
Presented by: Steve Bernier, M.Sc.,
Research Manager

Advanced Radio Systems
Communications Research Centre Canada

SCA applications are made of several software
components typically connected in a pipeline
configuration

Using the SCA, software components can be
implemented by different organizations

Interactions between components requires a middleware

The middleware for SCA is CORBA

How Different Messaging Semantics Can
Affect Applications Performances

2

This paper provides metrics comparing two types
of CORBA interactions: One-way and Two-way

Using CORBA, every interaction is transformed into a
message sent from a source component to a destination
component

Two-way interactions

Source is blocked until a response is received from the
destination

Synchronized with the target

One-way interactions

Source is not blocked until a response is received from the
destination

3 levels of synchronization: with the middleware, with the
transport, or with the server

How Different Messaging Semantics Can
Affect Applications Performances

3

Two-way messaging can lead to the empty
pipeline problem

How Different Messaging Semantics Can
Affect Applications Performances

4

One-way messaging can lead to the packet
reordering problem

How Different Messaging Semantics Can
Affect Applications Performances

5

3, 2, 1 2, 3, 1 3, 1, 2

This paper provides metrics for 4 tests. All tests
work as follows:

Pipeline configuration of 4 components

The first component produces 1000 packets and sends
them through a pipeline of 3 stages

Each pipeline stage performs 5ms of work

How Different Messaging Semantics Can
Affect Applications Performances

6

Packet
Producer Stage 1 Stage 2 Stage 3

5ms 5ms 5ms

Test #1

One-way messaging, packet producer does not wait
between each packet, synchronized with TCP/IP transport

Uses several threads in each pipeline stage

Causes lots of packet reordering

Should take less than 1000*5ms for all packets to go
through the pipeline

How Different Messaging Semantics Can
Affect Applications Performances

7

Stage 1 Stage 2 Stage 3

Time of last Pkt
arrival

4463.20ms 4508.41ms 4513.61ms

of Pkt reordered 315 520 612

Test #1

Time it took for the producer to send each packet to the
transport

10% of the packets in 44ms

90% of the packets in 9usec

Producer was paced by the transport

How Different Messaging Semantics Can
Affect Applications Performances

8

Test #2

One-way messaging, packet producer waits 5ms between
each packet, synchronized with TCP/IP transport

Uses less threads in each pipeline stage

Still causes some packet reordering

Should take around 1000*5ms for all packets to go through
the pipeline

How Different Messaging Semantics Can
Affect Applications Performances

9

Stage 1 Stage 2 Stage 3

Time of last Pkt
arrival

5416.57ms 5421.74ms 5426.90ms

of Pkt reordered 95 216 349

Test #3

Two-way messaging, packet producer does not wait
between each packet, synchronized with TCP/IP transport

Causes the empty pipeline problem

Should take at least 1000*5ms for each packet to go
through each stage of the pipeline

How Different Messaging Semantics Can
Affect Applications Performances

10

Stage 1 Stage 2 Stage 3
Time of last Pkt

arrival
15,684.19ms 15,684.06ms 15,683.93ms

of Pkt reordered 0 0 0

Test #3

Time it took for the producer to send each packet to the
transport

Average around 15ms with very few peeks

Producer was almost never paced by the transport

How Different Messaging Semantics Can
Affect Applications Performances

11

Test #4

Two-way messaging, packet producer does not wait
between each packet, synchronized with TCP/IP transport

Each stage uses one extra thread to decouple packet
reception from packet transmission

Does not cause the empty pipeline problem

Does not cause any packet reordering

Performance is better than using one-way messaging with
a paced producer

How Different Messaging Semantics Can
Affect Applications Performances

12

Stage 1 Stage 2 Stage 3

Time of last Pkt
arrival

5286.22ms 5267.73ms 5297.16ms

of Pkt reordered 0 0 0

Test #4

Time it took for the producer to send each packet to the
transport

Average around 5ms with very few peeks

Producer was not paced by the transport as often

How Different Messaging Semantics Can
Affect Applications Performances

13

Conclusions

One-way messaging does not necessarily offer better
performances than two-way messaging

One-way messaging causes a large amount of packet
reordering

not be suitable for most waveform applications

Two-way messaging naturally leads to the empty pipeline
problem

Two-way messaging with an extra thread can yield
interesting performances without packet reordering

Simple to use since flow control does not require explicit APIs

How Different Messaging Semantics Can
Affect Applications Performances

14

Questions?

15

16

CRC’s Achievements

16

1998 – Creates proprietary SDR architecture

2000 – Implements FM radio for DnD using SCAv0.3

2001 – Introduces the concept of Ports and Connections for SCAv1.0

2002 – Releases Java™ open-source Reference Implementation (SCARI)

2002 – First demonstration of a commercial SCA waveform (DAB™)

2003 – Introduces 1st commercial SCA development kit with modeling tools

2004 – ReleasesSCARI2 open source, JTeL Certified (97.39%) SCAv2.2 CF

2004 – Adds support for ORBexpress, INTEGRITY, and YellowDog Linux

2005 – Introduces 1st SCA Xml validator and code generator

2006 – Adds support for VxWorks 6.x

2006 – Releases new modeling tool based on Eclipse™

2007 – Adds support for LynxOS

2007 – Creates the world’s smallest SCA FM radio

2008 – Releases new generation Core Framework : SCARI-GT

2009 – Adds support for TimeSys Linux

2010 – Creates the first SCA virtual front panel

1998 - Designed a proprietary SDR architecture

2000 - Implemented a proof of concept SCA SDR
for the Canadian Department of National Defence

