
Medusa Labs Test Tools Suite
Version 7.8

User’s Guide

VIAVI Solutions
1-844-GO-VIAVI
www.viavisolutions.com

Medusa Labs Test Tools Suite
Version 7.8

User’s Guide

http://www.viavisolutions.com

 Medusa Labs Test Tools Suite User’s Guide
Page ii Version 7.8 July 2023

Notice

Every effort was made to ensure that the information in this manual was accurate at the
time of printing. However, information is subject to change without notice, and VIAVI
reserves the right to provide an addendum to this manual with information not available at
the time that this manual was created.

Copyright/Trademarks

© Copyright 2023 VIAVI Solutions Inc. All rights reserved. No part of this guide may be
reproduced or transmitted, electronically or otherwise, without written permission of the
publisher. VIAVI Solutions and the VIAVI logo are trademarks of VIAVI Solutions Inc.
(“VIAVI”). All other trademarks and registered trademarks are the property of their respec-
tive owners.

Copyright release

Reproduction and distribution of this guide is authorized for US Government purposes
only.

Terms and conditions

Specifications, terms, and conditions are subject to change without notice. The provision
of hardware, services, and/or software are subject to VIAVI’s standard terms and condi-
tions, available at www.viavisolutions.com/en/terms-and-conditions.

Federal Communications Commission (FCC) Notice

This product was tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable
protection against harmful interference when the equipment is operated in a commercial
environment. This product generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications. Operation of this product in a residential area is
likely to cause harmful interference, in which case you will be required to correct the inter-
ference at your own expense.

The authority to operate this product is conditioned by the requirements that no modifica-
tions be made to the equipment unless the changes or modifications are expressly
approved by VIAVI.

http://www.viavisolutions.com/terms

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page iii

 Medusa Labs Test Tools Suite User’s Guide
Page iv Version 7.8 July 2023

Contents

About This Guide xi

Purpose and Scope . xii

Assumptions . xii

Related Information . xii

Conventions . xiii

Technical Assistance . xvi

Medusa Labs Test Tools Product Information and Assistance. xvi

Chapter 1 About Medusa Labs Test Tools Suite1

What’s New in this Medusa Labs Test Tools Version . 2

What Medusa Labs Test Tools Does . 8

How Medusa Labs Test Tools Work. 9

Pain and Maim Test Tools . 9

Sock Test Tool .10

Catapult Test Tool Automation .10

FindLBA Utility .10

GetKey Utility. .10

Medusa Agent . 11

Licensing. 12

Licensing Requirements . 13

Licensing Administration . 13

Remote Checkout . 17

Migrating the MLM License Server .18

System Requirements .19

System Limitations. .19

Memory Utilization .19

Processor Utilization . 20

Firewalls . 20

Operating System Restrictions .21

MLTT Basics . 22

Prerequisites. 22

Fundamental Concepts in MLTT. 23

MLTT Storage Target Types . 25

I/O Area Size . 26

Sequential-Access I/O (General Description) . 29

Asynchronous Sequential-Access I/O, Burst Queueing . 32

Asynchronous Sequential-Access I/O, Continuous Queueing 33

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page v

Random-Access I/O (General Description). .34

Sequential-Access vs. Random-Access I/O. .38

Reads, Writes, And Data Integrity Checking. 41

Testing Concepts. .46

Target Considerations. .46

Protocol Analyzers . 47

TraceView Support. .48

Chapter 2 Using the Graphical User Interface 49

Using the Medusa Labs Test Tools GUI .50

Launching the Medusa Labs Test Tools .50

Setting Up a Performance Test . 55

Medusa Labs Test Tools GUI .58

GUI Overview .58

Medusa Labs Test Tools Menus . 60

File Menu . 60

View Menu .62

Help Menu .64

Test Planning Tab .65

Targets Area .65

Configurations Area . 70

Test Plans Area . 71

Test Running Tab. .84

Test List and Statistics Pane .85

Text View Pane .86

Graph View Pane . 87

Speedometers Pane .88

Test Analysis Tab .89

History Summaries Pane . 90

History Tests Pane . 91

History Information Pane .92

Chapter 3 Using the Configuration Editors 101

Using the GUI Configuration Editors . 102

New Configuration Button . 102

Configuration Editors . 105

Test a Range Controls . 105

Custom Configuration Editor . 106

General Tab . 106

Journal Tab . 108

I/O Payload Tab . 110

I/O Behavior Tab. 115

Advanced I/O Tab. 118

Patterns Tab. 119

 Medusa Labs Test Tools Suite User’s Guide
Page vi Version 7.8 July 2023

Comments Tab. 123

Command Lines Tab. 123

Integrity Configuration Editor . 125

General Tab . 125

I/O Payload Tab .126

I/O Behavior Tab .130

Patterns Tab . 133

Comments Tab. 137

Command Lines Tab. 137

Performance Configuration Editor .138

General Tab .138

I/O Payload Tab . 140

Comments Tab. .145

Command Lines Tab. .145

Storage CLI Configuration Editor . 146

Command Line Tab . 146

Comments Tab . 146

Socket Configuration Editor . 147

General Tab . 147

I/O Payload Tab . 148

I/O Behavior Tab . 151

Advanced I/O Tab .154

Patterns Tab .154

Comments Tab. .158

Command Lines Tab. .158

TCP App Simulation Configuration Editor. 160

General Tab . 160

I/O Payload Tab . 161

I/O Behavior Tab .163

Patterns Tab .165

Comments Tab. .169

Command Lines Tab. .169

Network CLI Configuration Editor . 171

Command Line Tab . 171

Comments Tab . 171

Format and Secure Erase Configuration Editor . 172

SE Operation Tab . 172

Comments Tab . 175

Command Lines Tab . 175

Trim Configuration Editor. 176

Trim Operation Tab . 176

Comments Tab . 177

Command Lines Tab . 177

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page vii

Chapter 4 Using the Command Line Switches 179

Syntax. 180

Command Line Switch Conventions . 180

Basic Switches . 181

Target Specification . 182

 I/O Size . 184

Queue Depth . 187

Thread Count. 188

Data Pattern . 191

Concurrent Workloads and Workload Groups. 192

Concurrent Workloads . 192

Sequential Workload Groups . 195

Switches by Category . 196

General Switches . 199

Stand-alone Switches. 217

I/O Characteristic Switches. 225

Target Related Switches .250

Data Pattern Related Switches . 261

Data Integrity Related Switches. 270

Error Related Switches . 279

Chapter 5 Logging and Output 287

Overview .288

Status Log .288

Performance Summary Log. .289

Comma-delimited Performance Log . 290

Error Log . 290

I/O Operation History Trace and Payload Data Logging. 291

Trace Events. 291

NVMe Identify and NVMe Get Log .294

NVMe Identify .294

NVMe Get Log. .295

SMART Log . 297

Sample Logs .299

Sample Error Log .299

Sample Status Log. 300

Chapter 6 Data Pattern Reference 303

Overview . 304

Designed For Signal Aggravation . 304

Customized Patterns. 304

Static Data Patterns versus Dynamic Data Patterns . 304

Continuously Changing I/O Stream .305

Customizing Data Patterns . 306

 Medusa Labs Test Tools Suite User’s Guide
Page viii Version 7.8 July 2023

Using Pattern Modifiers . 307

Custom Blink Pattern (-l99). 311

Deduplication/Compression Pattern (-l80) .314

Specified Data Patterns .319

Chapter 7 Catapult Test Tool Automation 321

Basic Usage . 322

Drive Listing Examples . 322

Catapult Switches .327

Scripting .352

Example 1 (Windows batch file). .352

Example 2 (Windows batch file) . 353

Appendix A Data Pattern Numbers 355

Appendix B Test Guidelines and Examples 359

A Word About Hardware Configurations . 360

Maximum Bandwidth Stress Testing . 360

Examples Using Pain: . 360

Examples Using Maim: .361

Performance Testing. .361

High Bandwidth Example:. 362

High IOPS Example: . 362

General Guideline: . 362

Data Integrity Testing . 364

Backup or Snapshot Testing . 364

Maximum Queue Testing. 365

Full Coverage Target Testing. 365

Appendix C Debug Example 367

Overview . 368

Default Trigger Value . 369

TRIGGER.OUT marks - for CACA trigger . 369

Locating the Trigger Data Frame in TraceView . 370

Finding the Write and Read Operations .372

Error Log Created .373

Finding the Corrupt Data Frame .375

Using I/O Signatures . 378

Using the FindLBA Utility . 379

Example 1. 379

Example 2 . 379

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page ix

Appendix D I/O Signatures 381

Offsets. .382

 Example of I/O Signature: .383

Appendix E Exit Codes 387

Using Exit Codes .388

Exit Code Descriptions .389

Appendix F Architecture Bandwidths 391

PCI . 391

PCI-X . 391

PCI-Express . 391

Fibre Channel (Full Duplex) .392

Fast Ethernet (Full Duplex) .392

Gigabit Ethernet (Full Duplex) .392

SAS. .392

NVMe .392

Appendix G Sock Test Tool 393

Sock Notes .394

Sock Transaction Mode. .396

Additional Information .399

Appendix H 401

Limitations . 401

Write State Ambiguities .403

QUEUED State Ambiguities .403

FAIL State Ambiguities . 404

Ambiguity Resolution . 404

7.2.0 . 405

7.3.0 . 405

7.4.0 (7.3.0+) . 406

Partial Commits And “--jv-compat” . 406

Pitfalls. .407

Glossary 409

Index 413

 Medusa Labs Test Tools Suite User’s Guide
Page x Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page xi

About This Guide

This preface explains how to use this manual. Topics discussed include the following:

• “Purpose and Scope” on page xii
• “Assumptions” on page xii
• “Related Information” on page xii
• “Conventions” on page xiii
• “Technical Assistance” on page xvi

About This Guide
Purpose and Scope

 Medusa Labs Test Tools Suite User’s Guide
Page xii Version 7.8 July 2023

Purpose and Scope
The purpose of this guide is to help you successfully use the Medusa Labs Test Tools Suite
features and capabilities. This guide includes task-based instructions that describe how to
use the graphical user interface (GUI) and the command line switches of the Medusa Labs
Test Tools Suite.

Assumptions
This guide is intended for novice, intermediate, and experienced users who want to use
the Medusa Labs Test Tools Suite effectively and efficiently. We are assuming that you
have basic computer and mouse/track ball experience and are familiar with basic telecom-
munication concepts and terminology.

Related Information
This is the user’s guide for the Medusa Labs Test Tools Suite. It provides basic instructions
for using the Medusa Labs Test Tools Suite and contact information for VIAVI’s Technical
Assistance Center (TAC).

Use this guide in conjunction with the following information:

• The Medusa Labs Test Tools Suite Installation Guide which provides detailed instruc-
tions for installing the Medusa Labs Test Tools Suite.

About This Guide
Conventions

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page xiii

Conventions
This guide uses typographical and symbols conventions as described in the following
tables.

Table 1 Text formatting and other typographical conventions

Item(s) Example(s)

Buttons, keys, or switches that
you press or flip on a physical
device.

Press the On button.
– Press the Enter key.
– Flip the Power switch to the on position.

Buttons, links, menus, menu
options, tabs, or fields on a PC-
based or Web-based user inter-
face that you click, select, or
type information into.

Click Start.
– Click File > Properties.
– Click the Properties tab.
– Type the name of the probe in the Probe Name

field.

Directory names, file names,
and code and output messages
that appear in a command line
interface or in some graphical
user interfaces (GUIs).

$NANGT_DATA_DIR/results (directory)
– test_products/users/

defaultUser.xml (file name)
– All results okay. (output message)

Text you must type exactly as
shown into a command line
interface, text file, or a GUI text
field.

– Restart the applications on the server using the
following command:
$BASEDIR/startup/npiu_init restart

Type: a:\set.exe in the dialog box.

References to guides, books,
and other publications appear in
this typeface.

Refer to Newton’s Telecom Dictionary.

Command line option separa-
tors.

platform [a|b|e]

Optional arguments (text vari-
ables in code).

login [platform name]

Required arguments (text vari-
ables in code).

<password>

About This Guide
Conventions

 Medusa Labs Test Tools Suite User’s Guide
Page xiv Version 7.8 July 2023

Table 2 Symbol conventions

This symbol indicates a note that includes important supplemental informa-
tion or tips related to the main text.

This symbol represents a general hazard. It may be associated with either a
DANGER, WARNING, CAUTION, or ALERT message. See Table 3 for more
information.
This symbol represents an alert. It indicates that there is an action that must be
performed in order to protect equipment and data or to avoid software damage
and service interruption.

This symbol represents hazardous voltages. It may be associated with either a
DANGER, WARNING, CAUTION, or ALERT message. See Table 3 for more
information.
This symbol represents a risk of explosion. It may be associated with either a
DANGER, WARNING, CAUTION or ALERT message. See Table 3 for more
information.
This symbol represents a risk of a hot surface. It may be associated with either
a DANGER, WARNING, CAUTION, or ALERT message. See Table 3 for more
information.
This symbol represents a risk associated with fiber optic lasers. It may be
associated with either a DANGER, WARNING, CAUTION or ALERT mes-
sage. See Table 3 for more information.
This symbol, located on the equipment, battery, or the packaging indicates
that the equipment or battery must not be disposed of in a land-fill site or as
municipal waste, and should be disposed of according to your national regu-
lations.

About This Guide
Conventions

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page xv

Table 3 Safety definitions

Term Definition

DANGER Indicates a potentially hazardous situation that, if not avoided, will
result in death or serious injury. It may be associated with either a
general hazard, high voltage, or other symbol. See Table 2 for more
information.

WARNING Indicates a potentially hazardous situation that, if not avoided, could
result in death or serious injury. It may be associated with either a
general hazard, high voltage, or other symbol. See Table 2 for more
information.

CAUTION Indicates a potentially hazardous situation that, if not avoided, could
result in minor or moderate injury and/or damage to equipment.
It may be associated with either a general hazard, high voltage, or risk
of explosion symbol. See Table 2 for more information.
When applied to software actions, indicates a situation that, if not
avoided, could result in loss of data or a disruption of software opera-
tion.

ALERT Indicates that there is an action that must be performed in order to
protect equipment and data or to avoid software damage and service
interruption.

About This Guide
Technical Assistance

 Medusa Labs Test Tools Suite User’s Guide
Page xvi Version 7.8 July 2023

Technical Assistance
If you require technical assistance,
call 1-844-GO-VIAVI (1-844-468-4284) or
e-mail Techsupport-snt@viavisolutions.com.

For the latest TAC information, go to
http://www.viavisolutions.com/en/services-and-support/support/technical-assistance.

Medusa Labs Test Tools Product Information and Assistance
For product information and download material, to go
www.viavisolutions.com/medusatools.

