56.02 60.72	-17 -22	.50 P .21 P	56.25 60.33	-17.7	'4 P 11 P		

• Occupied BW

Mode: NB-IoT Stand	dalone				Occup	ied BW						RF Ar	nalysis
Center Frequency: Channel: Channel Standard:	884.402 500 MHz Preamp: 2554 FWD Attenuati Band Global External				: Off Freq Reference: tion: 20 dB [M] Trigger Source: Offset: 41.00 dB [On] Trigger:					Intern Intern Intern	nal nal nal	Char	nel Power
										F	PASS	0	
Mode Sweep	50.0 40.0	Scale U	nit: dBm								M1:	Uccu	ріеа вуу
RBW [A]	20.0 10.0					proven	******	h				Spec Emis	trum sion Mask
/BW [A] 3 kHz	-10.0				لمس	, 		\ \.				ACLR	
Sweep Time 141.41 ms	-40.0	****	gymw	~~~~~				140	"When the second	man	-		
Average: 5 5	-50.0	Center:	884.402	500 MHz		Free	quency		Spa	an: 1.000	000 MHz	Spur Emis	ious sions
		Occup	ied Ban	dwidth:	181.	64 kHz							
		Integrat	ed Pow	er:	38.69) dBm / 1	.00 MHz						
		Occupie	ed Powe	r:	38.64	dBm (99	9.00 % of	Integra	ited Powe	r)			

Spectrum Emission Mask

측정 화면 Measure Type: Frame

• Frame

VIAVI 2017-07	-22 09:41:21		Test FW	(9.075	.060)		INT 😒	-	III : 59%
Mode: NB-IoT Stan	dalone		NB-IoT Mod	lulation Anal	ysis			Marke	r
Center Frequency: Channel: Channel Standard:	884.402 500 2554 FWD Band Global	MHz I	Preamp: Attenuation: External Offset	Off 20 dB [A] : 41.00 dB [Freq Trigg On] Trigg	Reference er Source er:	e: Internal Internal Internal	Marke	r View
HOLD	с	hannel Su	mmary		Fr	ame Pow	er: 36.30 dBm	Chanr	nel
NB-IoT Mode	Cell ID): 466						NIDDO	~
Standalone		Channel	EV	′M (%)	Power (dBm)	Modulation Typ	e	СН
Measure Type Frame		NPSS		2.75	26.3	9	Z-Chu		
Tranie		NSSS	:	3.92	26.2	6	Z-Chu		
		NPBCH		2.58	26.6	6	QPSK		
		NPDSCH		3.05	26.6	5	QPSK		
		NRS0		3.78	25.6	2	QPSK		
		NRS1					QPSK		
	I-Q) Diagram	NPE	DSCH					
				Modulatio	n Format:	QPSK			
		•	53	Frequency	Error:	-4.15 Hz -0.005 p	pm		
				IQ Origin (Offset:	-48.09			
				EVM RMS:		3.05 % (3.05 %)		
		-		EVM Peak:		7.71 % (7.71 %)		
								-	

채널 별 I-Q Diagram 측정

	◀		Eve	en nur	nbered	d frame	e (10m	IS)			Odd numbered frame (10ms)									
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

측정 화면 Measure Type: Subframe

• Subframe: #0 (NPBCH)

VIAVI 2017-07	-22 09:41:58	Test F\	V(9.075	.060)		INT 😵	Ð	111) 589
Mode: NB-IoT Stan	dalone	NB-IoT N	lodulation Ana	lysis			Mar	ker
Center Frequency: Channel: Channel Standard:	884.402 500 MHz 2554 FWD Band Global	Preamp: Attenuation: External Offs	Off 20 dB [A] set: 41.00 dB [Freq F Trigge On] Trigge	Reference er Source: er:	e: Internal Internal Internal	Mar	ker View C
	Chann	el Summary	Subfran	ne#:0 Su	ıbframe P	Power: 42.80 dBm	Cha	nnel
NB-IoT Mode Standalone	Cell ID: 46	6						сн
Manualone	Char	nnel	EVM (%)	Power (o	dBm)	Modulation Type	INF D	ien i
Subframe	NP	SS				Z-Chu		
	NS	ss				Z-Chu		
	NPE	СН	2.97	26.6	4			
	NPD	SCH				QPSK		
	NR	S0				QPSK		
	NR	S1				QPSK		
	I-Q Diag	ram 1	NPBCH				_	
			Modulatio	on Format:	QPSK			
	•	*	Frequency	/Error:	-5.01 Hz -0.006 p	pm	_	
			IQ Origin	Offset:	-47.56			
			EVM RMS:		2.97 % (2.97 %)		
·			EVM Peak	:	6.86 % (6.86 %)		

• Subframe: #1/2/3/4/6/7/8 (NPDSCH/RS)

VIAVI 2017-07-2	2 09:44:12 Te	st FW(9.075	.060)	. 🕥 🎹	57%
Mode: NB-IoT Standa	ilone N	IB-IoT Modulation Ana	llysis		Measure Setup
Center Frequency: 2 Channel: 2 Channel Standard: 2	884.402 500 MHz Prea 2554 FWD Atter Band Global Exte	mp: Off nuation: 20 dB [A] rnal Offset: 41.00 dB	Freq Reference Trigger Source [On] Trigger:	e: Internal : Internal Internal	
HOLD	Channel Summ	ary Subfran	ne #: 3 Subframe I	ower: 43.80 dBm	Subframe No
NB-IoT Mode	Cell ID: 466				2
Standalone	Channel	EVM (%)	Power (dBm)	Modulation Type	5
Measure Type Subframe	NPSS			Z-Chu	
	NSSS			Z-Chu	
	NPBCH			QPSK	
	NPDSCH	2.75	26.71	QPSK	
	NRSO	0.95	25.67	QPSK	
	NRS1			QPSK	
	I-Q Diagram	NPDSCH			
		Modulation Frequence	on Format: QPSK y Error: -3.03 Hi	2	
			-0.003 p	pm	Measure Type
		IQ Origin	Offset: 6.63		
		EVM RMS	2.75 %	2.75 %)	Frame Subfram
		EVM Peak	6.70 %	6.70 %)	