FM Line of sight application running on DSPs (TI C6201)

Implemented a SCAv0.3 Core Framework

2002 - Released a Java™ open-source SCAv2.1
Reference Implementation (SCARI)

Sponsored by the Software Defined Radio Forum

Peer reviewed by a SDR Forum oversight committee:

MITRE JPO staff, US AFRL, L3-Communications,
Mercury Computer Systems, Sun Microsystems, Space
Coast Systems

CRC’s Achievements

17

2002 - Demonstrated a Digital Audio
Broadcast (DAB™) application

First demonstration of a commercial SCA SDR
application

Implemented in C++ and runs with SCARI

2003 – CRC releases its first commercial
product called SCARI-Hybrid

Java™/C++ SCA Core Framework with GUI tools

CRC’s Achievements

18

 2004 - CRC selected by SDR Forum to develop a JTeL
certified Core Framework
Done in partnership with JTRS/JPO, JTRS/JTEL, NASA, Mercury

Computers, Rohde and Schwarz, ISR Technology 19
Open source Java™ implementation of SCAv2.2
Includes a one-channel push-to-talk FM application
Demonstration performed at SDR’04 meeting
Status: On-site certification process completed in only 5.5 days

(2005, June 7-8-9-10, 14-15)

Meets 635 of the 652 SCA requirements for an unprecedented
result of 97.39%

CRC’s Achievements

19

2004 – CRC’s first fully embeddable Core
Framework – SCARI++

Implementation of the SCAv2.2 specification

Support for Linux, Yellow Dog, and INTEGRITY

Support for x86 and PPCs

Support for CORBA: TAO and ORBexpress

CRC’s Achievements

20

2004 – First SDR platform using dynamic partial
reconfiguration of an FPGA

Allow more than one application to “share” the FPGA

Can switch applications without stopping the FPGA

Platform developed by ISR Technologies in collaboration
with Xilinx and CRC

CRC’s Achievements

21

2005 – Code Generation and XML validation

CRC was 1st to provide modeling tools in 2003

CRC was also 1st to offer automated source code and XML
generation from graphical models

CRC also became 1st to offer reverse engineering and
validation of SCA XML domain profiles

Latest version of the modeling tools is provided as an
Eclipse™ plug-in

CRC’s Achievements

22

2005 – Added support for more embedded
SDR development kits

Added support for the Pentek 2510 SDR Kit

Complete software radio transceiver solution

2006 – Added support for more embedded
operating systems and processors

Added support for VxWorks and ARM processors

CRC’s Achievements

23

2006 – Added support for the Lyrtech SFF SDR
development kit

Partnered with Lyrtech Signal Processing to offer support
for the Small Form Factor (SFF) development kit

CRC’s Achievements

24

1st platform to offer SCA integration
ORB with DSP/FPGA

ORBexpress on DSP and on FPGA

2006 – Added support for the SDR4000
development kit

Partnered with Spectrum Signal Processing to offer support
for the SDR4000 SCA SDR development kit

CRC’s Achievements

25

2007 – Added support for more embedded
operating systems and processors

Added support for LynxOS and Marvell’s PXA270
processor

2007 – Demonstration of the 1st SCA Radio
using world’s smallest computer

FM SCA Radio demonstration using a Gumstix

CRC’s Achievements

26

2007 – World’s First High-Capacity Tactical
Radio based on the SCA

AN/GRC-245A radio deployed by the US Army as part of
the Increment-1 of WIN-T

Since deployed by the Canadian Forces

Ultra has shipped close to 2000 units

Uses CRC’s SCARI++ Core Framework

CRC’s Achievements

27

2008 – New Generation Core Framework SCARI-GT

Results of 18 months or R&D

Implements 6 optimization features for fast boots using
small memory footprints

2009 – Core Framework for smaller form factors

Adds support for TimeSys Linux on PPC

CRC’s Achievements

28

2010 – Adding support for new operating
systems

Added support for Monta Vista Linux

Adding support for Microsoft™ Windows™

Adding support for QNX Neutrino

CRC’s Achievements

29

2010 – Created the first SCA Virtual Front Panel

Virtual Front Panel all controlled via SCA event channel
and SCA PropertySet

Everything functional, LCD, Key Pad, and LEDs

Remote control HCLoS AN/GRC-245 radio from Ultra
Electronics TCS

CRC’s Achievements

30

31

Communications Research Centre
Overview

SCARI Open –

2002

SCARI++ –

2004

SCARI GT –

2008

SCARI GT2 –

2011

Performance

S

 i

 z

 e

31

SCARI RT

In Summary

CRC’s recognized as a leader in the SCA
community

Has been leading for more than 10 years

Has a long list of industry firsts

Influenced every version of the specification since SCAv0.3

Is chairing the SDR Forum SCA Working Group

Working on an SCA interpretation guide

Working on APIs

CRC has the largest team of engineers dedicated to the SCA

CRC does not sale radios

32

In Summary

CRC’s SCA technologies have been licenced to
more than 40 organizations in 15 countries

SCARI++ is the only COTS Core Framework to have been
deployed in the battlefield

Customers in North-America, Europe, Middle-East, and Asia

33

- THE END -

34

	Slide Number 1
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	How Different Messaging Semantics Can Affect Applications Performances
	Slide Number 15
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	CRC’s Achievements
	Communications Research Centre Overview
	In Summary
	In Summary
	Slide Number 34