You can contact the Medusa Labs Technical Support directly at
techsupport-medusa@viavisolutions.com.

http://www.viavisolutions.com/en/services-and-support/support/technical-assistance
mailto:techsupport-medusa@viavisolutions.com
http://www.viavisolutions.com/medusatools
http://www.viavisolutions.com/en/services-and-support/support/technical-assistance
mailto:techsupport-snt@viavisolutions.com

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 1

1

Chapter 1 About Medusa Labs Test Tools Suite

This chapter provides a general description of the Medusa Labs Test Tools Suite.
Topics discussed in this chapter include the following:

• “What’s New in this Medusa Labs Test Tools Version” on page 2
• “What Medusa Labs Test Tools Does” on page 8
• “How Medusa Labs Test Tools Work” on page 9
• “Pain and Maim Test Tools” on page 9
• “Sock Test Tool” on page 10
• “Catapult Test Tool Automation” on page 10
• “FindLBA Utility” on page 10
• “GetKey Utility” on page 10
• “Medusa Agent” on page 11
• “Licensing” on page 12
• “System Requirements” on page 19
• “MLTT Basics” on page 22
• “Testing Concepts” on page 46

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
Page 2 Version 7.8 July 2023

What’s New in this Medusa Labs Test Tools Version

Version 7.8
• Added support for specifying NUMA nodes as memory targets for “pain -m9” and “pain -m10” modes. An example use case

is generating I/O to CXL.mem devices configured as system RAM (memory-only NUMA node).
- For more information, see “Target Specification” on page 182

• Added capabilities for split write-read I/O channels.
- For more information, see “-f Target” on page 182

• Added support for data comparison using non-uniform buffer sizes for both sequential and random-access I/O.
- For more information, see “-b Buffer size” on page 184

• Enabled reverification mode (-V) for mapped random-access I/O
- For more information, see “-Vw Write-once for Reverification” on page 276, “--random-x-map Random Access Map”

on page 249, and “-V Reverify Existing Data to a Specified Data Pattern/Verify Journaled Write Operations” on
page 272

• Added capabilities to specify exact area to be used on a target device
- Refer to “--f Target” on page 251 and “--target-partition Target Partition Range” on page 255

Version 7.7
• Fixed support for Windows Systems that contain >64 logical CPUs

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added NUMA awareness

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added direct-access (DAX) to Linux PMEM devices (e.g. NVDIMM, CXL.mem)

- Normal I/O generation using pain tool
• Added support for Linux ZNS devices

- Normal I/O generation using pain and maim tools
- Pass-Through mode (“- -ptio”) with pain tool, including the option to use “Zone Append” command
- Added new CLI option to reset ZNS zones. For more information, see “--nvme-reset-zone ZNS Zone Reset” on

page 224

Version 7.6
• Added support for concurrent workloads and sequential workload groups.

- For more information, see “Concurrent Workloads and Workload Groups” on page 192.
• Added support for zoned I/O distribution. An example use case is being able to run a JDEC JESD219 test case.

- For more information, see “-% I/O Profile Specification” on page 235.
• Added support for random-access map to access unique, non-overlapping LBAs.

- For more information, see “--random-x-map Random Access Map” on page 249.
• Added support for I/O repeat count.

- For more information, see “--io-repeat I/O Repeat Count” on page 249.

Version 7.5

The latest version of Medusa Labs Test Tools documented in this guide is Version 7.8.
Medusa Labs Test Tools (MLTT) Suite has the following updates for the Version 7.x releases:

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 3

• The ability to export test plans as Python, Bash, and Powershell scripts was added.
- Refer to “Export Selected Test Plans...” in chapter 2 for more information.

• Switch options for playing back a trace and complementing switches were added.
- Refer to “--io-trace-play Streaming a Trace to a Target” and “--io-trace-no-prescan Opting out of Initial Prescan” in

chapter 4 for more information.
• Switch option for enabling a target file for each thread was added.

- Refer to “--file-per-thread Create Target Files for each Thread” in Chapter 4 for more information.

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
Page 4 Version 7.8 July 2023

Version 7.4
• License Administration Enhancements were added

- Refer to“Licensing Administration” in Chapter 1.
• I/O Operation History Trace and Payload Data Logging options were added

- Refer to Chapter 4 Command Line Switches and Chapter 5 Logging Output for more information about these features.
• NVMe Administrative and NVM Commands were added

- Refer to Chapter 4 Command Line Switches and Chapter 5 Logging Output for more information about these features.
• Option to Flush the In-Memory Journal Once was added

- Refer to Chapter 4 Command Line Switches for more information about this feature.
• Option to Log File Output Timestamps in UTC was added

- Refer to Chapter 4 Command Line Switches for more information about this feature.
• Option to add columns for Per-Sample Period Latency Histogram and Per-Sample Period Min, Max, and Average I/O

Completion Times to the CSV output file was added
- Refer to Chapter 4 Command Line Switches and Chapter 5 Logging Output for more information about this feature.

• Support of Linux on POWER was added

Version 7.3
• Added Medusa Labs Test Tools Basics section.

- Refer to “MLTT Basics” in Chapter 1.
• Added an appendix for the Sock Test Tool.

- Refer to Appendix N “Sock Test Tool” for information about using this feature.

Version 7.2
• Support of Microsoft Windows Server 2016 Datacenter Edition and Standard Edition

- Refer to the Medusa Labs Test Tools Suite Version 7.2 Installation Guide.
• Sample Test Plans were added

- Refer to Chapter 2 “Using the Graphical User Interface” for information about using this feature.
• Custom Graphing features providing X-axis options were added

- Refer to Chapter 2 “Using the Graphical User Interface” for information about using this feature.
• TCP Incast support was added

- Refer to Chapter 3 “Using the Configuration Editors” and Chapter 4 “Using the Command Line Switches” for
information about using this feature.

• Enhanced Trim Functionality was added
- Refer to Chapter 3 “Using the Configuration Editors” and Chapter 4 “Using the Command Line Switches” for

information about using this feature.
• T10 Data Protection (T10-PI) options were added

- Refer to Chapter 3 “Using the Configuration Editors” and Chapter 4 “Using the Command Line Switches” for
information about using this feature.

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 5

Version 7.1
• Support of Microsoft Windows version 8.1 and version 10

- Refer to the Medusa Labs Test Tools Suite Version 7.1 Installation Guide.
• Support for Linux 32- and 64-bit ARM processors

- Refer to the Medusa Labs Test Tools Suite Version 7.1 Installation Guide.
• The addition of custom values for the Set I/O Thread/CPU Affinity setting in the “Planning Group Editor” on page 70

and the “Test Plan Editor” on page 73.
• Enable Random Offset Alignment check box has been added to enable the random offset alignment size for the

Custom, Integrity, and Performance configuration editors.
- Refer to Chapter 3 “Using the Configuration Editors” for information about using this feature.

• Deduplication and Compression Testing has been added to be used with the Compression & Dedup data pattern.
- For information about using this feature with the graphical user interface (GUI), refer to the Pattern Tab for the Custom

Configuration Editor on page 113. Refer to the Pattern Tab information for the Integrity, Socket, and the TCP App
Simulation configuration editors as well.

- Refer to “Deduplication/Compression Pattern (-l80)” on page 264 for information about using the -l80 data pattern
and its associated switch options for deduplication and compression testing.

• Journal and Verifiy has been added to record a log file of recent write operations so that in a simulated power loss, a log
file is saved to preserve the status of the last several write operations. Then the log file can be examined using the
verification process.
- For information about using this feature with the graphical user interface (GUI), refer to “Steady State” on page 101 for

Custom configurations or refer to “Steady State” on page 133 for Performance configurations.
- Refer to “--journal Run I/O test with journaling enabled” on page 236 and “-V Reverify Existing Data to a Specified

Data Pattern/Verify Journaled Write Operations” on page 234 for information about using these features with the
command line inputs.

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
Page 6 Version 7.8 July 2023

Version 7.0
• IOMeter Test Plan Import allows IOMeter Configuration Files (.icf and .txt files) to be imported into MLTT as test plans.

Refer to “Import Test Plans...” on page 54 for more information.
• SSD Secure Erase erases the data on a Solid State Drive (SSD) leaving it in a clean state.

- Refer to “Format and Secure Erase Configuration Editor” on page 166 for information about using this feature with the
graphical user interface (GUI). -Refer to “--secure-erase Erase the Target Device and Exit” on page 193 for
information about using this feature with the command line inputs.

• SSD Trim erases specified data blocks. It may be run as a target Solid State Drive (SSD) pre-conditioning step before
running I/O tests.
- Refer to “Trim Configuration Editor” on page 169 for information about using this feature with the graphical user

interface (GUI).
- Refer to “--trim Send Trim to Target” on page 195 for information about using this feature with the command line

inputs.
• Steady State determines the steady state for a target across five consecutive test runs. When steady state is achieved, the

test plan will be stopped when the current test iteration completes and if the test plan is part of a planning group, the next
test plan in the group is started.
- For information about using this feature with the graphical user interface (GUI), refer to “Steady State” on page 101 for

Custom configurations or refer to “Steady State” on page 133 for Performance configurations.
- Refer to “--steady-state Determine Steady State” on page 189 for information about using this feature with the

command line inputs.
• Latency Histogram collects and displays latency histogram data per target using user-specified bins which are sorted by

the magnitude.
- For information about using this feature with the graphical user interface (GUI), refer to “General Tab” on page 100 for

configuration information and refer to “Latency Histogram Tab” on page 93 for display information.
- Refer to “--latency-histogram Collect Latency Histogram” on page 191 for information about using this feature with the

command line inputs.
• S.M.A.R.T Monitoring retrieves Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) attributes and status

from target devices and logs them.
- Refer to “--smart S.M.A.R.T Monitoring” on page 221 for information about using this feature with the command line

inputs.

Version 7.7
• Fixed support for Windows Systems that contain >64 logical CPUs

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added NUMA awareness

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added direct-access (DAX) to Linux PMEM devices (e.g. NVDIMM, CXL.mem)

- Normal I/O generation using pain tool
• Added support for Linux ZNS devices

- Normal I/O generation using pain and maim tools
- Pass-Through mode (“- -ptio”) with pain tool, including the option to use “Zone Append” command
- Added new CLI option to reset ZNS zones. For more information, see “--nvme-reset-zone ZNS Zone Reset” on

page 224

Chapter 1 About Medusa Labs Test Tools Suite
What’s New in this Medusa Labs Test Tools Version

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 7

Version 7.7
• Fixed support for Windows Systems that contain >64 logical CPUs

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added NUMA awareness

- For more information, see “-T Set I/O Thread/CPU Affinity” on page 202
• Added direct-access (DAX) to Linux PMEM devices (e.g. NVDIMM, CXL.mem)

- Normal I/O generation using pain tool
• Added support for Linux ZNS devices

- Normal I/O generation using pain and maim tools
- Pass-Through mode (“- -ptio”) with pain tool, including the option to use “Zone Append” command
- Added new CLI option to reset ZNS zones. For more information, see “--nvme-reset-zone ZNS Zone Reset” on

page 224

Chapter 1 About Medusa Labs Test Tools Suite
What Medusa Labs Test Tools Does

 Medusa Labs Test Tools Suite User’s Guide
Page 8 Version 7.8 July 2023

What Medusa Labs Test Tools Does
The Medusa Labs Test Tools (MLTT) Suite performs data integrity testing, signal aggrava-
tion, and enterprise application simulation.

Medusa Labs develops test tools that meet the extreme demands of enterprise test and
development engineers. The superiority of these tools is due to several factors, including:

• The Tools are fast and efficient. In many baseline evaluations, we find that our
tools are generally faster and more processor efficient than any other test applica-
tions in the industry. In many cases, we are able to achieve throughput greater than
the fastest industry-standard benchmarks. What’s even more impressive is that on
many high-end systems, we are able to write, read, and compare data faster than
many benchmarks performing the same I/O without data integrity checking. When
the technology allows for full duplex, we find that our test tools can many times
achieve 100% greater throughput than other available benchmarks or tools, as the
majority of them were developed with half duplex (or bus) operations in mind.

• The Tools are precise and highly specific. Many test tools used during develop-
ment attempt to stress the aggregate system. Medusa Labs designs our test tools in
a manner that allows them to stress specific and unique areas of an enterprise
system. Although our tools are designed for specific uses, you can easily set them up
to stress the aggregate systems or set them up for full scale enterprise testing.

• The Tools are designed with debug and analysis in mind. Finding bugs is easy.
Characterizing their behavior and eventual root cause analysis can be tricky. We
have designed our tools to send out unique data patterns (to trigger analyzers) when
they discover a data anomaly, such as data corruption or data loss. We also insert
identifying data values into our data patterns that allow the test engineer to better
determine and track the client and/or thread that potentially is the cause or catalyst
for the error condition.

• The Tools contain specific data patterns and routines that best stress various
architectures. As a number of our test services customers have seen, these data
patterns and routines can aggravate or be a catalyst for quicker reproduction of
issues. From our experiences, we have found that a substantial number of tested
components will readily show certain failure types when subjected to only data
pattern specific high stress testing.

• The code is portable. Our command line tools are supported on Windows1 and
Linux2 (32-bit and 64-bit X86-based) platforms. A consistent user interface makes it
easy for test engineers to move between platforms.

• The Tools are designed to bypass multiple layers of the operating systems. In
order to fully stress the hardware under test, our tools have settings that allow for
partial or complete bypassing of several layers of the OS that inhibit sustained high
stress testing. Tools can be executed with switches to request cached or non-cached
I/O. Target access can be directed at file systems, logical devices, or physical
devices to enable the test engineer to drill down to the desired layers.

1.Windows is a registered trademarks of Microsoft Corporation in the United States and/or other countries.
2.Linux is a registered trademark of Linus Torvalds.

Chapter 1 About Medusa Labs Test Tools Suite
How Medusa Labs Test Tools Work

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 9

How Medusa Labs Test Tools Work
Our test tools are user-mode command-line applications that run on a host system. At the
simplest level, our test tools operate in an initiator-target fashion. The host system acts as
an initiator and the target can be any storage device internal or external to the host system.
With our test tools, the host system becomes a precision traffic generator using real-world
application data. Because the tools are command-line based, they are ideal for setting up
scripted test runs. A Graphical User Interface (GUI) is also available on Windows platforms
that duplicate the command-line options.

Pain and Maim Test Tools
Pain and Maim are the currently available I/O test tools in the Medusa Labs Test Tools
Suite.

Pain is a synchronous I/O tool that is designed to issue a single pending I/O per worker
thread.

Maim is an asynchronous I/O tool that is designed to issue multiple pending I/Os per
worker thread.

Table 4 shows a comparison of these tools.

Table 4 Test Tools Comparison

Pain Maim

Synchronous I/O Asynchronous I/O

Single pending I/O per worker thread Multiple pending I/Os in multiple worker threads

Separate file or device offset range for each thread Single file or device offset range.

Static queue depth Static or fluctuating (bursting) queue depth

Supports a memory only mode Target device access only

Excellent full system and target stress testing Focused target testing

High thread counts will create processor overhead Extremely processor efficient

Chapter 1 About Medusa Labs Test Tools Suite
Sock Test Tool

 Medusa Labs Test Tools Suite User’s Guide
Page 10 Version 7.8 July 2023

Sock Test Tool
Sock is a TCP network I/O test tool where each worker thread simulates a client/server
connection performing synchronous I/O to exchange data. Sock can be used very much
like Pain (e.g. read-only, write-only, write-read with data comparison, etc.) or in transaction
mode with various I/O profile settings to simulate I/O generation of network applications
such as HTTP Web transactions. Refer to Appendix N “Sock Test Tool” for additional
information.

Catapult Test Tool Automation
Catapult is the target discovery tool included with the test tool suite that acts as a shell for
the I/O tools. You use Catapult to discover targets available to the host system and pass
these targets to the other test tools for I/O testing. There are also features in Catapult that
facilitate test scripting and automation. Refer to Chapter 7 “Catapult Test Tool Automa-
tion”” for more information about this tool.

FindLBA Utility
FindLBA is a utility application you can use when debugging data corruption issues in tests
on file systems or logical devices. It is useful in cases where the logical block address
(LBA) reported in the I/O tool error logs is not accurate because the tools are not directly
referencing areas of the physical media. You can use FindLBA in conjunction with a
protocol analyzer to identify the actual LBA corresponding to a file offset reported by the
test tools. FindLBA sends a “ping” of consecutive reads to a specified offset, which you can
identify in a protocol trace. FindLBA is most useful when you need help finding I/O
commands that resulted in data corruption in a protocol trace capture. Refer to “Using the
FindLBA Utility” on page 113 for examples of using this utility.

GetKey Utility
GetKey is a utility application used for remote license checkouts. A system with network
access to a license server can perform a license checkout for another system that does
not have network access. This utility is particularly useful for temporarily using MLTT at an
off site location.

Chapter 1 About Medusa Labs Test Tools Suite
Medusa Agent

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 11

Medusa Agent
Medusa Agent is a Windows service or a Unix daemon process of MLTT that provides the
following functions.

• Local license client
• Discovering other systems running MLTT in the network
• Mediate remote execution of MLTT

The agent uses TCP and UDP to communicate with other systems. The service is installed
and configured during Medusa Labs Test Tools installation, and direct user interaction with
the agent process is usually not necessary.

However, in case the service needs to be stopped or restarted manually:

On Windows, this can be done in the service control management GUI. As shown in
Figure 1, the agent is registered with "Medusa A.R.I.E.S. Agent" as the service name.