측정 화면 Measure Type: Subframe

• Subframe: #5 (NPSS)

VIAVI 2017-07-2	2 09:45:49 Tes	t FW(9.075	.060)	INT 🗞 🗖	57%
Center Frequency: 8 Channel: 2	384.402 500 MHz Pream 2554 FWD Atten	np: Off uation: 20 dB [A]	e: Internal : Internal	Marker Marker View	
Channel Standard: E	Band Global Extern	nal Offset: 41.00 dB [On] Trigger:	Internal	On Off
NB-IoT Mode	Channel Summa	ry Subfram	ne #: 5 Subframe P	Power: 43.47 dBm	Channel
Standalone	Cell ID: 466 Channel	EVM (%)	Power (dBm)	Modulation Type	NPSS
Subframe	NPSS NSSS	2.61	26.45	Z-Chu Z-Chu	
	NPBCH NPDSCH			QPSK QPSK	
	NRS0 NRS1			QPSK OPSK	
	I-Q Diagram	NPSS		4: Sit	
		Modulatio	In Format: Z-Chu y Error: -3.10 Hz -0.004 p Offset: -49.08 2.61 % (: ipm (2.61 %) (4.97 %)	

• Subframe: #9 (NSSS)

VIAVI 2017-07	-22 09:51:10	Test FV	/(9.075	.060)		INT 📎	•	III 54%
Mode: NB-IoT Stan	dalone	NB-IoT Mo	dulation Ana	lysis			Ma	rker
Center Frequency: Channel: Channel Standard:	884.402 500 MHz 2554 FWD Band Global	Preamp: Attenuation: External Offse	Off 20 dB [A] et: 41.00 dB [Freq Trigg On] Trigg	Reference er Source er:	e: Internal : Internal Internal	Ma	rker View O
	Channel	Summary	Subfram	ie #: 9 S	ubframe I	Power: 31.80 dBn	h Chi	annel
NB-IoT Mode	Cell ID: 466							
Standalone	Chann	el E	VM (%)	Power	(dBm)	Modulation Typ	e NS	SS
Measure Type Subframe	NPSS				-	Z-Chu		
	NSSS		3.82	26.3	29	Z-Chu		
	NPBC	н			-	QPSK		
	NPDSC	:H			-	QPSK	_	
	NRSC)			-	QPSK	_	
	NRS1				-	QPSK		
	I-Q Diagra	m N	ISSS					
			Modulatio Frequency IQ Origin EVM RMS: EVM Peak	n Format: / Error: Offset:	Z-Chu -0.90 Hz -0.001 p -42.33 3.82 % (11.46 %	2 ipm (3.82 %) (11.46 %)		

	◄		Ev	en nur	nbered	d fram	e (10m	is)			Odd numbered frame (10ms)									
12 subcarriers	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9	SF#0	SF#1	SF#2	SF#3	SF#4	SF#5	SF#6	SF#7	SF#8	SF#9
(180 kHz)	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NSSS	NPBCH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPSS	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH	NPDS(C)CH

RFoCPRITM

• CPRI 개요

RFoCPRITM Technology Interface

JD745B은 RRH 테스트를 위한 인터페이스의 두 가지 유형을 지원합니다

CPRI 프로토콜 개요

User Plane: 하나의 안테나 및 하나의 캐리어(AC)의 IQ 데이터 흐름.

Control Plane: 정보는 운영, 관리 및 CPRI 링크의 유지 보수 관련. 제어 데이터 바이트의 실제 내용은 CPRI 정의되지만 제조사에 특정되지 않는다

Synchronization Plane: 노드들 사이의 프레임 시간 동기 정보를 전송하는 데이터 흐름.

IQ Data: 동 위상 및 직교 변조 된 데이터의 형태로 사용자 정보 (디지털베이스 밴드 신호).

L1 Inband Protocol: 링크 관련되어 직접적으로 물리 계층에 의해 반송되는 정보 신호.

CPRI Technology Overview

CPRI Frame 구조

		↓			
[Length of control v	word	\square		W: word number in basic frame
	Line Rate [Mbps]	Length of word [bit]	8 bits	(Y: byte number within word
	614.4	T=8		Y	basic frame (1 Tchip = 260.42ns)
	1228.8	T=16	↓ ↓	· · · · · · · · · · · · · · · · · · ·	
Ī	2457.6	T=32			X: basic frame number
	3072.0	T=40		#0 #X #255	hyperframe (256 basic frames = 66.67µs)
	4915.2	T=64			Z: hyperframe number
	6144.0	T=80		#0 #Z #149	CPRI 10ms frame (150 hyper frames = 10ms)
	9830.4	T=128			
				BFN	

Figure 7: Basic frame structure for 614.4 Mbit/s CPRI line bit rate

Figure 8: Basic frame structure for 1228.8 Mbit/s CPRI line bit rate

CPRI Technology Overview User Plane Sampling

• Sampling:

- 사용자 데이터는 하나의 캐리어, 다시 말해서, 안테나 캐리어 (AxC) 콘테이너에 대해 하나의 안테나의 데이터를 반영하고 IQ 데이터 흐름의 형태로 이송된다.
- AxC 당 샘플링 레이트는 스터핑 샘플 첨가 정수배에 동등하지 않은 신호 인 경우 (3.84MHz)의 정수배로 맞추어 집니다.