Figure 1 Service Control Management Screen

From the command line:

On Windows:
net stop maagent to stop the service
net start maagent to start the service

On Linux, use:
service maagent stop to stop the service
service maagent start to start the service

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
Page 12 Version 7.8 July 2023

Licensing
Medusa Labs Test Tools (MLTT) are licensed on a “per seat” subscription basis. This
means that the tools are licensed for a period of time (usually one year). A certain number
of “seats” are licensed under the subscription. A seat is any client system that is currently
running MLTT. You can use the license seats on any system, but concurrent usage is
limited to the number of seats purchased. This methodology allows you to use the tools
where they are needed, without being restricted to particular systems.

License usage is regulated by a license server that issues license keys in response to
checkout requests by client systems, up to the number of seats purchased. Refer to
Figure 2. The license server software is provided for on-site installation of the license
server. Medusa Labs provides a hardware security dongle to enable the license server
installation.

Figure 2 Medusa Labs Test Tools License Model

You can check out license keys from the license server for any client system. The issued
key will work only for the client system that checked it out. A license key is time limited and
the duration of the checkout is configurable. A license seat is consumed on the license
server when you perform a checkout. The license seat remains allocated to the system
that checked out the key until the checkout time limit is exceeded or you perform a check-
in.

All licensing information is stored on the client system and no further contact with the
license server is required during the checkout period. Checked out keys expire when the
key’s time limit is exceeded; the license seats automatically become available on the
license server. At this point, the tools would need to be able to checkout a new license key
to replace the expired key if further use of the tools is required. If use of the tools on a
system is completed before the time limit is reached, a check-in may be performed to
return the key to the server and make the license seat available for other systems.

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 13

In most cases, the systems running the tools will checkout a license key from the license
server directly over a network. However, a networked system can perform a checkout on
behalf of a system that is not connected to a network or that does not have network access
to the license server. This is called a remote checkout and it is accomplished with the
GetKey utility. A remote checkout requires a machine lock file (fingerprint) created by the
tools be transferred to the networked system performing the remote checkout. This lock
file is used by GetKey to request a license authorization code from the license server.

Only the I/O generating test tools (Pain, Maim, and Sock) require a license key. All the test
tools running on a client system use the same key.

Licensing Requirements
To checkout a license and run MLTT, your client systems must meet the following minimum
requirements:

• To check out a license directly from the license server, the client system must be
attached to a network with access to the server. TCP/IP must be properly configured
on the client system. It is important to make certain that UNIX systems setup as
DHCP clients are able to resolve their own host names.

• The time on the client system must be accurate. Because the license checkouts are
time limited, the times on the client and the license server need to be reasonably
close. A license checkout may fail if the time discrepancy between the client and
server is too great. The client and server can reside in different time zones, as long
as the local time is accurate for both systems.

Licensing Administration
This section includes information about commands supported by the Medusa License
Management Administration (mlmadmin) tool.

– “Report Server State” on page 14
– “Report Client State” on page 14
– “Client User Configuration Property” on page 14
– “Client Auto Check-in Configuration Property” on page 15
– “Client Subnet Check-in” on page 15
– “Proxy Client Subnet Check-in” on page 16
– “License Server Pull” on page 16
– “License Server Net Sync” on page 16

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
Page 14 Version 7.8 July 2023

Report Server State

Usage:

mlmadmin -reportserverstate

Description:

Displays the current MLM server state.

Report Client State

Usage:

mlmadmin -reportclientstate

Description:

Displays the current MLM client state.

Client User Configuration Property

Usage in the configuration file:

MLM_USER=<user>

Usage on the CLI:

mlmadmin -lm-user <user>

License client must be updated to MLTT version 7.4+

Description:

To easily identify individual clients with checked-out licenses, the field MLM_USER can be
set in the MedusaTools.cfg file. The property will be displayed in both the mlmadmin
-reportserverstate and mlmadmin -reportclientstate output. The value
specified can be a string of any length consisting of any character except for “;” since it
signifies the end of the value. By default, the user property will be the logged-in user ID.
This is not a required field and, as such, is initially absent from the configuration file. To set
the property either add it manually by appending the field MLM_USER=<user> on a new
line in the MedusaTools.cfg file or via command line using the mlmadmin -lm-user
<user> command. The MedusaTools.cfg file is located in the config folder of
where MLTT was installed. The default location of the MedusaTools.cfg file is:

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 15

Windows: C:\Program Files\Medusa Labs\Test Tools\config

Linux: /opt/medusa_labs/test_tools/config.

Client Auto Check-in Configuration Property

Usage in the configuration file:

MLM_AUTO_CHECKIN=<1|0>

Usage on the CLI:

mlmadmin -lm-auto-checkin <0|1>

License client must be updated to MLTT version 7.4+

Description:

This property determines whether or now the running MLTT process - e.g. pain, maim,
or sock - automatically attempts to check-in a license upon it’s completion. A property
value of MLM_AUTO_CHECKIN=1 indicates that the process will attempt to check-in the
license prior to exit. If the license is currently in use - e.g. by another pain, maim, or sock
process running on the same system - the license will not be checked in until the last
running process prepares to exit. This is not a required field and is initially absent from the
configuration file. The default value of this property is 0 which means that the process will
NOT attempt to automatically check-in the license prior to exit. To set the MLM_AUTO-
CHECKIN property either add it manually by appending the field MLM_AUTO_CHECKIN
= followed by a “1” or “0” on a new line in the MedusaTools.cfg file or via command line
using the command mlmadmin -lm-auto-checkin 1 or mlmadmin -lm-auto-
checkin 0. If the property value is set to 1 and the client has a license checked out,
mlmadmin -reportclientstate and mlmadmin -reportserverstate will
display the AUTO_CHECKIN property at the end of the “Client” attribute.The Medusa-
Tools.cfg file is located in the config folder of where MLTT was installed. The default
location of the MedusaTools.cfg file is:

Windows: C:\ProgramFiles\Medusa Labs\Test Tools\config

Linux: /opt/medusa_labs/test-tools/config

Client Subnet Check-in

Usage:

mlmadmin -net -checkin

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
Page 16 Version 7.8 July 2023

License client must be updated to MLTT version 7.4+

Description:

Directs all clients within the broadcast subnet of the host system that is executing the
command to check-in the licenses if they are not in use - e.g. by another pain, maim, or
sock process running on the same system.

Proxy Client Subnet Check-in

Usage:

mlmadmin -client <proxy> -net -checkin

License client must be updated to MLTT version 7.4+

Description:

Directs a specific client, specified by their IP under the <proxy> argument, in a different
broadcast subnet than the host system to perform the command mlmadmin -net -
checkin. For more information please reference the “Client Subnet Check-in” section.

License Server Pull

Usage:

mlmadmin -pull

License server must be updated to MLTT version 7.4+

Description:

Use mlmadmin -pull on the system that the license server is running on to have the
license server request each registered client in the check-out list to check-in its license if
not in use - e.g. by another pain, maim, or sock process running on the same system.

License Server Net Sync

Usage:

mlmadmin -net -sync

License server and client must be updated to MLTT version 7.4+

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 17

Description:

Use mlmadmin -net -sync to direct license clients within the broadcast subnet to
synchronize their license states, including those that have become LOST, with the server
when the server’s state becomes corrupt. A server’s state can become corrupt when the
license server’s dongle is moved to a new server without going through the proper migra-
tion process. If you are having technical difficulties this can alternatively be fixed by an
emergency dongle reset. For more information about emergency dongle resets please
contact TechSupport-Medusa@viavisolutions.com.

Remote Checkout
When a client system is unable to contact a license server and perform a checkout directly,
you can use the remote checkout approach. You can also use remote checkouts to tempo-
rarily share MLTT with a third party for reproducing test scenarios. Any system with
network connectivity to the license server can perform a remote checkout with the GetKey
utility.

1 Run one of the I/O Test Tools (Pain or Maim) on the client system.
When a checkout attempt fails, the tools automatically generate a system fingerprint
file in the config directory. The file is named after the system host name, with a .dat
extension, for example: myhost.dat.

2 Transport the .dat file from the client system to the networked system running
GetKey, with access to the license server.
You can do this using any available method, including: floppy, USB flash drive, peer
to peer network, etc. If you are an off-site user, you can also e-mail this file for
checkout from another location and the license key can be e-mailed back.

3 Run the GetKey utility on the networked system to perform a checkout for the client
system. The path to the configuration file is passed to GetKey with the -f switch.
You specify the number of days for the checkout with the -z switch (for example:
getkey -fmyhost.dat -z3).

4 GetKey will contact the license server and request a license checkout. If successful,
it will create a file in the current directory with the same name as the fingerprint file,
with a .lic extension - e.g. myhost.lic.

5 You must take this file back to the client system to install the license code.

6 On the client system, run one of the I/O tools (Pain or Maim) with the license switch
used to install the authorization code. The syntax of this switch is: -Z#file_name,
where file_name is the location and name of the authorization code file created
with GetKey.
Example:

Pain -Z#c:\temp\myhost.lic

Chapter 1 About Medusa Labs Test Tools Suite
Licensing

 Medusa Labs Test Tools Suite User’s Guide
Page 18 Version 7.8 July 2023

Use the -Z switch to find a machine lock file (fingerprint) and to import license file
back in. This is used during a remote check out.

7 The tool will install the license and display the checkout time available. You can now
use any I/O tool for the checkout duration.

To return a remote checkout:
1 Run getkey -r on the remote system. This will deactivate the license and create a

license return file named after the remote system - e.g. remote_sys-
tem_name.ret.

2 Take the .ret file to any system with network connectivity to the license server. Run
getkey -rremote_system_name.ret to return the license seat to the license server.

Migrating the MLM License Server
To migrate the MLM License Server to a different machine requires the following backup/
restore procedure in order to avoid having a corrupted server state. The procedure must
be performed directly at the old and new license server systems because it requires phys-
ically removing and plugging in the USB Key.

At the current license server system:

1 Open a command window.

2 Stop the MLM License Server by running “net stop mlms”.

3 Unplug the MLM License Server USB Key

4 Backup the MLM License Server state by running mlmadmin -backup. This will
create the mlms.backup file.

5 Copy it to the new system.

At the new license server system:

1 Install the MLMS software on the new system.

2 Open a command window.

CAUTION
Do not plug the USB Key back in on any system until this backup/restore procedure is
completed.

CAUTION
Do not plug the USB Key back in on any system until this backup/restore procedure is
completed.

Chapter 1 About Medusa Labs Test Tools Suite
System Requirements

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 19

3 Use cd to open the directory where the mlms.backup file from the old system was
copied.

4 Restore the MLM License Server state by running mlmadmin -restore.

5 Plug in the MLM License Server USB Key.

6 Start the MLMS service in the new system by running net start mlms.

7 Make sure the Medusa Labs Test Tools client machines are configured to use the
new MLM License Server.

System Requirements
The Medusa Labs Test Tools (MLTT) are designed to utilize system resources as efficiently
as possible. However, performance and stress testing is by nature resource intensive.
Specific system requirements will vary with the architectures under test. Generally
speaking, in order to achieve full duplex wire speed levels of throughput with data integrity
checking on a topologies such as Fibre Channel and Gigabit Ethernet an enterprise class
system is desired.

MLTT will take advantage of multiple processors.

System Limitations
Architecturally, the tools are capable of generating tremendous I/O loads through high
queue depths, large buffer sizes, and various optimizations. However, the host system
hardware and operating system is often the limiting factor in what I/O parameters you can
specify for a test and what the actual throughput to the target is. It is important that you
take into account the effects of the MLTT command line switches on your system
resources.

Memory Utilization
MLTT can demand a tremendous amount of system memory, depending on the values
indicated for buffer size and thread count or queue depth. By design, the tools allocate
three memory buffers for each I/O. There is a buffer for forward write data, reverse write
data, and read data. This means that for each worker thread or queued I/O, buffer memory
equivalent to three times the requested buffer size is allocated. You can use the following
equation to determine memory requirements based on buffer size and thread count or
queue depth:

(Buffer Size (-b#) x 3) x (Thread Count (-t#) x Queue Depth
(-Q#))

Chapter 1 About Medusa Labs Test Tools Suite
System Requirements

 Medusa Labs Test Tools Suite User’s Guide
Page 20 Version 7.8 July 2023

For example:

pain -t10 -b512k

or

maim -Q10 -b512k

These command lines both result in a buffer allocation of 15MB (512k x 3 = 1.5MB;
1.5MB x 10 = 15MB). This is in addition to the base memory footprint of the tools, which is
5 to 10MB, depending on the specific tool. It is especially important to keep memory allo-
cations in mind when running multiple instances of the tools to a number of targets.

Processor Utilization
MLTT is designed to keep processor utilization as low as possible for most I/O testing.
However, this is another area where the number of pending I/Os and the size of the I/O
buffers can cause the tools to hit a system bottleneck. Data integrity checking generates a
load on the processors that increases with the buffer size. With data comparisons enabled,
every byte of read data is compared against write data in the default comparison mode.
Extremely large buffer sizes require substantial processor time to walk through each buffer.
I/O operations (IOPS) focused performance testing can also place a tremendous load on
the processors, as higher queue depths with smaller I/O requests sizes are typically used.
The increased frequency of context switching required by this type of testing results in
greater processor utilization.

Firewalls
In Medusa Labs Test Tools (MLTT) 6.0.1 or later, MLTT dynamically manages the firewall
rules. This means that under most situations, it is no longer necessary to disable the fire-
wall for MLTT.

However, sometimes this automatic firewall management may not be possible due to site
policies or specific user configurations. In such cases, you will need to provide manual fire-
wall configurations if you want to use MLTT's networking features, such as remote testing.

In Windows, the preferred method is to add the MLTT executable files to the firewall excep-
tions. The executable files to be added to the exception list to allow incoming network
connections are the "<install_dir>\Test Tools\bin*.exe" files.

In Unix, application-based rules are generally not available and the firewall rules must be
port-based. Because MLTT uses dynamic ports, it is difficult to define a port-based rule.
Therefore, if the new dynamic rule management feature of MLTT is not possible on your
system, the firewall may need to be deactivated.

However, under typical default conditions, the new dynamic firewall rule management
feature should be sufficient for hands-off operation.

Chapter 1 About Medusa Labs Test Tools Suite
System Requirements

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 21

Operating System Restrictions
The host operating system might impose restrictions such as limited thread count,
maximum queue depth, concurrent file handles, and others. MLTT is designed to return
operating system specific error messages whenever possible to assist with the debug of
OS-related error conditions. You should also take into account the OS handling of I/O
requests. Some test cases, particularly those involving file systems, might yield incorrect
performance results due to OS caching.

You can use a protocol analyzer to verify the I/O transfer size.

Windows User Account Control (UAC) Restrictions

Running MLTT can be affected by the Windows User Account Control (UAC) state. The
following table summarizes how the UAC state will affect MLTT operation:

IMPORTANT
You should understand that operating systems or drivers typically break apart large I/O
requests into several smaller ones. A large specified block size does not necessarily
mean that the target will receive the entire I/O size at once.
The reverse is also true. Device drivers often coalesce small I/Os into one larger I/O.

Table 5 Pros and Cons of Using UAC with MLTT

UAC ON UAC ON, run MLTT
"Run as administrator..."

UAC OFF, run MLTT as normal (no-
elevated) admin user

Pros:
• UAC is on
• Windows 8 Metro Live Tiles works

correctly
• Catapult can see mapped network

shares
• GUI can see mapped network

shares

Pros:
• UAC is on
• Windows 8 Metro Live Tiles works

correctly
• Catapult can determine local

physical drive attributes
• GUI can determine local physical

drive attributes
• Pain/Maim can run to local physical

drives

Pros:
• Catapult can determine local

physical drive attributes
• GUI can determine local physical

drive attributes
• Pain/Maim can run to local physical

drives
• Catapult can see mapped network

shares
• GUI can see local network shares

Cons:
• Catapult cannot determine local

physical drive attributes
• GUI cannot determine local physical

drive attributes
• Pain/Maim cannot run to local

physical drives

Cons:
• Catapult cannot see mapped

network shares
• GUI cannot see mapped network

shares

Cons:
• UAC is off
• Windows 8 Metro Live Tiles don't

work

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 22 Version 7.8 July 2023

MLTT Basics
This section includes the following information to provide basic understanding of MLTT
when you are getting started:

• “Prerequisites” on page 22
• “Fundamental Concepts in MLTT” on page 23
• “MLTT Storage Target Types” on page 25
• “I/O Area Size” on page 26
• “Sequential-Access I/O (General Description)” on page 29
• “Asynchronous Sequential-Access I/O, Burst Queueing” on page 32
• “Asynchronous Sequential-Access I/O, Continuous Queueing” on page 33
• “Random-Access I/O (General Description)” on page 34
• “Sequential-Access vs. Random-Access I/O” on page 38
• “Reads, Writes, And Data Integrity Checking” on page 41

Prerequisites
Throughout this manual, the following terms are frequently used. The definitions are
included for each term.

Thread: a unit of execution with its own context of CPU states.

Process: a container of one or more threads + resources shared among threads (address
space, open file descriptors, synchronization objects, etc.)

Work-arounds:
• For GUI: right-click on GUI ->

choose "Run as administrator..."
• For CLI: "Run as administrator..." a

cmd.exe -> run the tools from within
that console

Notes:
1 UAC OFF has been the normal (and one-and-only supported) mode of operation before MLTT 6.0.1.
2 This is an issue only on local systems. If MLTT running on a Windows system is accessed only remotely using the GUI

or Catapult on another system, then whether or not that remote system has UAC on/off is not an issue.
3 To disable the UAC in Windows 8 and above, 1) go to Local Security Policy setting "Local Policies/Security Options/User

Account Control", 2) set "Run all administrators in Admin Approval Mode" to disable, and 3) reboot the PC.

Table 5 Pros and Cons of Using UAC with MLTT

UAC ON UAC ON, run MLTT
"Run as administrator..."

UAC OFF, run MLTT as normal (no-
elevated) admin user

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 23

Blocking operation: OS suspends the calling thread during the duration of the operation
and schedules the thread to be runnable after the completion of the operation.

Non-blocking operation: OS does not suspend the calling thread for the duration of the
operation.

Synchronous I/O: calling thread is blocked until the I/O is completed.

Asynchronous I/O: calling thread is not blocked when the I/O is queued with the OS and
can continue to execute - “do other stuff” - while the I/O is pending. “Doing other stuff” while
an I/O is pending can include starting more I/O operations.

I/O queue depth: number of I/Os that can be queued concurrently.

Synchronous I/O: maximum queue depth per I/O thread is always 1.
Asynchronous I/O: maximum queue depth per I/O thread can be greater than 1.

It is worth noting that “non-blocking I/O” and “asynchronous I/O” are not synonymous. By
necessity, you need “non-blocking I/O” to implement “asynchronous I/O”. The I/O queuing
part of an asynchronous I/O system should be a non-blocking operation.

Fundamental Concepts in MLTT
An MLTT I/O process: one running instance of “pain” or “maim”.

CLI (Command Line Interface):

– “pain” for synchronous I/O
– “maim” for asynchronous I/O

GUI (Graphical User Interface): “Testing Style”

I/O threads per process:

CLI: “-t”

NOTE
There is a per-device maximum and there is also a higher-level OS limit. Per-device
maximum for concurrent command queuing is some fixed size. OS-level maximum is
typically dynamically determined by available system resources.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 24 Version 7.8 July 2023

GUI: “Thread Count”

I/O Queue depth per I/O thread

CLI: “-Q” (for “pain”, it is always “-Q1” and any other value is ignored)

GUI: “Queue Depth” (only available if “Asynchronous” is chosen)

Buffer size per I/O operation

CLI: “-b”

NOTE
“-t” and “Thread Count” are per-target. Therefore, the total number of I/O threads per
process is “-t” or “Thread Count” number specified multiplied by the number of targets
specified for that process.

NOTE
MLTT queues the I/O with the OS, not the device. Therefore, being able to specify a
queue depth number that is greater than the device maximum does not imply that MLTT
can magically queue more commands than what the device can handle.

NOTE

“-Q” and “Queue Depth” are per-I/O thread. Therefore, the maximum number of I/Os
that one running pain/maim process can queue is “Queue Depth” number multiplied by
the “Thread Count” number multiplied by the number of targets specified for that
process.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 25

GUI: “I/O Operation Size”

This is the amount of data MLTT will transfer to/from the OS in one read or write request
to the OS.

Sequential-access I/O vs random-access I/O: determines how each I/O thread deter-
mines the next I/O location (details in a later section.)

“File Size” per thread: determines the per-thread I/O operation area (details in a later
section.)

Read/write mix: determines how each I/O thread determines if the next I/O operation
should be a read or a write (details in a later section.)

MLTT Storage Target Types

Physical

This is a “disk” as presented by an HBA to the OS.

The actual topology below the HBA does not matter to MLTT.

• It could be a VLUN within an actual physical disk configured before the OS boots.
• It could be any number of hardware RAID configurations involving several actual

physical disks.
• There may be multi-path configured.
• It could be a high-bandwidth device acting as a memory-only NUMA node.
• It may not even be a physical disk but a regular file on an NTFS file system on a

remote system presented as a “disk” (HBA emulation, software iSCSI client, etc.)

NOTE

For “large” buffer sizes, the OS and/or the driver might break it down to multiple native
commands of smaller transfer sizes. That detail is not visible to MLTT.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 26 Version 7.8 July 2023

A “disk” is one big flat “file” for MLTT to access.

Logical

This is a “volume” created by the OS on top of one or more “disks”.

It may have RAID-like characteristics, but the constructs are above the HBA (i.e “it’s all
software”.)

• Mirrored
• Spanning
• Play around in Windows Disk Management

As with a “disk”, a “volume” is one big flat “file” for MLTT to access.

File System

A file system “target” for MLTT is just a regular file residing in a formatted file system.

• You can see the “target” file in Windows Explorer or with “dir” command.
• It can be a network file system, such as:

– CIFS (aka “SMB”, “Windows File Sharing”)
– NFS

A way to test NAS devices which are generally mounted as network shares.

I/O Area Size
In MLTT, each thread is given an I/O area (“File Size”). The I/O areas of the I/O threads
within each pain/maim process do not overlap unless a shared offset is specified using
“-X”. An I/O thread never accesses areas outside its own (if it does, it is a serious bug).

CLI: Just the size, e.g, “4MB”, or “--file-size=4MB”.

NOTE

If the specified file system target is a directory, pain/maim will automatically append the
path separator (‘/’ or ‘\’, depending on the OS) if necessary and append “targetfile.dat” as
the file name.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 27

GUI: “Specify Testing Area”

The threads’ I/O areas are sequentially adjacent to each other – unless “shared offset” is
specified (see below). Also, you can specify the starting offset for the target. The I/O area
of the first I/O thread to the target starts at this offset.

For “Physical” disks and “Logical” volumes, there is a default starting offset of “1MB”.
For file system targets, the default offset is “0”.

CLI:

• “-O” override the default offset
• “-x” set a specific starting offset (“-x0” is same as “-O”)
• “-X” set a specific shared offset that is shared by all I/O threads in the process.

When the shared offset is specified, then all I/O threads share the same I/O area.

GUI: “Testing Offsets”

Figure 3 Example: I/O Areas using “-x1m -t3 4MB”

NOTE

In non-full device mode, MLTT enforces “file_size = N* buffer_size * queue_depth” for
some integer “N > 0”. If the user specified “File Size” does not meet this restriction, then
it is adjusted. For example, the file size must be an exact multiple of “buffer_size times
queue_depth”.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 28 Version 7.8 July 2023

When the target is “Physical” or “Logical”, you can specify to use the full device size to
calculate the actual per-thread I/O area.

CLI:

• Macro “-m18” for full-device sequential-access I/O.
• Macro “-m17” for full-device random-access I/O.
• Or, specify “--full-device” regardless of access mode.

GUI: check “Test Using the Entire Target”

When full device testing is specified, the actual per-thread test area is calculated based on
the actual disk or volume size:

“(disk_size – starting_offset) divided by thread_count”

When both “--full-device” and sequential-access mode are specified, the file size
parameter becomes an internal “stroke size”. Each thread will cover its I/O area in the
increments of this “stroke size”.

Figure 4 Example: I/O Areas using “-x1m -t3 4MB --full-device” running to
a 601MB disk as an example

Each thread’s I/O area is now a value calculated using the actual disk size of 601MB rather
than the “4MB” file size value that is specified by the user. For sequential I/O, each thread

NOTE

Full device specifications are ignored on File System targets.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 29

will cover its 200MB area in 4MB “strokes” (the user -specified “File Size”).
For instance:

– Write 4MBs
– Rewind 4MBs
– Read 4MBs
– Write next 4MBs
– Rewind 4MBs
– Read 4MBs,
– etc.

In this way, each thread covers its 200MB area in “200MB / 4MB = 50 strokes”.

Most often, the per-thread I/O area calculation numbers do not work out nicely for full-
device access given some user-specified values. When this occurs, some fudge factors
are involved to provide a “best fit”. In general, MLTT will try to honor

• user-specified thread-count,
• user-specified queue depth,
• user-specified buffer size, and
• make sure every byte between starting offset and the end of the target is included in

the I/O area.

The user-specified “File Size” (“stroke size”) can be drastically adjusted.

Sequential-Access I/O (General Description)
In sequential-access mode, the I/O thread issues the next I/O to the directly adjacent area
in the target. The next I/O offset is last I/O offset plus “buffer size” for forward sequential or
minus “buffer size” for backward sequential.

Figure 5 Forward sequential example using “-b64k”

NOTE

In MLTT, there’s no such thing as “full-device file system” target. Any option that specifies
or implies “full device” is ignored for “file system” targets.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 30 Version 7.8 July 2023

Figure 6 Backward sequential example using “-b64k”

In sequential-access mode, once the end of the thread’s I/O area is reached, this marks
the end of 1 sequential iteration, and the “FOP” (“File Operations”) counter is incremented.
I.e. 1 sequential iteration over the designated I/O area for the thread means 1 completed
“FOP” for that thread. After reaching the end of the I/O area, the sequential-access mode
test “rewinds” to the starting offset of the I/O area and performs the next sequential I/O
pass over the I/O area.

In the default sequential-access mode, I/O occurs in pairs of “write pass” and “rewind-and-
read pass” over the “file size” area per thread. By default, during the read-pass, the data
comparison is also performed to check for data corruptions. In this default configuration, it
is the completion of each pair of the “write pass” followed by “rewind-and-read pass” that
completes 1 FOP (NOT the completion of just the “write pass” or the “read pass”).

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 31

For example: “pain -b64k 256k” (buffer size 64KB, file size 256KB):

• Write to first 64KB of the I/O area (64KB of 256KB written):

• Write to next 64KB of the I/O area (128KB of 256KB written):

• Write to next 64KB of the I/O area (192KB of 256KB written):

• Write to the last 64KB of the I/O area (256KB of 256KB written):

• Rewind. Read from the first 64KB of the I/O area – compare data (64KB of 256KB
read):

• Read from next 64KB of the I/O area – compare data (128KB of 256KB read)

• Read from next 64KB of the I/O area – compare data (192KB of 256KB read)

• Read from final 64KB of the I/O area – compare data (256KB of 256KB read)

• 1 FOP complete for thread
• Rewind – issue Write #5, 6, 7, 8
• Rewind – issue Read #5, 6, 7, 8 – compare data after each read
• 2 FOPs complete for the thread
• etc.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 32 Version 7.8 July 2023

Asynchronous Sequential-Access I/O, Burst Queueing
For asynchronous I/O, sequential-access mode is further characterized as “burst
queueing” or “continuous queueing”. The difference between the two types is relevant only
if “queue depth” is greater than 1.

In burst queueing,

• Each I/O thread queues “queue depth” number of I/Os to the OS.
• Each I/O thread then waits for, and handles, all of its pending I/Os to complete.
• When all of its pending I/Os are completed, each I/O thread issues the next “queue

depth” number of I/Os.
• etc.

Example using “-b64k -Q4”

CLI: Burst queueing is specified using “-m11” (default for “maim”) or “-m18”.

GUI: Burst queueing is specified by unchecking “Keep Queue Depth Static”.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 33

Asynchronous Sequential-Access I/O, Continuous Queueing
In continuous queueing mode, after the initial burst queueing of “queue depth” number of
I/Os, the I/O thread immediately issues the next I/O as soon as one of the pending I/Os
completes.

Example using “-b64k -Q4”:

• Initial burst of 4 sequential I/Os, 64KBs each.

• As soon as I/O#1 completes, queue I/O#5 at next sequential offset.

• As soon as I/O#2 completes, queue I/O#6 at the next sequential offset.

CLI: Continuous queueing is specified with “-m1” or “-m16”.

GUI: “-m16” is specified by selecting “Keep Queue Depth Static”

GUI: “-m1” is specified by selecting both “Keep Queue Depth Static” and “Strict Sequen-
tial”.

The difference between “-m1” (“Strict Sequential”) and “-m16” (NOT “Strict Sequential”)
is in how MLTT handles I/O completion notifications that arrive “out-of-order”.

In “-m16”, the algorithm to calculate the next I/O offset is:

“offset_of_just_completed_I/O plus buffer_size multiplied by queue_depth”

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 34 Version 7.8 July 2023

Given the above I/O sequence pictures, after the initial burst of 4 I/Os are queued, consider
what would happen if I/O#2 completes before I/O#1. According to the “-m16” offset calcu-
lation, the IO#5 will skip a 64KB area that would be accessed if I/O#1 would have
completed.

Initial burst of 4 sequential I/Os, 64KBs each, same as before.

However, this time, I/O#2 completes first. Queue I/O#5 at I/O#2’s offset + 64KB x 4.

The “SKIPPED” area will be accessed as soon as I/O#1 completion notification arrives.

This “-m16” algorithm was devised without knowing that asynchronous I/O completion noti-
fications can arrive out-of-order.

However, “-m1” accounts for out-of-order completions and makes sure the next I/O
doesn’t skip the next adjacent area (thus “Strict Sequential”).

Random-Access I/O (General Description)
For random-access I/O, each I/O thread keeps up to “queue depth” number of concurrent
I/Os to randomly chosen offsets within its I/O area. Furthermore,

• each thread’s I/O area is divided into “queue depth” number of adjacent sub-areas,
and

• each thread issues only 1 I/O at a time to each sub-area.

Consider the asynchronous I/O scenario, where “queue depth” per I/O thread can be
greater than 1, as a generalized case. Using “-b64k -Q4 -t2 10MB” as an example,
each thread’s 10MB I/O area is divided into “10MB file size divided by queue depth 4”, or
2.5MB, sub-areas.

When I/O starts, each thread first queues the initial burst of 4 I/Os, 1 per each I/O sub-area:

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 35

• Determine a random offset within sub-area#1 -> queue a 64KB I/O#1 to that offset

• Determine a random offset within sub-area#2 -> queue a 64KB I/O#2 to that offset

• Determine a random offset within sub-area#3 -> queue a 64KB I/O#3 to that offset

• Determine a random offset within sub-area#4 -> queue a 64KB I/O#4 to that offset

Once a thread queues the initial burst of four I/Os (“queue depth” number) within its I/O
area, 1 per randomly chosen offset within a sub-area, it then waits for any one of its four
pending I/Os to complete. As soon as an I/O of a sub-area completes, the thread handles
that I/O completion and immediately issues another I/O to a new randomly determined
offset within that same sub-area. For example, continuing with the example, assume I/O#3
completes first. Note that out-of-order completions occur.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 36 Version 7.8 July 2023

• I/O#3 in sub-area#3 completed

• Determine a random offset within sub-area#3 -> queue a 64KB I/O#5 to that offset

• I/O#1 in sub-area#1 completed

• Determine a random offset within sub-area#1 -> queue a 64KB I/O#6 to that offset

• Etc.