RFoCPRI 측정 LTE Spectrum 측정

LTE CPRI Mapping – 2457.8 Mbps

9 MHz

512 – 32	
= 480	

DUT	
CPRI line rate (Mbps)	2457.6
LTE Bandwidth	9 MHz
Carriers	MIMO
AxC positioning	Packed
IQ Sampling	15
Over sampling	1
Stuffing Bits	3

Test Configuration									
Link Rate	2457.6								
Bandwid	10								
NE	M	None							
AxC (1 – 2								
IQ Samp	le Width	12							
Map Position	AxC 0	0 (0)							
AxC Spacing)	AxC 1	15 (30)							
	AxC 2	30 (60)							
	AxC 3	45 (90)							
	AxC 4	60 (120)							
	AxC 5	75 (150)							
	AxC 6	90 (180)							
	AxC 7	105 (210)							

© 2017 Viavi Solutions Inc. 89

RFoCPRI Measurement Cable 연결방법

Tab/Coupler 를 이용하는 경우

• Thru Mode를 이용하는 경우

RFoCPRITM

• CPRI 측정

VIAVI

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 91

CellAdvisor RFoCPRI Layer 2 Monitoring

- 링크 유지 보수
 - Loss of signal (LOS): 코드 위반
 또는 낮은 광 파워.
 - Loss of frame (LOF): 프레임
 동기화 또는 정렬.
 - Remote alarm indication (RAI):
 LOS, LOF를 포함한 모든 오류.
 - SAP defect indication (SDI):
 서비스 액세스 포인트에 연결 상태
 - Optical Power Level

- SFP 사양 및 정보
 - Wavelength (파장)
 - Nominal Rate
 - Max RX Level

RFoCPRI Measurement 메뉴 구조 – Layer 2 Monitoring

CellAdvisor RFoCPRI Uplink / Downlink Spectrum Analysis

RFoCPRI Measurement Menu 구조: Interference Analyzer - 삼성

RFoCPRI Measurement Menu 구조: Interference Analyzer - 에릭슨

Menu 구조: Interference Analyzer – 에릭슨 Measure Setup

Ericsson 기본 인 경우

Ericsson 압축 모드 인 경우

Menu Structure: Interference Analyzer - Dual Spectrum

•

Dual Spectrum 측정 화면

안테나 0과 동시에 안테나 1을 모니터링 합니다.

* CPRI link에 두 신호가 동시에 있어야 합니다.

Menu Structure: Interference Analyzer - Dual Spectrogram

RFoCPRI[™]

Downlink Signal Analysis for LTE-FDD/TDD

VIAVI

www.viavisolutions.com

RFoCPRI Downlink Signal Analyzer

Introduction

RFoC PRI 다운 링크 신호 분석기는 셀 관리자는 CPRI 링크로드 기저 대역 신호에 대해 디 맵핑 IQ 데이터로 변조 정확도 테스트를 수행 할 수 있다.

Modulation quality test over RFoCPRI enables user to verify the signal quality being injected to the RRH.

By comparing the signal quality degradation after passing RRH allows fast isolation of root cause.

RF Analyzer

- Channel Power
- Occupied Bandwidth
- P vs. T
- CCDF

- Modulation Analyzer
- Constellation
- Data Channel
- Control Channel
- Subframe
- Frame
- Time Alignment Error
- Data Allocation Map

Compatibility

- NEM: Ericsson/ ALU/ Huawei/ Samsung/ ZTE
- Link Rate: 614.4Mbps 9.8Gbps
- Technology: LTE-FDD

- Opt.091 RFoCPRI LTE-FDD Signal Analyzer
- *Available for JD740B and JD780B

*Requires Opt.008 and at least one option out of Opt.060, 061, 062, 063, 064, and 065

RFoCPRI Downlink Signal Analyzer RF Conformance Tests: LTE-FDD

***** RF Conformance – Channel Power

RF Conformance – P vs. T

***** RF Conformance – Occupied Bandwidth

RF Conformance – CCDF

RFoCPRI Downlink Signal Analyzer Modulation Quality Tests: LTE-FDD

Modulation Quality – Constellation

Modulation Quality – Data Channel

Mode: RFoCPRI LTE	-FDD	Data	Data Channel													
Center Frequency: Channel: Channel Standard:	2.020 000 000 GHz Band Global	Link Rate: Bandwidth: External Offset:	Internal n: 15 1	Marker View On	o											
	Resource B	lock Power	Subframe #: 0		Marker: RB#0	RB Number	_									
P1 LOS / LOF (C/H)	Scale Unit: dB 10.0 -10.0	m				22										
1/6 MBMS	-30.0				ا الله الله ال											
CFI [A] 1	-70.0		Resource Block		49											
Antenna Port [A] ANT0 ANT1	I-Q Diagram of	f Current Block	Subframe #: 0 R	!B#0												
PDSCH Precoding Off			RB Power:	-34.53 dBm												
PDSCH Threshold -20.00 dB			Modulation Format:	16 QAM												
			IQ Origin Offset:	-80.40 dB												
Cyclic Prefix Normal			EVM RMS:	0.15% (0.15%												
Cell ID [A] 1			EVM Peak:	0.30 % (0.30 % @ Symbol #12	sc #274											

Modulation Quality– Control Channel

Mode: RFoCPRI LTE	-FDD	Modulation					
Center Frequency: Channel: Channel Standard:	2.020 000 000 G Band Global	Hz Link Rat Bandwi Externa	e: 2457. dth: 10 MH I Offset: 0.00 c	6 Mbps F Iz I IB [On] A	reg Reference Q Sample Wid xC Group:	: Internal th: 15 1	Constellation
						PASS	
	Chan	nel Summary	Sub	frame #: 0 S	ubframe Pow	er: -20.16 dBm	Data Channel
P1 LOS / LOF	Cell ID: 1	Group I	D: 0 Secto	rID:1 NoofO	ontrol (CFI): 1	(0x6db6db6d)	
(C/H)	Ch	annel	EVM (%)	Power	(dB) N	lodulation Type	
PHICH Ng	F	-SS	0.21	2.4	3	Z-Chu	Control Channe
1/6	9	-SS	0.19	2.4	3	BPSK	
MBMS	P	всн	0.20	2.4	3	QPSK	
	PC	FICH	0.20	0.0	0	QPSK	
CFI [A] 1	PI	HICH	0.25	0.0	0	BPSK	Subframe
Antonno Port (A)	P[оссн	0.23	1.0	6	QPSK	
ANTO ANTI		RS	0.22	0.0	0	QPSK	
	I-Q Di	agram	P-SS				Frank 1
			Modu Frequ	lation Format: ency Error:			
PDCCH Threshold -10.00 dB			- IQ Or	igin Offset:	0.000 ppm -74.68 dB		Time Alignment Error
Cyclic Prefix			EVM F	IMS:	0.21 % (6.8	3%)	
			EVM P	eak:		3.77 %)	Data
1					@ Symbol #	6,SC #298	Allocation Map

Modulation Quality – Subframe

Mode: RFoCPRI LTE-F	DD	Sub	frame			Modulation
Center Frequency: 2 Channel:	2.020 000 000 GHz Lin Bai Band Global Ext	k Rate: ndwidth: ternal Offset:	2457.6 Mbps 10 MHz 0.00 dB [On]	Freq Reference IQ Sample Wic AxC Group:	Constellation	
					PASS	
	Subframe # 0					Data Channel
P1 LOS / LOF	Channel	EVM (%)	Power (dB)	Modulation Type	REG/RBs	
(C/H)	P-SS	0.21	2.43	Z-chu		
PHICH Ng	S-SS	0.19	2.43	BPSK		
1/6	PBCH	0.20	2.43	QPSK		Control Channe
MRMS	PCFICH	0.20	0.00	QPSK		
Off	PHICH	0.25	0.00	BPSK		
CTI (A)	PDCCH	0.23	1.06	QPSK	90/G	
LFI [A] 1	RS	0.22	0.00	QPSK		Subframe
•	PDSCH QPSK	0.36	-6.00	QPSK	25/B	
Antenna Port [A]	PDSCH 16 QAM	0.17	2.35	16 QAM	25/B	
ANTO ANT1	PDSCH 64 QAM			64 QAM		
PDSCH Precoding	Unallocated				0/B	Frame
PDSCH Threshold -20.00 dB	Subframe Power: OFDM Symbol Pov	-20.16 d	IBm Freque IBm Time E	ency Error: 0.60 Hz Frror: 7344.30	/ 0.000 ppm) μs	
PDCCH Threshold -10.00 dB	Data EVM RMS: Data EVM Peak:	0.20 % (43 1.09 % (21	.09%) 3.89%) @ Symb	ol #10,SC #433		Time Alignment Error
Cyclic Prefix Normal	RS EVM RMS: RS EVM Peak:	0.22 % (13 0.54 % (69)	7.66%) 3.65%) @ Symb	ol #4,SC #448		
Cell ID [A]	IQimbalance:					Data
1	Coll ID: 1	6-		Cartan ID		Allocation Map

RFoCPRI Downlink Signal Analyzer Modulation Quality Tests: LTE-FDD

Modulation Quality – Frame

🔷 JDSU 2015-04	-23 19:	25:50				. INT 🗞	1009 🎹 🎝 (
Mode: RFoCPRI LTE	-FDD		Fr			Modulation	
Center Frequency: Channel: Channel Standard:	2.020 0 Band 0	i00 000 GHz 	Link Rate: Bandwidth: External Offset:	2457.6 Mbps 10 MHz 0.00 dB [On]	Freq Referenc IQ Sample Wio AxC Group:	e: Internal ith: 15 1	Constellation
						PASS	
		Subframe #: 3					Data Channel
P1 105 / 105	-	Channel	EVM (%)	Power (dB)	Modulation Type	REG/RBs	
(C/H)		P-SS	0.20	2.43	Z-chu		
DUICHAIN	-	S-SS	0.19	2.43	BPSK		
1/6		PBCH	0.20	2.43	QPSK		Control Channel
1/0	-	PCFICH	0.20	0.00	QPSK		
MBMS		PHICH	0.24	0.00	BPSK		
0#		PDCCH	0.22	1.06	QPSK	900/G	
CFI [A]		RS	0.22	0.00	QPSK		Subframe
1		PDSCH QPSK	0.39	-6.00	QPSK	250/B	
Antenna Port [A]		PDSCH 16 QAI	vi 0.19	2.44	16 QAM	250/B	
ANTO ANT1		PDSCH 64 QAI	VI		64 QAM		
PDSCH Precoding		Unallocated				0/B	Frame
PDSCH Threshold -20.00 dB		Frame Avg Pow OFDM Symbol P	er: -20.02 o ower: -20.07 o	<mark>dBm Frequ</mark> dBm IQ-Ori	ency Error: -0.11 H gin Offset: -53.00 (z / -0.000 ppm dB	-
PDCCH Threshold -10.00 dB		EVM RMS:	0.22 % (6.8	83%) 13.77%) @ Sumb	ol #13 SC #371		Time Alignment Error
Cyclic Profix		Data EVM RMS	0 22 % (43	09%)			
Normal		Data EVM Peak:	3.96 % (21	3.89%) @ Symb	ol #13,SC #371		
Cell ID [A] 1		Cell ID: 1	Gr	roup ID: 0	Sector ID		Data Allocation Map