In default random-access mode, a write operation is immediately followed by a read oper-
ation from the same location followed by data comparison. As an example, with “-b64k”,
for each sub-area,

• Determine a random offset within sub-area -> queue a write operation to that offset

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 37

• Write operation completes

• Queue a read operation to read from the same offset

• Read operation complete

• The data read from the device should be identical to the data that was written to it.
You can compare the two to confirm they are identical.

Some Additional Considerations

Remembering that in synchronous I/O (“pain”) the queue depth is always 1, you can
specialize the above example for “queue depth” of 1 to consider the random-access
synchronous I/O tests.

While each thread keeps up to “queue depth” number of I/Os queued within its I/O area,
only 1 I/O is queued to a sub-area. By keeping concurrent I/Os in non-overlapping sub-
areas, MLTT ensures that random-access I/Os do not overwrite each other. This in turn
ensures that we can perform data corruption check during each I/O completion handling
without worrying about “false data corruption” - data comparison failing due to MLTT I/Os
themselves overwriting each other’s data.

NOTE

Unlike in sequential-access I/O, there’s no “burst queueing” vs “continuous queueing”
distinction in random-access I/O. In random-access mode, after the initial burst of “queue
depth” number of I/Os, subsequent I/Os are always queued continuously (i.e. immedi-
ately upon successful completion of any of the pending I/Os).

NOTE

A “false data corruption” is the worst kind of MLTT bug you can encounter – even more
serious than a program crash.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 38 Version 7.8 July 2023

The above example is for non-full device coverage case with a user-specified file size as
the per-thread I/O area.

Sequential-Access vs. Random-Access I/O
As covered in “Sequential-Access I/O (General Description)” on page 29, the basic
concept of sequential-access I/O is that the next I/O is issued to an offset adjacent to the
last I/O. Furthermore, in sequential-access mode, there is no direction change during the
coverage of the I/O area until after the last I/O to the last I/O offset within the I/O area
during an iteration.

In CLI, the sequential I/O can be specified with macro modes “-m1”, “-m11”, “-m16”,
“-m18” and the following switches:

• “-B0” (default): forward sequential
– I/Os are issued sequentially from the lowest offset to the highest offset within the

I/O area.
– After the last I/O to the highest offset, next sequential iteration starts at the

lowest offset of the I/O area (i.e. “rewind”)
• “-B1”: alternate forward-backward per “FOP” (recall what a “FOP” is from section 6).

– I/Os are issued sequentially from the lowest offset to the highest offset within the
I/O area.

– After the last I/O to the highest offset, the next sequential iteration starts at the
highest offset. I/Os are issued from the highest offset to the lowest offset within
the I/O area.

– After the last I/O to the lowest offset, the next sequential iteration starts at the
lowest offset of the I/O area.

– Repeat
• “-B2”: first FOP forward, rest backward
• “-B3”: backward sequential

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 39

GUI offers direct parallels for “-B”, but which “-m” is chosen depends on burst vs. contin-
uous and full-device or not.

Random access is specified in CLI with either “-m17” macro or with a more elaborate
“-%x,f,b” mix.

• “-m17”: 100% random-access AND full-device access
• “-%x”: a random offset value between the lowest offset and the highest offset within

the I/O sub-area
• “-%f”: next offset will be “forward sequential” from the last offset
• “-%b”: next offset will be “backward sequential” from the last offset

There is some confusion regarding “-%f” and “-%b”. Consider “-B1”, which specifies
alternating forward/backward sequential passes. This is, obviously, “50% forward, 50%
backward” – i.e. 50% of all I/Os are forward adjacent to the previous I/O, and the other 50%
of all I/Os are backward adjacent to the previous I/O. However, “-B1” is NOT “-%f50 -
%b50”, which also specifies “50% forward, 50% backward”. In MLTT, “-B1” performs
sequential-access I/O while “-%f50 -%b50” (or the shorthand “-%f50,b50”) performs
random-access I/O.

Recall the statement from the beginning of this section: “in sequential-access mode, there
is no direction change during the coverage of the I/O area until after the last I/O to the last
I/O offset within the I/O area during an iteration”.

With “-B1”, all I/Os occur in one direction from one end of I/O area to the other. The direc-
tion change occurs only at the end of one sequential iteration over the I/O area. However,
with “-%f50,b50”, the direction change is considered for every I/O. I.e, for each I/O:

NOTE

“-m17” is same as “-%x100 --full-device”

“-%f100” is the same as “-B0”

“-%b100” is the same as “-B3”

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 40 Version 7.8 July 2023

• Flip a coin.
• Heads -> next I/O is forward-sequential from the previous I/O.
• Tails -> next I/O is backward-sequential from the previous I/O.
• I.e. there’s no concept of going from one end and progressing until the other end in

one direction. However,
– There is a non-zero probability of getting only “heads” or only “tails” for every

coin flip.

Therefore, if a custom access profile is specified,

• -%f100 is sequential-access.
• -%b100 is sequential-access.
• -%x100 is random-access.
• Any combination of the following with non-zero weight value (probability) is random

access:
– “-%x” and “-%f”
– “-%x” and “-%b”
– “-%x” and “-%f” and “-%b”
– “-%f” and “-%b”

In the GUI, random-access I/O is specified in following ways.

• Under “I/O Payload” -> “I/O Type”, “Custom Mixture” with non-zero value for “%
Random”.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 41

This is an extreme example where most I/Os will progress sequentially forward from the
previous I/O, but, every once a while, an I/O will jump to a random location with the I/O
area. Nevertheless, this is random-access because it is not 100% sequential.

• Access the full I/O profile parameters under “Advanced I/O”.

Reads, Writes, And Data Integrity Checking
There are different ways to specify how much of the operations is for read (data transfers
from the target device) and how much is for write (data transfers to the target device). This
also has implications on whether or not data integrity checking is possible.

The default sequential-access mode of “write pass, rewind-and-read pass with data
comparison” was described in “Sequential-Access I/O (General Description)” on page 29.
Likewise, “Random-Access I/O (General Description)” on page 34 covered write-read-
compare for random-access I/O. In both cases, there is equal amounts of write and read
operations (“50% read, 50% write”).

Adding the simple “-w” option makes this “100% write” (“write-only”). This is same for both
sequential-access and random-access modes. Data comparison is not possible for “write-
only” tests.

The “-r” option is for “read-only” tests. For sequential-access, it also has a “initial write-
once” variant with or without data comparison. There is no initial write pass in any of the
“read-only” specifiers for random access mode.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 42 Version 7.8 July 2023

• “-r”
– Sequential-access:

- With “-n” also specified: “no initial write pass” and “no data comparison (-
n)”; “100% reads”

- Without “-n”: “initial write pass” and “with data comparison” – “read-only”
after the initial write pass

– Random-access: no-write pass, 100% reads, no data comparison
• “-ro”: also turns on “-n” and “-o”

– Sequential-access:
- Always performs initial write-pass once
- No data comparison

– Random-access: no-write pass, 100% reads, no data comparison

In addition, there is a “re-verify read-only” mode: “-V”. The purpose of “-V” is to perform
a read-only test with data verification on a target which contains data written to it in a
previous MLTT test. The re-verify test is applicable only to sequential-access. A typical
work-flow:

1 Run 1 sequential iteration (“1 FOP”) of write-only test to a target.

2 Take the target offline or reboot the system.

3 Run “-V” to the same target, taking care to use exactly the same parameters as
before (i.e same buffer size (“-b”), file size, data pattern “-l”, etc.) to ensure the
data was correctly persisted.

This test covers the back-up/restore type of use-cases where you would archive the back-
up data and store the backup disk somewhere off-line until data restoration from it is
needed.

The newer “I/O profile” option (“-%”) offers a more flexible way to mix different amounts of
reads and writes as well as the ability to associate different transfer lengths to the opera-
tions.

For example, “-%r50,w50” specifies “50% reads, 50% writes”. Recall that default I/O
modes for sequential-access and random-access modes also perform equal number of
reads and writes – i.e. also “50% reads, 50% writes”. However, for default modes, the write
and read sequences are very deterministic and allows data comparison. The 50/50 break-
down specified by the I/O profile mode, “-%r50,w50”, however, is very different, because
the sequence is randomly generated. I.e.

• Determine the next I/O location (review sequential- and random-access)
• Flip a coin.
• Heads -> next I/O is a read.
• Tails -> next I/O is a write.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 43

This is a test where the primary purpose is to see the performance impact of mixing a
varying ratio of reads vs writes. MLTT currently cannot do any data comparison in this
mode. Consider, for example, an unbalanced mix: “-%r30,%w70”.

The MLTT data comparison design is such that it reads and verifies what it wrote – i.e. the
comparison would have to be done by reading back the 70% of operations which are
writes. This also means that it changes the actual ratio of reads/writes to something very
different from what the user specified. You cannot have only 30% of the operations being
reads when all the writes – specified to be 70% of all operations - need to be read-back for
verification. A different scheme can be designed and implemented to allow some data
comparison in the I/O profile read/write mix mode. As it is in the present state, there is no
data comparison in custom read/write mix mode by design.

One other capability of the I/O profile read/write mix specification is to be able to attach
different transfer sizes at different probabilities. E.g.

-%r20@4k,r30@16k,w20@16k-32k,w30 -b128k

This set of specifications says

• -%r20@4k: 20% of all operations will be 4KB reads
• -%r30@16k: 30% of all operations will be 16KB reads
• -%w20@16k-32k: 20% of all operations will be writes of random transfer sizes

between 16KB to 32KB
• -%w30: 30% of all operations will be 128KB writes.

The “-%r” and “-%w” specifications are accumulative. With most MLTT CLI options, when
you repeat a same option more than once, the most recent one overrides the previous
ones. E.g.

pain -b128k -b1m

In this example, “-b” option is specified twice. The first “-b128k” is ignored, so the
command becomes “pain -b1m”.

With “-%r” and “-%w”, all occurrences are used together to form the final read/write mix
specifications. The example above could have been specified with separate arguments:

-%r20@4k -%r30@16k -%w20@16k-32k -%w30 -b128k

NOTE

Journal verification mode (“--journal”) does allow some data comparison and verifi-
cation of data written by custom read/write mix test.

NOTE

There’s no “@128k” attached to this spec – when there is no transfer size attached to a
spec, the global “-b” value is attached to it (see “-b128k” above).

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
Page 44 Version 7.8 July 2023

Pain/maim allows an implicit (100 – x) notation if (and only if) exactly 1 “-%r” or “-%w” spec-
ification is given in the command line AND if no explicit transfer size is attached to that
spec. E.g.

pain -%r25

is the same as

pain -%r25 -%w75 (or the short-hand pain -%r25,w75)

I.e. “25% reads, 75% writes).

However, if you attach a transfer size to it, the implicit (100 – x) notation does not apply.

pain -%r25@4k

The above example specifies “100% of all operations are 4KB reads”.

Next point of clarification is why “25%” becomes “100%” in the last example? That is
because the probability weight values are not percentages (although, you can use
percentage values if that makes it easy for you). The final scale and ratio is determined by
the sum of all weight values specified. E.g.

pain -%r2,w3

The combined weight value is “2 + 3 = 5”. Therefore, the amount of reads specified
is “2/5 x 100 = 40%”, and the amount of writes specified is “3/5 x 100 = 60%”.
“-%r40,%w60” would have yielded the same result if you feel more comfortable
thinking in terms of percentages. If you think in terms of “2 to 3 (2:3) read-write ratio”,
then “-%r2,w3” is a direct translation of that notation.

Therefore, “pain -%r25@4k” means “25/25 x 100 = 100%” reads at 4KB transfer size.

The GUI equivalents of the aforementioned I/O operation specifiers are as follows:

NOTE

This ratio evaluation rule also applies to the I/O location specifiers “-%f/b/x”.
Note that the weights are not percentages but can be specified in terms of percentages.

Chapter 1 About Medusa Labs Test Tools Suite
MLTT Basics

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 45

• “Normal” read/write mode, data comparison possible
(i.e. no “-r”, “-w”, “-%r/w” specified).

• “-r”, initial write pass, data comparison possible.

• “-r -n”, no initial write pass, no data comparison.

• “-ro”, initial write pass without data comparison

Chapter 1 About Medusa Labs Test Tools Suite
Testing Concepts

 Medusa Labs Test Tools Suite User’s Guide
Page 46 Version 7.8 July 2023

• Simplest form of randomized read/write mix (“-%r”, “-%w”)

• The full “-%r” and “-%w” specifiers are accessed in the “Advanced I/O” tab.

Testing Concepts
This section discusses some of the system and network planning considerations that you
must account for to use MLTT effectively.

Target Considerations
You need to consider the capabilities and characteristics of a target device when setting
up a test. Queue depth, block size, and I/O modes are the most influential test parameters
from the target perspective.

The most prominent target limitation, particularly when testing hard drives, is queue depth.
Excessive queue settings that are specified with the intent of providing maximum stress
may result in minimal throughput due to queue full conditions on the target.

NOTE

The GUI always presents the “weights” in terms of percentages.

Chapter 1 About Medusa Labs Test Tools Suite
Testing Concepts

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 47

You also need to consider a target’s caching abilities when setting up a test, especially on
RAID controllers with large amounts of cache memory. You might want to keep I/O char-
acteristics such that the target is able to service requests within cache, for the purpose of
performance or stress testing of a host system or an interconnecting device such as a
switch. On the other hand, when testing the target itself, you should include tests that
overrun cache boundaries and force frequent commits to the hard drives. This can be
accomplished with combinations of queue (thread), block, and file size parameters.

There are a variety of I/O modes in MLTT, including static queuing, random access, and
full stroke target coverage. Comprehensive testing of target systems should include expo-
sure to these modes.

Windows platforms provide raw access through physical drive links (for example:
\\.\physicaldrive1).

MLTT uses O_DIRECT by default on Linux systems with kernel version 2.6 or higher for
non-cached I/O. However, on earlier Linux kernels, it is necessary to bind the block
devices to a "raw" device to achieve non-cached I/O. See "man raw" on a Linux kernel
2.4.x system for more details.

Example:

raw /dev/raw/raw1/dev/sdb

When you use Catapult to start physical I/O tests on a Linux kernel 2.4 system, this binding
is made for you automatically.

Protocol Analyzers
While Medusa Labs Test Tools (MLTT) are designed to report conditions as accurately as
possible from the application level, we cannot overemphasize the importance of using in-
line protocol analyzers or traffic monitors whenever possible. In our experience, a substan-
tial number of defects or deficiencies are overlooked in product development due to anom-
alies that are not readily visible at the application level. An analyzer is essential to detecting
underlying items of interest, such as I/O fragmentation and recoverable errors, and veri-
fying performance numbers.

A powerful feature of MLTT is the ability to send an I/O with a special value for analyzer
triggering. Fault conditions which would be difficult, if not impossible, to debug and to find

IMPORTANT
To insure that the maximum possible throughput to a target is realized, you should run
MLTT to physical devices (raw access) whenever possible. Running I/O traffic to a file
system involves several layers of overhead at the host system, which results in a lower
stress load on the target.

Chapter 1 About Medusa Labs Test Tools Suite
Testing Concepts

 Medusa Labs Test Tools Suite User’s Guide
Page 48 Version 7.8 July 2023

the root-cause from the application level can easily be captured in a trace and analyzed in
detail.

TraceView Support
Some VIAVI traffic generator products add some records into the data portion of the traffic.
This is the case for the Load Tester and Medusa Labs Test Tools. MLTT adds a special
record at every 512-byte boundary of the SCSI data.

The following choices are available in VIAVI’s Xgig Analyzer TraceView application under
the View menu, Decode Switches, VIAVI Signatures:

• Don't Decode VIAVI Signatures
– This option disables the decoding of the VIAVI special records. This is the

default setting.
• Medusa Labs Test Tools I/O Signature

– This option enables the decoding of the MLTT Signature records every 512
bytes in the SCSI data. This switch enables decoding of these special records.

• Medusa Labs Test Tools I/O Signature/Timestamp in seconds
– This option is the same as the previous one, except that an additional 32-bit

timestamp is decoded at the end of the record. This timestamp is added to the
record if specified by command-line arguments within MLTT when the capture is
created. Refer to “-U I/O Signature Timestamp Units” on page 189 for informa-
tion on specifying the timestamp addition to the I/O signature in seconds using
the -U command.

• Medusa Labs Test Tools I/O Signature/Timestamp in milliseconds
– This option is the same as the previous one, except that an additional 16-bit

millisecond resolution timestamp is added after the 32-bit timestamp. This time-
stamp is also added by command-line argument. Refer to “-U I/O Signature
Timestamp Units” on page 189 for information on specifying the timestamp addi-
tion to the I/O signature in milliseconds using the -Um command.

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 49

2

Chapter 2 Using the Graphical User Interface

This chapter describes the Graphical User Interface (GUI) used by Medusa Labs Test
Tools Suite. The topics discussed in this chapter are as follows:

• “Using the Medusa Labs Test Tools GUI” on page 50
• “Medusa Labs Test Tools GUI” on page 58
• “Medusa Labs Test Tools Menus” on page 60
• “Test Planning Tab” on page 65
• “Test Running Tab” on page 84
• “Test Analysis Tab” on page 89

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
Page 50 Version 7.8 July 2023

Using the Medusa Labs Test Tools GUI
The Medusa Labs Test Tools (MLTT) Graphical User Interface (GUI) provides a quick,
visual system to run MLTT. The basic steps for running a test with the GUI are:

• Selecting the targets.
• Selecting a configuration or configuring a new set of test parameters.
• Running the test.
• Viewing the output results.

Launching the Medusa Labs Test Tools
When MLTT was installed, it is likely that the Medusa Labs Test Tools shortcut icon was
installed on the desktop. Clicking this icon is the quickest way to launch MLTT. However,
you can also launch the MLTT application by:

1 Clicking the Windows Start menu.

2 Choosing Programs > Medusa Labs Test Tools > Medusa Labs Test Tools.

If this is the first time launching the GUI after installing the Medusa Labs Test Tools,
the Launch Setup Wizard dialog box opens (see Quick Start section below). If this
dialog box is later disabled, subsequent launch opens the Medusa Labs Test Tools
main window.

Quick Start Overview

When you start the GUI, the “Launch Setup Wizard” dialog box is opened, unless the
“Don’t show this again” option has been checked.

Figure 7 Launch Setup Wizard

If you click the “Launch” button, it launches the “Quick Start Setup Dialog Box” (see
Figure 8).

NOTE
For Windows 8, select the Start button and the select the Medusa Labs Test Tools
icon.

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 51

Figure 8 Quick Start Setup Dialog box

The “Targets” pane on the left has most of the functionalities of the “Targets” pane in the
full GUI. The “Test Plans” on the upper right corner has the same functions as the “Test
Plans” pane of the full GUI. However, it has following limitations:

• The “Test Plans” pane is populated with the “Quick Start Test Plan”. You cannot
delete this plan or add new plans to this pane.

• The plan’s “Configurations” are populated with the two configurations shown. You
cannot delete or edit these configurations, and you cannot add new configurations.

You can drag-and-drop targets from the “Targets” pane into the “Targets” folder. The “Help”
pane on the lower right corner provides information on the “Targets” pane. The example
above shows information about a host.

When you highlight a target-type folder, the “Help” pane displays the appropriate info for
the selected target type (see Figure 9):

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
Page 52 Version 7.8 July 2023

Figure 9 Quick Start Setup Dialog box Help Pane

After you drag-n-drop one or more targets to the “Quick Start Test Plan”, push “Complete
and Run Test” to run (see Figure 10).

Figure 10 Quick Start Test Plan Complete and Run Test

This closes the “Quick Start Setup Dialog” and launches the “Quick Start Test Plan” in the
regular GUI (see Figure 11).

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 53

Figure 11 Quick Start Test Plan Running

The “Quick Start Setup Dialog” box can be opened any time from the full GUI as well even
after you disable it to pop-up during the GUI start-up. Click “Setup Wizard” in the “Targets”
pane tool bar in the full GUI (see Figure 12).

Figure 12 Setup Wizard Launch

“Quick Start Test Plan” instances launched from the “Quick Start Setup Dialog” box
become resident in the “Test Plans” pane of the full GUI. Here, they can be edited just like
any other Test Plan that was created in the full GUI.

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
Page 54 Version 7.8 July 2023

Figure 13 Quick Start Test Plan Example

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 55

Setting Up a Performance Test
Setting up a simple performance test includes selecting the target (or targets), selecting/
creating and editing the configuration, running the test, and viewing the test output.

Selecting the Target

You can select targets from a list of targets that are available for testing with MLTT.

1 After creating a test plan, select the targets from the list displayed in the Targets area.
You can expand/collapse the drive categories by clicking the plus/minus sign on the
left of each category.

2 To select the targets, click the target and drag it to the test plan you created in the
Test Plans area.

Some grayed-out targets cannot be selected because they include an OS or active
partition. This protection mechanism keeps critical data from being overwritten during
testing.

You can select a group of drives, such as File System, to select all the drives of that
category.
To view the information for a target, right-click the target and select Properties.

Selecting or Creating the Configuration

You can select either an existing configuration or create a new configuration for testing with
MLTT.

1 Select an existing configuration in the folder of Medusa Sample Configurations, or
create a new configuration in the Configurations area of the Medusa Labs Test
Tools main window.

2 On the Configurations area, select the folder where you want the new configuration
to be located. For example, select the User Configurations folder to locate your new
configuration in it.
The Medusa Sample Configurations folder is read-only. When creating a new
configuration, select the User Configurations folder or create a new folder by
clicking the New Folder button .

NOTE
You can also select the targets first and drag/drop the target into the “Test Plan Browser”
to automatically create a Test Plan.

CAUTION
Physical access is destructive to the data on the target and can overwrite the partition
data.

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
Page 56 Version 7.8 July 2023

3 Click the black arrow at the right of the New Configuration button to open the
drop down menu and then select the desired configuration type.
The new configuration is listed in the folder. You can right-click the new configuration
and click Rename, or click and pause on the name to rename it.
You can also create a new configuration from an existing configuration. To copy a
configuration from the Medusa Sample Configurations, right-click the configuration
and choose Copy from the pop-up menu. Then select the new folder, right-click, and
choose Paste. This method is particularly helpful when you only want to edit a few
settings of an existing configuration to create a new configuration.

4 Double-click the new configuration to edit the options. The Configuration Editor
window is displayed.
For information about configuration editor settings, see Chapter 3 “Using the Config-
uration Editors”.

5 Click OK.

6 To select a configuration, click the desired configuration and drag it to the test plan on
the Test Plans area.

Running the Test

Run the test based on the targets and configuration you selected.

1 Click the Start button. Make sure that you have selected the test plan that you want
to run.
The test begins on the selected targets for the selected configurations and runs until
the specified duration expires, or the test is stopped manually.
Clicking the Next button stops the configuration that you are currently running and
will run the next batch of configurations.

2 Click the Stop button to manually stop all configurations.

Chapter 2 Using the Graphical User Interface
Using the Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 57

Viewing the Test Output, Exporting Test Summaries, and
Deleting Test Plan History

Test results are displayed in the Test Analysis tab as each test configuration has
completed testing. For test configurations with multiple iterations or test plans with multiple
configurations, test results are displayed in Test Analysis tab as each configuration
completes.

1 To see the logged results, check either the History Summaries or the History Tests
panes.

2 To export test summaries:
– In the History Summaries pane, select the test plan and in the File menu,

select the Export Selected Histories... to open a dialog box that allows you to
select where the test summaries are to be saved. The history file is saved with a
“.his” extension. This file can be moved to another system where it can be
viewed using MLTT.

– In the History Summaries pane, right-click on the test plan and select Export
selected summaries to CSV... to open a dialog box that allows you to select
where the test summaries are to be saved.

– In the History Tests pane, right-click on a test and select Export all summaries
to CSV... or select the summaries that you want to save, right-click and select
Export selected summaries to CSV....
Each selection opens a dialog box that allows you to select where the test
summaries are to be saved.

3 To delete a test plan history, in the History Summaries pane, select the test plan
and press the Delete key or right-click and select Delete Selected History.

NOTE
The saved .his file can be viewed and analyzed using another system running MLTT. To
view this file, move the .his file to the other system, from the File menu, select Import
Histories..., and use the Select Histories dialog box to locate and select the .his file
which will import the file.

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
Page 58 Version 7.8 July 2023

Medusa Labs Test Tools GUI
The Graphical User Interface (GUI) implements options available from the command line
version of the application.

The GUI window is made up of:

• “Medusa Labs Test Tools Menus” on page 60
• “Test Planning Tab” on page 65
• “Test Running Tab” on page 84
• “Test Analysis Tab” on page 89

Refer to “GUI Overview” for a brief overview of the GUI.

For details about the command line equivalents of the GUI options, see Chapter 4 “Using
the Command Line Switches”.

GUI Overview
The Medusa Labs Test Tools (MLTT) main window is the starting point for using the GUI.

Figure 14 Medusa Labs Test Tools GUI Window

The Medusa Labs Test Tools Main window contains the following components (Figure 14):

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools GUI

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 59

Medusa Labs Test Tools Menu Bar

The Menu bar contains the File, View, and Help menu items. For more information about
the MLTT menus, see “Medusa Labs Test Tools Menus” on page 60.

Test Planning Tab

The “Test Planning Tab” on page 65 contains the following panes:

• The Targets pane contains four buttons (Show/Hide Remote Systems, Show/Hide
Offline Systems, Show/Hide VMware ESX(i) Servers, and Change Visibility of
Targets) and the Target Categories section. For more information on target selec-
tion, see “Targets Area”.

• The Configurations pane contains the New Folder button, the New Configuration
button, and the Configurations section. For more information on configuration
settings, see “Configurations Area”.

• The Test Plans pane contains the following parts:
– Test Plan buttons: New Planning Group, New Test Plan, New Configuration,

and the Select a test to start/Press start to begin tests button
– Test Plan/Planning Group Browser where you create, edit, and delete test

plans and planning groups
– Test Plan/Planning Group/Configuration Properties pane where you can edit

or customize the properties Test Plans, Planning Groups, or Configurations.

Test Running Tab

The “Test Running Tab” on page 84 contains the following sections:

• Test control buttons: Stop all testing, Stop currently selected test, and Move to
the next test

• Running Test list lists the running test plans
• Console View shows the results of the selected test plan or its components
• Speedometers displays the real-time speed of the tests

Test Analysis Tab

The “Test Analysis Tab” on page 89 contains the following sections:

• History Summaries
• History Tests
• History Summaries (or Tests) Information

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools Menus

 Medusa Labs Test Tools Suite User’s Guide
Page 60 Version 7.8 July 2023

Medusa Labs Test Tools Menus
The three menus available with the MLTT GUI are File, View, and Help.

File Menu
The File menu (see Figure 15) lets you import test plans, configuration, and history files,
install license from file, update remote systems, export selected test plans and selected
configurations, and close MLTT.

Figure 15 File Menu

Import Test Plans...

This option opens the Select Test Plans dialog box where you can browse and select a
previously saved test plan to import. You can import Medusa Lab Test Plans (.sdf files),
Legacy Test Plans (.mltp files), and IOMeter Configuration Files (.icf and .txt files). Note
that IOMeter configuration files are replicated as closely as possible and targets are not
imported.

Import Configurations...

This option opens the Select Configurations dialog box where you can browse and select
a previously saved configuration to import.

Import Histories...

This option opens the Select Histories dialog box where you can browse and select a
previously saved history to import. This file has a .his file extension. This feature allows

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools Menus

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 61

you to export data (using the File menu’s Export Selected Histories... selection) from the
system that has run the test and view it on another system.

Update Remote Systems...

This option opens the Install Updates dialog box where you can install Tools updates to
remote systems.

Before updating any remote system, please ensure that all MLTT related files are closed
before using this feature.

Install License From File...

This option opens the Select License File dialog box where you can browse and select a
license file (.lic file) to install. This is equivalent to running the command pain -Z#.

Generate License .dat File...

This option opens a browser window where you can browse and select a location where
the generated system ID (.dat) file will be saved.

Export Selected Test Plans...

This option allows you to export a selected test plan from the Test Planning area. This
option opens the Export Test Plans dialog box where you can select the folder to export
the selected test plan.

It is also possible to export test plans as a Python, Bash, or PowerShell script. In order to
change what type of script you save the test plan as, change the Save as type: drop down
box to select the option that you want.

The exported scripts take the following command line options.

--targets <target file>: Use this option to specify one or more targets for all Test Plans
included in the script. The “target file” must be in the same format as the “targets.dat” target
list file for pain/maim command line tools.

--workdir <directory>: Use this option to specify the script’s base working directory. The
tests will create the log files inside sub-directories created within this base working direc-

NOTE
When exporting to a script, targets in the Test Plan are ignored. You must specify the
targets when running the created scripts. Targets are specified by using target specify-
ing switches that are described below.

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools Menus

 Medusa Labs Test Tools Suite User’s Guide
Page 62 Version 7.8 July 2023

tory. The sub-directories are named according to the Test Plan and/or Planning Group
names and time stamps similar to the directory structure created by the GUI. This switch
is not mandatory. If not specified, the script’s current working directory is the base working
directory.

--plan<Test Plan Number>-targets <Target File>: Use this option to specify targets for a
specific Test Plan in the script. The “Test Plan Number” is the ordinal number of a Test Plan
within the Planning Group that was exported.

Export Selected Configurations...

This option allows you to export a selected test configuration from the Configurations
area. This option opens the Export Configurations dialog box where you can select the
folder to export the configuration.

Export Selected Histories...

This option allows you to export a selected test summary from the History Summaries
area of the Test Analysis tab. This option opens the Export Histories dialog box where
you can select the folder to export the history summary. The history file is saved with a
“.his” extension. This file can be moved to another system where it can be imported using
the MLTT File menu’s Import Histories... selection. The file can then be viewed on the
system.

Exit

Exits Medusa Labs Test Tools.

View Menu
The View menu (see Figure 16) gives you the option to show or hide sections of the GUI
main window. Options for the View menu are:

Figure 16 View Menu

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools Menus

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 63

Test Planning

This allows you to show or hide remote systems. Select Show Remote Systems to have
the remote systems available in the Targets pane of the Test Planning tab.

Testing Running

This allows you to show or hide the Console View and the Speedometers in the Test
Running tab.

Chapter 2 Using the Graphical User Interface
Medusa Labs Test Tools Menus

 Medusa Labs Test Tools Suite User’s Guide
Page 64 Version 7.8 July 2023

Licensing...

This allows you to show/hide the Licensing dialog where you can see the status of the
license, check in or check out a license and see additional information about the current
license status.

Figure 17 Licensing Dialog

Help Menu
This menu provides a link to the user’s guide and the MLTT software information.

Figure 18 Help Menu

User’s Guide

This selection displays the Medusa Labs Test Tools Suite User’s Guide.

About

This selection displays information about MLTT.

NOTE
The Licensing dialog box for any system may be accessed. Refer to “Accessing System
Licensing Information” on page 69 for instructions.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 65

Test Planning Tab
The Test Planning tab has three main areas:

“Targets Area” on page 65 lists the targets available for testing with MLTT.

“Configurations Area” on page 70 is used to set up or select the configuration to use for
testing.

“Test Plans Area” on page 71 is used to set up and select the test plan.

Targets Area
The Targets area lists the targets available for testing with MLTT.

The target can be a file, logical drive, or physical drive that resides in the host system or is
externally attached via SCSI, USB, FireWire, LAN, SAN, Sockets, and others.

The Targets area contains the following:

Targets View Buttons

The Targets View buttons (shown in Figure 19) allow you to choose the type of targets to
show in the Targets Categories section. A description of each button is also provided.

Figure 19 Targets View Buttons

This toggles to allow you to show or hide remote systems in the
Target Categories section.

This toggles to allow you to show or hide offline systems in the
Target Categories section.

This toggles to allow you to show or hide VMware ESX(i)
servers in the Target Categories section.