Modulation Quality – Time Alignment Error

Modulation Quality – Data Allocation Map

Mode: RFoCPRI LTE	TE-FDD Data A							a Allocation Map																Modulation					
Center Frequency: Channel: Channel Standard:	2.020 00 Band Gl	20 000 000 GHz Link Rate: Bandwidth: Bandwidth: nd Global External Offse									2457.6 Mbps Freq Reference: 10 MHz IQ Sample Width: set: 0.00 dB [On] AxC Group:											Ir : 1 1	nter 5	na	I			Constellation	
P1 LOS / LOF C/H)	-90)ata /	Allo	cati	٥n ١	/s. 1	Frar	ne) di	3m	С	FDI	MS	SBI	Pov	ver	-21	0.07	′ dE	m	Da	ta l	Jtili	zati	on:	: 10	0.0	10 9	6	Data Channel
MBMS Off Antenna Port (A) ANTO ANT1	9 SF 0 0										Re	esc frai	ouro	ce f		:k (l				Da	ta		zati	on:			49		Control Channel Subframe Frame
20.00 dB Display Channel PDSCH Cyclic Prefix Normal Cell ID [A]	-10.0 -10.0 -30.0 -50.0 -70.0 -90.0	cale	uni	it: d	Bm																								Time Alignment Error Data

RFoOBSAITM

• OBSAI 개요

www.viavisolutions.com

OBSAI 기본 BTS 구조 (참고)

OBSAI Base Station 구조

- Transport Block (TB)
- Control and Clock Block (CCB)
- Baseband block (BB)
- RF Block (RFB)
- Optional General Purpose Block

RFoOBSAI

• 측정 순서

Auto Configurable parameters

- RP3 Address
- RP3 Type
- Scrambler Code (6.1Gbps only)

> Step2: Detect signal bandwidth

Verify signal bandwidth using Message count on Layer2 Monitoring

LTE-FDD 5MHz	LTE-FDD 10MHz	LTE-FDD 20MHz							
SFP/SFP+PORT 1 Current History LOS LOF Optic Tx Level Odd Violation: 0 Rx K30.7 Words: 0 Messages Address: 0x0123/76800	SFP/SFP+PORT 1 Current History LOS	SFP/SFP+PORT 1 Current History LOS LOF Optic Tx Level Optic Tx Level Code Violation: 0 Messages Address: 0x0123/307200							
Message Count: 76,800	Message Count: 15,3600	Message Count: 307,200							

Manual Configurable parameters

- Bandwidth
- External Offset

Non configurable parameters

- RBW
- Span
RFoOBSAITM

• OBSAI 측정

VIAVI

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 109

RFoOBSAI Measurement Menu 구조 – Layer 2 Monitoring

Layer-2 Monitoring

🔷 JDSU 2015-05	-06 23:57:42	INT 📽 🖻	100% 🎹 🗣 🚰
Mode: RFoOBSAI	Layer 2 Monitor	ing	Measure Setup
Event Logging:	Off Start Time: 05/06 Elapsed Time: 00:06:	23:51:29 13	Select Port Port1 Port2
Link Rate 3072 Mbps	SFP/SFP+PORT 2 Current History	SFP/SFP+PORT1 Current History	Link Rate 🛛 🖬
	LOS LOF Optic Rx Level -12,0 dBm Optic Tx Level Code Violation: 0	LOS LOF Optic Rx Level -4,4 dBm Optic Tx Level Code Violation: 0	OBSAI Parameter 🛛
	Rx K30.7 Words: 0 Messages Address: 0x0123/76800 SFP/SFP+PORT 2 Information	Rx K30.7 Words: 0 Messages Address: 0x0123/76800 SFP/SFP+ POrt 1 Information	Bandwidth 🔳 20 MHz
	Wavelength: Vendor: JDSU Vendor PN: PLRXPL-VE-SG4-62 Vendor Rev: 1	Wavelength: Vendor: JDSU Vendor PN: JSH-85L3DA1-10 Vendor Rev: 3	Thru On Off
	Power Level Type: Average Power Diagnostic Byte: 104 Nominal Rate: 4300 Mbps Min Rate: Mbps Max Rate: Mbps Max Rate: 0.00070 dBm	Power Level Type: Average Power Diagnostic Byte: 104 Nominal Rate: 8500 Mbps Min Rate: Mbps Max Rate: Mbps Max Rate: 0. 49993 dBm	Source 🗖
	Max Tx Level: -2,50032 dBm	Max Tx Level: 0.49993 dBm	Clear History
	<u>k</u>		

Message Address: 0x0040/307200 RP3 Address/ Message counter 적용 장비: NSN Link Rate: 3.1Gbps Technology: LTE-FDD Signal Bandwidth: 20MHz

```
LOS/LOF 알람 상태와
히스토리를 보여 줍니다.
Code Violation and K30.7
표시 오류 수
Optic RX level and TX level
표시
RP3 Address는 OBSAI 링크에
사용 가능한 주소를 보여
줍니다.
RP3 주소를 할당하면 IQ
위치를 구성하고 스펙트럼을
볼 수 있습니다
Number of message 는
대역폭과 관련이 있으며
우리는 이 값으로 대역폭을
가정 할 수 있습니다.
```

Layer-2 Monitoring: RP3 Address 설정

VIAVE

Layer-2 Monitoring

LTE-FDD 5 MHz

SFP/SFP+PORT 1 C	urrent History
LOS	
LOF Optic Rx Level Optic Tx Level Code Violation: Rx K30.7 Words:	-4.5 dBm 0
Messages Address	0x0123/76800

LTE-FDD 10 MHz

LTE-FDD 20 MHz

Interference Analyzer

Layer-2 Monitoring: RP3 Address 설정

Layer-2 Monitoring: RP3 Address 설정

Field Test Data

RFoCPRI Interference Analyzer – Uplink Spectrum

Field Test Data

RFoCPRI Interference Analyzer – DL Spectrum

E-TM2

♦ JDSU 1999-12-02 01:33:26 %-- 💕 =ی 🔂 🚱 E-TM3.3 Mode: RFoOBSAI Center Frequency: 1.745 000 000 GHz 3072 Mbps 20 MHz Freq Reference: Internal RBW Channel Bandwidth: Channel Standard: Band Global External Offset: 0.00 dB [On] 100 kHz Scale Unit: dBm M1: Mode Sweep -30.0 Detector VBW -40.0 RMS ware Mr. Maharapathan and Manager March RBW / VBW 100 kHz / 1 kHz -60.0 P1 LOS / LOF (C/H) Mary Ar Walker Sweep 270.01 ms -80.0 Average: 1 -90.0 -100.0 T1:W T2:-T3:-- T4:--Average T5:-- T6:--Center: 1.745 000 000 GHz Frequency Span: 30,720 000 MHz M1: --M2: --M4: --

VIAVI

www.viavisolutions.com

RFoCPRI Measurement

Menu Structure: Interference Analyzer - Spectrogram

CellAdvisor RFoOBSAI

Layer 2 Signal Analyzer

RFoOBSAI RFoOBSAI LTE-FDD Signal Analyzer

• 측정 순서

Auto Configurable parameters

- RP3 Address
- RP3 Type
- Scrambler Code (6.1Gbps only)

▷ Step2: 신호의 Bandwidth 설정

Verify signal bandwidth using Message count on Layer2 Monitoring LTE-FDD 5MHz LTE-FDD 10MHz LTE-FDD 20MHz 0 -4.5 dBm 0 0 0 Optic Rx Level Optic Rx Level **Optic Rx Level** Optic Tx Level Optic Tx Level Optic Tx Level Code Violation Code Violation: Code Violation: Rx K30.7 Words: Messages Address: Rx K30.7 Words: Rx K30.7 Words: Messages Address: Messages Address: Message Count: 76,800 Message Count: 15,3600 Message Count: 307,200

Manual Configurable parameters

- Bandwidth
- External Offset

Non configurable parameters

- RBW
- Span

RFoOBSAI RFoOBSAI LTE-FDD Signal Analyzer

■ 측정 순서

IQ Invert

- I 및 Q 비트가 CPRI 페이로드로 반전하면, 변조 품질 측정에 오류가 발생.
- 기본 설정은 "IQ Invert: On" 입니다.
- Antenna Port의 그린 LED가 점등되지 않으면 설정을 바꿔 보세요

Mode: RFoOBSALLT	E-FDD	Sub	frame			Measure Setup			
Center Frequency: Channel: Channel Standard:	2.020 000 000 GHz Band Global	Link Rate: Bandwidth: External Offset:	3072 Mbps 10 MHz 0.00 dB [On]	Freq Referenc Rx RP3 Type: Rx RP3 Addre	E: GPS LTE SS: 0x0123	Cell ID 1			
					PASS	Auto	Manual		
	Subframe # 0					Miscellane	ous 🛛		
P1 LOS / LOF	Channel	EVM (%)	Power (dB)	Modulation Type	REG/RBs				
(C/H)	P-SS	0.21	2.43	Z-chu					
P1 Rx Optic	S-SS	0.19	2.43	BPSK					
(C/H)	PBCH	0.20	2.43	QPSK		Source	Œ		
PHICH No.	PCFICH	0.20	0.00	QPSK					
1/6	PHICH	0.25	0.00	BPSK					
	PDCCH	0.23	1.06	QPSK	90/G				
MBMS	RS	0.22	0.00	QPSK		IQ Invert			
Uff	PDSCH QPSH	0.36	-6.00	QPSK	25/B				
CFI [A]	PDSCH 16 QA	M 0.17	2.35	16 QAM	25/B	On	Off		
1	PDSCH 64 QA	M		64 QAM		011			
Antenna Port [A]	Unallocated				0/B	Thru			
ANTO ANT1									
PDSCH Precoding Off	Subframe Powe OFDM Symbol F	er: -20.16 o Power: -20.43 o	IBm Freque IBm Time E	ency Error: 0.60 Hz Frror: 7344.30	/ 0.000 ppm) µs	On	Off		
PDSCH Threshold -20.00 dB	Data EVM RMS: Data EVM Peak:	0.20%(43	.09%) 3.89%)@Svmb	ol #10.SC #433		Clear Histo	ny		
Cyclic Prefix Normal	RS EVM RMS: RS EVM Peak:	0.22 % (13	7.66%) 3.65%)@Symb	ol #4,SC #448					
Cell ID (A)	IQimbalance:					More (2/2)	2		
1	Coll ID: 1	Gr	oup ID: 0	Sector ID					