From the drop-down menu, you can show or hide physical
drives, logical drives, and file systems that reside in the host
system displayed in the Target Categories section.
Targets can also be remote systems or systems that are
externally attached via SCSI, USB, FireWire, LAN, SAN, and
others.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 66 Version 7.8 July 2023

Target Categories Section

The Target Categories section lists the targets that are available for testing with MLTT.
The details for each of the target are shown in columns.

Figure 20 Target Categories Section

To show or hide the target objects such as File System, Logical, Network Interfaces, or
Physical, click the arrow icons () at the left edge of the target.

• When the icon is an arrow pointing right (), the target objects are hidden; click the
arrow to show the objects.

• When the icon is an arrow pointing down (), the target objects are shown; click the
arrow to hide the objects.

Storage Target Types

Physical

This is a “disk” as presented by an HBA to the OS. The actual topology below the HBA
does not matter to MLTT. For example, it could be a VLUN within an actual physical disk
configured before the OS boots or it could be any number of hardware RAID configurations
involving several actual physical disks.

There may be multi-path configured.

It may not be a physical disk, but instead, it could be a regular file on an NTFS file system
on a remote system presented as a “disk” (such as, HBA emulation, software iSCSI client,
etc.) It can be thought of as a “disk” is one big flat “file” that can be accessed by MLTT.

Logical

This is a “volume” created by the operating system on top of one or more “disks”. It may
have RAID-like characteristics, but the constructs are above the HBA (that is, it’s all soft-
ware”).

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 67

Mirrored

Spanning

Play around in Windows Disk Management

As with a “disk”, a “volume” is one big flat “file” that can be accessed by MLTT.

File System

A file system “target” is just a regular file residing in a formatted file system. For example,
one that you can see the “target” file in Windows Explorer or with a “dir” command. It can
be a network file system, such as CIFS (aka “SMB”, “Windows File Sharing”), NFS, or a
way to test NAS devices which are generally mounted as network shares.

Some grayed-out targets cannot be selected because they have a target exclusion. These
exclusions correspond with the ones used by catapult. This protection mechanism keeps
critical data from being overwritten during testing. To override device exclusions for these
targets, right-click on the target or IP address (either IPv4 or IPv6 addresses) and then click
Override device exclusions. The system exclusion cannot be overridden.

The ESX-server-to-VM relationship can be displayed in the Target Categories pane.
However, you must first obtain and install the VMware vSphere Command Line Interface
(vSphere CLI) tools that are available from the support and download page on the VMware
website (http://www.vmware.com/). Figure 21 shows the ESX displayed in the Target cate-
gories pane. The upper illustration shows the ESX when the vSphere CLI is not installed
while the lower illustration shows the ESX after the vSphere CLI has been installed.

NOTE
If the specified file system target is a directory, pain/maim will automatically append the
path separator (‘/’ or ‘\’, depending on the operating system) if necessary and append
“targetfile.dat” as the file name.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 68 Version 7.8 July 2023

Figure 21 vSphere Command Line Interface

To filter systems according to host name or IP address:

1 Right-click on the Target Categories section and click Filter Hosts. The Filter
search box Figure 22 is displayed below the Target Categories section.

Figure 22 Filtering Hosts

2 Type the host name or IP address (either IPv4 or IPv6 addresses) to show only the
host or hosts according to the filter you typed.

3 Select the type of filter, whether a regular expression, a wild card notation, or a file,
from the drop-down list. If you select File, you need to browse for a plain text file with
one host name or IP address per line.

4 Click to close the Filter text box.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 69

To connect to a remote subnet, right-click on the Target Categories section and click
Connect to Remote Subnet and enter the IP address of a system on the remote network
that is running MLTT.

MLTT will not automatically connect to systems outside the local subnet. If you want to
connect to another subnet, they must install the tools on a system there and use either
catapult or the GUI to connect to that system.

To display the device characteristics of a target, right-click on a target in the Target Cate-
gories section and click Properties. The Properties window for that selected device will
appear.

For hosts, you can also click on the Configure button to launch the Licensing window.
The Configure button in the Properties window is only available for hosts.

On versions of Windows 2003 R2 and later, devices can be brought online or offline. When
devices are offline, they cannot be written to or read from and so are not good for testing.
The GUI can bring drives online so that they can be tested.

To bring a device online or offline, right-click on a target in the Target Categories section
and click Online Disk, Offline Disk, or Initialize Disks.

Accessing System Licensing Information

The licensing information on the Licensing dialog box can be accessed for any system by
right-clicking the system icon, selecting Properties, selecting the Configure... button.

Figure 23 Accessing System Licensing Information

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 70 Version 7.8 July 2023

Configurations Area
The Configurations area is used to create and manage new configurations. Both new and
existing configurations may also be edited from this area. These edits are performed using
the configuration editors. These editors are described in detail in Chapter 3 “Using the
Configuration Editors”.

New Folder Button

This button allows you to create a folder where you can place your new configurations.

New Configuration Button

This button opens the following drop-down list of configurations. Selecting one of these
configurations creates a new blank configuration in the User Configurations folder that is
located in the area below the buttons. You can also select the Configuration Chooser
from the menu to open the Configuration Chooser window.

Figure 24 Create New Configuration Button

You can also access the list of configurations by right-clicking in the Configurations pane
and selecting New Configuration. Refer to Figure 31 on page 74 for a menu that is
similar.

NOTE
The configuration editors are described in detail in Chapter 3 “Using the Configuration
Editors”.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 71

Configurations section

The Configurations section lists the folders that contain the sample configurations and
configurations you have created. The sample configurations may not be edited.

Figure 25 Configurations Section

By default there are two main Configurations folders listed in the Configurations section:
the Medusa Sample Configurations and the User Configurations. You can add more
sub-folders to the User Configurations folder by clicking the Create New Folder button.

The Medusa Sample Configurations cannot be edited. However, you can copy a sample
configuration, paste it in the User Configurations folder, and then edit the pasted copy.

To rename any of the folders or configurations listed in the User Configurations folder,
select the folder or configuration and click it again to edit the name.

To edit a configuration listed in the User Configurations folder, double-click the icon of the
configuration and the configuration editor will open.

Test Plans Area
The Test Plans area occupies the right portion of the MLTT application window. This area
has a directory pane (see “Test Plans Directory Pane” on page 72) and an editor pane
when an object (planning group, test plan, or configuration) is selected in the Test Plans
directory pane (see “Test Plans Editor Pane” on page 77).

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 72 Version 7.8 July 2023

Figure 26 Test Plans Area

Test Plans Directory Pane

The Test Plans directory pane consists of the four buttons near the top of the pane (shown
in Figure 27) and the Test Plan Browser which displays all the available planning group
and test plan objects.

Figure 27 Directory Pane Buttons

From left to right, these buttons are the New Planning Group button, the New Test Plan
button, the New Configuration button, and the Press start to begin tests button.

New Planning Group Button

This button allows you to create a new planning group that can be used to group test plans
which allows you to run different configuration and target pairings. When the button is
selected, the new planning group is listed in the directory pane and the new planning group
editor is displayed in the editor pane.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 73

Figure 28 New Planning Group Button

New Test Plan Button

This button allows you to create a new test plan. When the button is selected, the new test
plan is listed in the directory pane and the new test plan editor is displayed in the editor
pane.

Figure 29 New Test Plan Button

New Configuration Button

This button opens a dropdown list of configurations selections, such as custom, integrity,
performance, socket, and TCP App Simulation. There are also two command line (Storage
CLI and Network CLI), the Format and Secure Erase, and the Trim configurations avail-
able.

Figure 30 New Configuration Button

Selecting a configuration from this list allows you to create a new configuration. When a
configuration is selected, the new configuration is listed in the directory pane and the new
configuration editor is displayed in the editor pane. Detailed descriptions for each of these
configuration editors are available in Chapter 3 “Using the Configuration Editors”.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 74 Version 7.8 July 2023

You can also select the Configuration Chooser... from the dropdown list to open the
Configuration Chooser window. When the configuration is chosen, the new configuration
is added to the selected test plan in the directory pane and displayed in the editor pane.

You can also access the list of configurations by right-clicking in the Test Plans pane and
selecting New Configuration.

Figure 31 Right Click Test Plans Pane

Press start to begin tests Button

This button starts the testing of the selected group or test plan object in the directory pane.

Figure 32 Press start to begin tests Button

Test Plan Browser

The Test Plan Browser (shown in Figure 33) displays all the planning groups, test plans,
configurations, and targets that you created or copied to the directory pane.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 75

Figure 33 Test Plan Browser

To show or hide the test plan browser objects such as test plan group, test plan, configu-
ration, or target, click the arrow icons () at the left edge of the target.

• When the icon is an arrow pointing right (), the objects are hidden; click the arrow
to show the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow
to hide the objects.

Each of the objects (planning groups, test plans, configurations, and targets) can be
viewed as a container for performing a test and each has a hierarchy related to the others.
See Figure 34.

Figure 34 Test Plan Browser Hierarchy

NOTE
Icons can be moved by clicking and dragging the icon to another location in the Test
Plan Browser. For instance, you may select a configuration in one test plan and move it
to another test plan. The location and order of the icons are maintained after MLTT is
closed and reopened.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 76 Version 7.8 July 2023

The Planning Group is the highest level in the hierarchy and contains one or more test
plan. A planning group allows you to run multiple test plans. However, it is not required if
you want to run only one test plan. You can edit the Planning Group in the Test Plans Area
Editor Pane. Refer to “Planning Group Editor” on page 77.

The Test Plan contains the configurations (1 or more) and the targets (1 or more). When
the Test Plan is run, it will run all of its Configurations against all of its Targets. A Test Group
containing the Test Plan is not required to run the one Test Plan only. You can edit the Test
Plan in the Test Plans Area Editor Pane. Refer to “Test Plan Editor” on page 80.

At least one Configuration is required for a Test Plan. You can edit the Configuration in the
Test Plans Area Editor Pane. Refer to “Configuration Editor” on page 83.

At least one Target is required for a Test Plan. Targets are dragged to the Test Plan from
the Targets area. Refer to “Target Categories Section” on page 66. When selected, the
target information is displayed in the Test Plans Area Editor Pane.

New planning groups, test plans, and configurations can also be added by right-clicking in
the test plan browser to display the context menu shown in Figure 35.

Figure 35 Test Plan Browser Context Menu

Also included in the Test Plans Browser Directory Pane is the Medusa Sample Test Plans
folder see Figure 36. This folder provides test plans that have been created by the Medusa
Labs team for you to copy and paste for specific testing purposes.

Figure 36 Medusa Sample Test Plans

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 77

You can copy a test plan from this folder and then add it as a stand-alone test plan or to a
Test Plan Group.

Test Plans Editor Pane

The Test Plans editor pane allows you to set up the properties of the object (planning
group, test plan, or configuration) that is selected in the Test Plans directory pane. For
example, if a test plan is selected in the directory pane, the properties for that test plan are
displayed in the editor pane so that you may edit the properties if desired. For details on
each editor, refer to “Planning Group Editor” located below, “Test Plan Editor” on page 80,
or “Configuration Editor” on page 83.

Planning Group Editor

The Planning Group editor is displayed in the Test Plans editor pane when a planning
group is selected in the directory pane (or when the New Planning Group button is
selected.) See Figure 37 for the editable Planning Group properties.

NOTE
You cannot modify or delete these sample test plans. These sample test plans may only
be modified or edited after they have been copied and pasted into the Test Plans
Browser Directory Pane.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 78 Version 7.8 July 2023

Figure 37 Planning Group Editor

Settings Tab

The Settings tab displays the properties for the selected planning group. The planning
group properties are:

Plan Group Setup – These options specify the test duration and the number of iterations.

Run all test plans at the same time – Select this check box
Stop All Testing After – Select this check box and edit the number or click the up
and down arrows to set the time to limit the run time of the test plans in the selected
group.
Run the Plan Group – Select this check box and edit the number or click the up and
down arrows to set the number of times the test group containing the test plans will
be repeated.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 79

Stop All Testing On Errors – Select this option to stop the tests if errors are
detected.

Test Plan Setup – These options specify the test duration and the number of iterations.

Stop Test Plan After – Select this check box and edit the number or click the up and
down arrows to the time to limit the run time of the selected test plan.
Run the Test Plan – Select this check box and edit the number or click the up and
down arrows to set the number of times the test plan will be repeated.
Pause Between Test Plans - Select this check box and edit the number or click the
up and down arrows to the time to pause the run after a test plan has run before
starting the next test plan.
Stop Test Plan on Errors - Select this option to stop the test if errors are detected.

Individual Test Setup – These options configure the behavior for each of the test plans.

Limit Each Test’s Iterations To – An iteration, called a file operation (FOP), is a
complete write and read of an entire file or specified extent on a logical or physical
drive. If this option is not selected, the test will run until manually stopped, or a critical
error is encountered.
Note that iteration count is not applicable to any random access I/O because random
access I/O will never complete a write or read of an entire file. Therefore, this setting
is not useful when performing random access.
Stop Each Test After – Select this option to set the duration of each test in the
selected test plan.
Pause Between Tests in a Plan – Select this option to set how long the pause will
be between each test in the test plan.
Set I/O Thread/CPU Affinity – Select this option to specify the number of CPUs to
use for I/O threads. In addition to limiting the number of CPUs used, this option
causes a thread to always run on the same CPU. The number of CPUs specified
must be equal to or less than the number of CPUs on the system and equal to or less
than the total number of I/O threads.

Custom Value – Enter the CPU numbers in this field to specify selected CPUs
in a system. Use a comma “,” to separate individual CPU numbers and a hyphen
“-” to specify a range of CPU numbers. For example in a system with 2 quad-
core CPUs (8 “logical” CPUs total), if you were to enter 1,4,6-8, CPUs numbered
1, 4, 6, 7, and 8 would be specified. When values are included in this field, the
Set I/O Thread/CPU Affinity spinner value is rendered inactive.
Test Sample Interval – Select this option to set the time between performance
samples. Performance samples show the continuing test performance and are
written to the log file. Edit the number or click the up and down arrows to specify
the performance sample interval.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 80 Version 7.8 July 2023

Monitor I/O for Timeouts – Select this option to enable the I/O monitoring mode. A
warning will be displayed when I/Os are not completed before the specified number
of seconds. By default, warnings will appear when a completion exceeds the perfor-
mance sample time (5 seconds is the default sample time.) The I/O monitoring
feature will report both complete I/O halts and individual stuck I/Os.
This mode can also be used to catch I/O disruptions on an analyzer. If this mode is
used with the option to continue testing and generate a trigger, an I/O trigger is sent
when a halt or stuck I/O is detected.

Set Timeout to Test Sample Interval – Select this option to set the timeout to
the sample interval specified in the Test Sample Interval field.
Specify Timeout – Edit the number or click the up and down arrows to specify a
timeout or clear the check box to disable monitoring.

Testing Offsets - These options let you specify the testing offsets.
Use Default Offsets - uses the default 1MB offset.
Use a Shared Offset - allows multiple host systems or multiple sessions of the
tools on a single system to access the same device or file concurrently.
Specify Starting Offset - specifies the starting offset number. Select from the
dropdown menu the unit of the value you specified. The offset value must be a
multiple of the logical block size of the target device.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Apply button – Click this button when you are done editing the planning group properties.

Test Plan Editor

The Test Plan editor is displayed in the Test Plans editor pane when a test plan is selected
in the directory pane (or when the New Test Plan button is selected.) See Figure 38 for
the editable Test Plan properties.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 81

Figure 38 Test Plan Editor

Settings Tab

The Settings tab displays the properties for the selected test plan. The test plan properties
are:

Test Plan Setup – These options specify the test duration and the number of iterations.

Override Plan Group Settings – Select this check box to override the Test Plan
Setup settings if they were setup in the Planning Group using the settings now
displayed.
Stop Test Plan After – Select this check box and edit the number or click the up and
down arrows to the time to limit the run time of the selected test plan.
Run the Test Plan – Select this check box and edit the number or click the up and
down arrows to set the number of times the test plan will be repeated.
Stop Test Plan on Errors - Select this option to stop the test if errors are detected.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 82 Version 7.8 July 2023

Individual Test Setup – These options configure how the each of the test plans behavior.