Cable and Antenna Analyzer

- Reflection (VSWR)
- Reflection (Return Loss)
- DTF (VSWR)
- DTF (Return Loss)
- Insertion Loss
- Cable Loss (1 Port)
- 1 Port Phase
- 2 Port Phase
- Smith Chart

기능 키

Cable & Antenna Analyzer

주	요 측정 설정	7	
	Freq/Dist		F
	Freq/Dist		Freq/I
	Start Frequency 802.5MHz		Distan
	Stop Frequency		Stop F
	807.5MHz		807.51
	Center Frequency	1	Cente
	805MHz		805M
	Span		Cente
	5MHz		805M
			Span
			SIVIHZ
	Band List 🕨	1	Band
	Korean PCS		Korea

Freq/Dist
I
Freq/Dist
Distance
50.00m
Stop Frequency
807.5MHz
Center Frequency
805MHz
Center Frequency
805MHz
Span
5MHz
Band List 🕨
Korean PCS

* DTF Mode

측정 보조 키	
Trace/Display	
Ļ	
Amp/Scale	N
Select Trace T1	Se N
Clear Write	 0
Capture	N
Trace View On Off	D
Trace Clear All	D
A === (0 == 1 =	N
Amp/Scale	

Amp/Scale Auto Scale

Max (Top) 0

Min (Bottom)

60

Marker

Limit +/		
Limit		
Display Line		
-25dB		
Band Limit		Band Limit
		Band Limit 1
		ŗ
		[Off]
Band Limit 2		Band Limit 2 🕨
Band View		[Off]
		Band Limit 3
On C	Off	
Start Band		[Off]
820.00MHz		Clear All
Stop Band		
830.00MHz		

Calibration

Cable & Antenna Analyzer

장비 보정의 목적

장비의 RF line의 열화로 인한 에러 및 출력 파워 값 및 위상 에러의 보상 및 장비 내부의 Loss를 보상하는 작업 입니다.

Open and Short 는 내부 경로 손실을 보상 하며, Load는 잔여 전력을 빼는 역할을 합니다.

Mode 설정

교정의 종류

- ・One port 교정
- 아래 항목을 측정 할 수 있습니다.
 - ✓ Reflection
 - ✓ DTF
 - ✓ One Port Cable Loss
 - ✓ One Port Phase
 - ✓ Smith Chart
- Two Port 교정
 - 아래의 항목을 사용할 수 있습니다.
 - ✓ Insertion Loss
 - ✓ 2 Port Phase

One Port 교정을 위한 케이블 연결 방법 2 단계)

Two Port 교정을 위한 케이블 연결 방법

1 단계)

Reflection (VSWR) / Reflection (Return Loss)

Cable 연결 방법

Mode 설정

측정 화면

Definition

VSWR 측정은 안테나와 장비간에 임피던스 미스 매칭 값을 확인 할 수 있습니다. 무선 통신 시스템에서 안테나까지의 임피던 스의 불연속점이 생기면 출력되는 파워가 안테나를 통하여 방사되지 못해 시스템의 효율을 저하 시킵니다.

측정 규격

- Frequency Range: 5MHz ~ 6GHz
- Data Point: 126, 251, 501, 1001

용어 정리

Data Point:

측정 모드 동안 측정하는 데이터 포인트를 나타냅니다. 측정 가능한 포인트는 126, 251, 501, 1001,2002를 지원하며 501 포인트는 251포인트에 비해 측정하는 디스플레이 시간이 두 배가 걸립니다.

- Trace Average:
 측정 주파수 전체 대역의 평균 Average 값.
- Limit line:

사용자 측정 기준 라인 설정 표시.

Cable & Antenna Analyzer 설정 키 설정 방법

DTF (VSWR) / DTF (Return Loss)

RF Antenna

Definition

DTF는 시스템에서 안테나 라인까지의 고장 위치를 찾는 기능 입니다. 이것은 시스템에서 안테나까지 여러 지점에서 신호의 반사 또는 불연속점의 상대 거리를 표시합니다.

측정 규격

- Frequency Range: 5MHz ~ 6GHz
- Data Point: 126, 251, 501, 1001, 2002

용어 정리

- Cable: 허피 케이블
- 현재 케이블 설정을 나타냅니다. • PV: 선택된 케이블의 전파 속도를
- 선택된 케이블의 선파 속도를 나타냅니다 CL:
- 선택된 케이블의 케이블 손실을 나타냅니다
- Data Point:

데이터 포인트를 IFFT한 수를 나타냅니다. 데이터 지점이 직접 측정 가능한 최대 거리와 관련되어 있습니다.

- Suggested Span: 최적의 해상도를 얻기 위해서 JD785B는 현재 거리 설정을 참조하여 최적의 범위를 제안합니다.
- Max Distance:

span 및 DATA Point에 따라서 최대 측정 거리를 나타냅니다.

• Output Power: JD785B에서 측정 포트로 출력되는 파워를 나타냅니다.

Cable & Antenna Analyzer

Insertion Loss/ Gain

Cable & Antenna Analyzer

Cable 연결 방법

Mode 설정

측정 화면

Definition

Insertion Loss/Gain은 측정 장비의 증폭도 또는 손실을 측정 합니다.

측정 규격

- Frequency Range: 5MHz ~ 6GHz
- Data Point: 126, 251, 501, 1001, 2002
- Bias Tee: 12 ~ 32 volt with 0.1 volt step

용어 정리

- Data Point:
 측정 모드 동안 측정하는 데이터 포인트를 나타냅니다.
- Trace Average:
 측정 주파수 전체 대역의 평균 Average 값.

Cable Loss (1 Port)

Cable & Antenna Analyzer

Cable 연결 방법

Mode 설정

측정 화면

Definition

Cable의 Loss를 One Port로 간단하게 측 정 할 수 있는 기능 입니다

측정 규격

- Frequency Range: 5MHz ~ 6GHz
- Data Point: 126, 251, 501, 1001, 2002
- Bias Tee: 12 ~ 32 volt with 0.1 volt step

용어 정리

Data Point:

측정 모드 동안 측정하는 데이터 포인트를 나타냅니다.

 Trace Average: 측정 주파수 전체 대역의 평균 Average 값.

Cable Loss (1 Port)를 이용한 측정 Cable Loss 확인

Cable & Antenna Analyzer

VIAVI

Definition

측정 Cable의 loss를 측정 하는 방법 입니 다. 기지국의 주파수 및 통신 방식이 다 양해지면서 측정주파수에 대한 측정 Cable의 Loss를 알기 위하여 SG와 SA를 이용하여 번거롭게 측정을 하였습니다.

JD785B의 1Port Cable Loss 기능을 이용 하면 아주 간단하게 Cable Loss와 Phase 특성을 동시에 확인 할 수 있습니다.

정상적으로 계측기의 Connector와 결합된 상태 에서 Cable을 흔들었을 때 측정 파형이 변하면 Phase 특성이 문제가 있는 Cable입니다. 이 Cable은 운용되는 기지국에서 사용할 경우 측정 값이 흔들리는 현상이 나타납니다.

측정 화면

Mode: Cable & Antenna Analyzer Cable Loss (1 Port)							Measure			
Start Freq: 1800 Stop Freq: 2100 Band Name: Cust					Cal Status: On Cal Date: 2010/12/30 Cal Time: 17:56:12		730 !	Reflection (VSWR)		
Scale Unit: dB M1: 1950 00 MHz 3 d4 dB									Reflection (Return Loss)	
Data Point 1001	2.0				MI					
Span 300.00 MHz	6.0 0.0	www	mm	www	m	h	~~~	ww	ww	DTF (VSWR)
Trace Average 3.87	9.0				-					
imit Line: Off	12.0									DTF (Return Loss
Output Power	15.0									
	21.0									Insertion (
lias Tee: Off	24.0							_		
T1:W T2:	30.0	000.00							100.00	Cable Loss (1 Port)
T3: T4: T5: T6:	Start:	800:00		Freque	ncy (MHz)		Stop: 7	2100.00	
M1: 1950.00 M M3: M5:	IHz, 3.44 dB			M2: M4: M6:						More (1/2)

Smith Chart

Cable & Antenna Analyzer

Cable 연결 방법

Mode 설정

측정 화면

Definition

Antenna의 임피던스 매칭 및 반사계수를 확인 할 수 있는 기능 입니다.

측정 규격

- Frequency Range: 5MHz ~ 6GHz
- Data Point: 126, 251, 501, 1001, 2002
- Bias Tee: 12 ~ 32 volt with 0.1 volt step

용어 정리

- Data Point: 측정 모드 동안 측정하는 데이터 포인트를 나타냅니다.
- AVG VSWR: 측정 주파수 전체 대역의 평균 Average VSWR 값.
- AVG Return Loss: 측정 주파수 전체 대역의 평균 Average Return Loss 값.

Power Meter

- Internal Power Meter
- External Power Meter

Internal Power Meter

Power Meter

Cable 연결 방법

Mode 설정

Definition

내부 Power Meter는 스펙트럼 기능의 기반으로 측정 됩니다.JD785B의 로깅창을 통하여 운용중인 기지국 신호의 변화를 정확하게 측정 할 수 있는 DATA를 제공 합니다.

측정 규격

- 10MHz ~ 6GHz
- Span: up to 100MHz
- Max Input: +25dBm
- Detector: RMS, Peak

측정 화면

External Power Meter

Cable 연결 방법

Mode 설정

Measure

Power Meter

External

Definition

외부 Power Meter는 별도의 옵션 장치에 USB를 이용하여 JD785B와 연결하여 측정 되며 다양한 측정 환경에 따라 선택 할 수 있도록 파워 센서를 옵션으로 제공하고 있습니다. JD785B의 로깅창을 통하여 운용중인 기지국 신호의 변화를 정확하게 측정 할 수 있는 DATA를 제공 합니다

파워의 측정 정확도, 측정 범위 그리고 측 정 다이나믹 레인지는 옵션 센서의 사양과 같습니다.

외부 센서 종류

JD731B

Directional Power Sensor, Peak and Average power 300 to 3.8 GHz, Average 0.15 \sim 150 W, Peak 4 \sim 400 W

JD733A

Directional Power Sensor, Peak and Average power 150 to 3.5 GHz, Average/Peak 0.25 \sim 20 W

JD732B

Terminating Power Sensor, Average Power 20 to 3.8 GHz, -30 \sim +20dBm

JD734B

Terminating power sensor, Peak Power 20 to 3.8GHz, -30 \sim +20dBm

JD736B

Terminating power sensor, Dual (Average/Peak) power 20 to 3.8 GHz, -30 ~ +20dBm

측정 화면

VIAVI

www.viavisolutions.com

© 2017 Viavi Solutions Inc. 135

Concession in the

6.18.8.8

and Mandalat

Citiz .

2 II 1 1 1 1

VIAVI

비아비솔루션스

영업 : TEL: 02-6676-7024 기술지원 : TEL: 02-6676-7012

CellAdvisor product site:

http://celladvisor.updatemyunit.net/

www.viavisolutions.com