Override Plan Group Settings – Select this check box to override the Individual
Test Setup settings if they were setup in the Planning Group using the settings now
displayed.
Limit Each Test’s Iterations To – An iteration, called a file operation (FOP), is a
complete write and read of an entire file or specified extent on a logical or physical
drive. If this option is not selected, the test will run until manually stopped, or a critical
error is encountered.
Note that iteration count is not applicable to any random access I/O because random
access I/O will never complete a write or read of an entire file. Therefore, this setting
is not useful when performing random access.
Stop Each Test After – Select this option to set the duration of each test in the
selected test plan.
Pause Between Tests – Select this option to set how long the pause will be between
each test in the test plan.
Set I/O Thread/CPU Affinity: – Select this option to specify the number of CPUs to
use for I/O threads. In addition to limiting the number of CPUs used, this option
causes a thread to always run on the same CPU. The number of CPUs specified
must be equal to or less than the number of CPUs on the system and equal to or less
than the total number of I/O threads.

Custom Value – Enter the CPU numbers in this field to specify selected CPUs
in a system. Use a comma “,” to separate individual CPU numbers and a
hyphen “-” to specify a range of CPU numbers. For example in a system with 2
quad-core CPUs (8 “logical” CPUs total), if you were to enter 1,4,6-8, CPUs
numbered 1, 4, 6, 7, and 8 would be specified. When values are included in this
field, the Set I/O Thread/CPU Affinity spinner value is rendered inactive.
Test Sample Interval – Select this option to set the time between performance
samples. Performance samples show the continuing test performance and are
written to the log file. Edit the number or click the up and down arrows to specify
the performance sample interval.

Monitor I/O for Timeouts – Select this option to enable the I/O monitoring mode. A
warning will be displayed when I/Os are not completed before the specified number
of seconds. By default, warnings will appear when a completion exceeds the perfor-
mance sample time (5 seconds is the default sample time.) The I/O monitoring
feature will report both complete I/O halts and individual stuck I/Os.
This mode can also be used to catch I/O disruptions on an analyzer. If this mode is
used with the option to continue testing and generate a trigger, an I/O trigger is sent
when a halt or stuck I/O is detected.

Set Timeout to Test Sample Interval – Select this option to set the timeout to
the sample interval specified in the Test Sample Interval field.
Specify Timeout – Edit the number or click the up and down arrows to specify a
timeout or clear the check box to disable monitoring.

Testing Offsets - These options let you specify the testing offsets.
Use Default Offsets - uses the default offset.

Chapter 2 Using the Graphical User Interface
Test Planning Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 83

Use a Shared Offset - allows multiple host systems or multiple sessions of the
tools on a single system to access the same device or file concurrently.
Specify Starting Offset - specifies the starting offset number. Select from the
dropdown menu the unit of the value you specified. The offset value must be a
multiple of the logical block size of the target device.

Comments Tab

Enter your comments for the configuration in the comment box of the Comments tab.

Apply button – Click this button when you are done editing the test plan properties.

Configuration Editor

The Configuration editor is displayed in the Test Plans editor pane when a configuration
is selected in the directory pane (or when the New Configuration button is selected.) The
Configuration editor allows you to edit the same configuration properties that you can edit
in the configuration editor.

In the Test Plans browser pane (see Figure 39), when a configuration is right-clicked, the
context menu displays a Convert to Command Line option.

Figure 39 Convert to Command Line Option

This option converts the configuration into the appropriate CLI configuration. Custom,
Integrity, and Performance configurations are converted to Storage CLI configurations.
Socket and TCP App Simulations are converted to Network CLI configurations. This option
is not available for Storage CLI and Network CLI configurations.

These editors are described in detail in Chapter 3 “Using the Configuration Editors”
starting on page 95. Refer to the appropriate configuration editor for a description.

Chapter 2 Using the Graphical User Interface
Test Running Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 84 Version 7.8 July 2023

Test Running Tab
The Test Running tab allows you to display the statistics of the test that you are running
and is shown in Figure 40. All tests are removed as soon as they complete.

Figure 40 Sample Text View of the Test Running Tab

The Test Running tab has four panes:

• Test List and Statistics pane outlined in red.
• Text View pane outlined in blue.
• Graph View pane outlined in green.
• Speedometers pane outlined in purple.

In addition to the four panes, there are three buttons associated with the Test Running tab
near the top of the tab. These buttons are shown in Figure 41 and a description of each is
also provided.

Chapter 2 Using the Graphical User Interface
Test Running Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 85

Figure 41 Test Running Tab Buttons

Test List and Statistics Pane
All running test plans will be listed in the Test List and Statistics pane. The details for
each of the tests are shown in columns.

To show or hide the test plan objects such as configuration and targets, click the arrow
icons () at the left edge of the test plan.

• When the icon is an arrow pointing right (), the objects are hidden; click the arrow
to show the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow
to hide the objects.

The details displayed in the columns can be managed by right-clicking the row of headings.
When this is done, a menu is displayed showing a list of available items that can be

The Stop all testing button stops all running tests

The Stop currently selected tests button stops the
selected test.

The Move to the next test button ends the test that is
currently running and proceeds to the next test in the test
plan.

When the Planning Group level is selected:

The Move to the next test button ends the test plan that
is currently running and proceeds to the next test plan by
default. However:
– If the planning group setup has the “Run all test plans

at the same time” option selected, the Move to the
next test button will stop testing and exit the whole
planning group.

– If the planning group only has one test plan, the Move
to the next test button will stop testing and exit the
whole planning group.

Chapter 2 Using the Graphical User Interface
Test Running Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 86 Version 7.8 July 2023

displayed in a column. From the menu, select a heading to display or remove the column.
When an item is checked, it is displayed in the column.

The following is a list of the available details:

Text View Pane
The Text View pane (shown in Figure 42) displays the results of the selected test plan or
its components. As the test runs, this pane shows the running test results at each sample
interval. The sample interval was identified in the test plan setup.

Figure 42 Text View Pane

This pane can be opened or hidden by clicking the small arrow icon located at the center
bottom of the pane. This icon is shown in the red circle in the illustration above.

Show All General Columns
Hide All General Columns
Name
Status
Command Line
Elapsed Test Time
Remaining Time
Show All Testing Statistic Columns
Hide All Testing Statistic Columns
Avg I/O Completion/Response Time (Sec)
Avg IO/s or TPS
Avg MB/s
Avg Queue Depth
IO/s or TPS
MB/s
Queue Depth
Max I/O Completion/Response Time (Sec)

Max IO/s or TPS
Max MB/s
Max Queue Depth
Min I/O Completion/Response Time (Sec)
Min IO/s or TPS
Min MB/s
Min Queue Depth
CPU
User CPU
Show All Error Columns
Hide All Error Columns
Automatically Show Columns with Errors
Close Errors
Data Corruptions
Flush Errors
Initial Errors
I/O Halts

I/O Timeouts
License Errors
Open Errors
Read Errors
Remove Errors
Seek Errors
Size Errors
Startup Errors
Unknown Errors
Write Errors
Show All Final Statistic Columns
Hide All Final Statistic Columns
Total Bytes
Total Errors
Total File Operations
Total I/Os or Transactions

NOTE
In addition, right-clicking anywhere in the Test List and Statistics pane, displays a
context menu with several choices that include Stop Test Plan, Stop All Testing, Move
to Next Test in Plan, Move All Plans to Next Test, Expand All, Collapse All, and Col-
umns. The Columns choice also provide control of the displayed columns organized by
categories.

Chapter 2 Using the Graphical User Interface
Test Running Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 87

Graph View Pane
The Graph View pane (shown in Figure 43) displays the progression of the test at each
sample interval. The sample interval was identified in the test plan setup.

Figure 43 Graph View Pane

You can select the Test Value to Display (MB/s, IO/s, Queue Depth, or Average I/O
Completion/Response Time) from the dropdown list located above the graph. The drop-
down list is shown in Figure 44. Changing this value changes the vertical scale on the
graph.

Figure 44 Test Value to Display

At the right side of the Test Value to Display list, there is the Show Errors check box that,
if checked, displays errors as they occur during the testing. If the check box is checked,
the test runs normally until an error is detected. Once an error is detected:

• A new Y-axis is displayed on the right edge of the graph to display the number of
detected errors. See Figure 45.

• The number of errors at each sample interval point is indicated with a red dot. Note
that red dots are also added to interval points that occur prior error at the zero point
on the graph.

Figure 45 Graph View Pane with Errors

Chapter 2 Using the Graphical User Interface
Test Running Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 88 Version 7.8 July 2023

Speedometers Pane
The Speedometers pane (shown in Figure 46) displays the real-time speed of the tests.
There are two speedometers, one for MB/s and the other IO/s.

Figure 46 Speedometer Pane

The speedometers automatically scale so that when the size of the MLTT window is
changed, the Speedometers pane adjusts to best fit the screen. Right-click anywhere in
the Speedometers pane to display additional options as shown in Figure 47.

Figure 47 Speedometer Pane Right-Click Menu

Change Orientation (Vertical/Horizontal) - Select this option to display the speedometer
on top of each other (vertical) or side-by-side (horizontal).

Show MB/s – Select this option to display the MB/s speedometer.

Show IO/s – Select this option to display the IO/s speedometer.

Set MB/s Scale – Select this option to choose the intervals displayed on the MB/s scale.
You may select 10 MB, 100 MB, 1,000 MB, or Dynamic.

Set IO/s Scale – Select this option to choose the intervals displayed on the IO/s scale. You
may select 100 IO/s, 1,000 IO/s, 10,000 IO/s, 100,000 IO/s, or Dynamic.

Full Screen – Select this option if you prefer to display the speedometers using the whole
computer screen.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 89

Test Analysis Tab
The Test Analysis tab (shown in Figure 48) displays the analysis of outputs of the tests
that you have run.

Figure 48 Sample Test Analysis Tab

The Test Analysis tab has three panes:

• History Summaries pane outlined in blue.
• History Tests pane outlined in green.
• History information pane outlined in red. The title of this pane changes based on

what test is selected from the two previous panes.
– When a test summary is selected in the History Summaries pane, the title of

the pane is: History Summaries Information
– When a test is selected in the History Tests pane, the title of the pane is:

History Tests Information

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 90 Version 7.8 July 2023

History Summaries Pane
The History Summaries pane (see Figure 49) displays all completed test plans. Specific
details about each of the tests is shown in columns.

To show or hide the lower-level objects of a test plan group (such as the test plans, config-
urations and targets), click the arrow icons () at the left edge to show (expand) or hide
(collapse) the subordinate objects. (Refer to “Test Plan Browser” on page 74 for a discus-
sion regarding test plan group and test plan hierarchy.)

• When the icon is an arrow pointing right (), the subordinate objects are hidden;
click the arrow to expand the tree and show the objects.

• When the icon is an arrow pointing down (), the objects are shown; click the arrow
to collapse the tree and hide the objects.

Figure 49 History Summaries Pane

By default, the column information for each test includes Name, Start Date, Elapsed Test
Time, Avg (average) I/O Completion/Response Time, Avg I/Os or TPS, Avg MB/s, Avg
Queue Depth, and Total Errors. However, if you right-click in the pane, a menu is displayed
that will allow you to select from several parameters to add as columns to the table. See
Figure 50.

Figure 50 History Summaries Pane Right-Click Menu

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 91

In the columns selection, there the Name, Start Date, and Elapsed Test Time selections
that you can select to show or hide that column in the results. There is also five groups:
Average, Maximum, Minimum, Errors, and Final Statistic that can be selected to show or
hide results in these categories.

From each of these groups, you can elect to show or hide all results from within the group
or show or hide individual results within the group. In the Errors group, you also have the
option of automatically showing error columns. This only shows an error column of a
specific type if there are errors of that type.

Using the right-click menu also allows you to browse for test files, export selected summa-
ries as .csv files, retrieve remote log files, and delete the selected history file.

History Tests Pane
The individual command line commands of the selected test are displayed in the History
Tests pane (see Figure 51).

By default, the column information for each command line test includes Command Line,
Start Date, Elapsed Test Time, Avg I/O completion/Response Time (Sec), Avg I/Os or TPS,
Avg MB/s, Avg Queue Depth, and Total Errors. Note that the Name is not included in the
default view.

Figure 51 History Tests Pane

As with the History Summaries pane, if you right-click in the History Tests pane, a menu
(shown in Figure 50) is displayed that will allow you to select from several parameters to
add as columns to the table. In the columns selection, there the Name, Command Line,
Start Date, and Elapsed Test Time selections that you can select to show or hide that

NOTE
Right-clicking over a column displays all of the columns selections vertically without
displaying the groups listed above. This may be used to save key strokes.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 92 Version 7.8 July 2023

column in the results. There is also five groups: Average, Maximum, Minimum, Errors, and
Final Statistic that can be selected to show or hide results in these categories.

From each of these groups, you can elect to show or hide all results from within the group
or show or hide individual results within the group. In the Errors group, you also have the
option of automatically showing error columns. This only shows an error column of a
specific type if there are errors of that type.

Using the right-click menu in the History Tests pane, you may select summaries to be
exported to a .csv file using the Export all summaries to CSV... or Export selected
summaries to CSV... selections.

History Information Pane
The title of this pane changes based on what test is selected from the two previous panes.

• When a test summary is selected in the History Summaries pane (see Figure 52),
the title of the pane is:
History Summaries Information

• When a test is selected in the History Tests pane, the title of the pane is:
History Tests Information

Figure 52 History Information Pane (History Summaries Information Version)

NOTE
Right-clicking over a column displays all of the columns selections vertically without
displaying the groups listed above. This may be used to save key strokes.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 93

The History Information pane has four tabs:

• Description (see “Description Tab” on page 93)
• Graphs (see “Graphs Tab” on page 94)
• Test Log (see “Test Log Tab” on page 99)
• Latency Histogram (see “Latency Histogram Tab” on page 100)

Description Tab

The Description tab provides a summary of the selected test from the History Summa-
ries pane (shown on the left side of Figure 53) or the selected command line(s) from the
History Tests pane (shown on the right side of Figure 53).

Figure 53 Description Tab Examples

In addition, the Export... button saves the description as a file in .prf format. The .prf files
can be used with the prfgrab tool (provided with Medusa Labs Test Tools Suite) to help
prepare performance reports.

The performance summary gets exported with its designated native extension of .prf.
While it is just a text file, the tools use various file extensions to identify their function (.log,
.bad, .dbg, etc.) You can create a script or use the sample script provided to run a variety
of test cases that will result in the creation of a uniquely named .prf file for each test case.
You can then use the prfgrab tool to consolidate all those .prf files into a .csv file for sorting
and graphing in Microsoft Excel.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 94 Version 7.8 July 2023

Graphs Tab

The Graphs tab provides a graphical representation for the test(s) that you have selected
in either the History Summaries or the History Tests panes. By default, the graph shows
a line graph of the average IO/s and average MB/s values, however you have the option
to change these views using the Graphing Options. Refer to “Graphing Options” on
page 94 for additional information.

The graphing algorithm attempts to be as robust as possible when test groups, test plans,
and targets (in the History Summaries pane) and tests (in the History Tests pane) are
selected. However, there may be an extreme range of variables in selections that you are
able to make. The graphing algorithm makes a best effort to graph something meaningful
by looking at the command lines.

The algorithm for graphing multiple History Tests selections tries to group the tests in the
horizontal x-axis by pain/maim, write/read, IO size, and thread count, elapsed time, and
queue depth.

If there are a lot of command line differences between the tests and they cannot be fit in
those groups then the graphing algorithm uses the best common thread between the tests
that it can determine.

Graphing Options

The Graphing Options area (see Figure 54) provides several options that you may use
to graph your test results. The options are Values to Graph, Value Statistics to Graph,
X Value, X Value Statistic, X Value Sort, and Graph Style.

Figure 54 Graphing Options Area

NOTE
When making graph selections, it is important to select items that make sense to graph.
This is best determined by reviewing the graph’s x-axis for appropriateness to providing
helpful information.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 95

Values to Graph – selects IO/s, MB/s, I/O Completion/Response Time, and Queue Depth.
When one of these choices are added (or removed), a graph is added to (or removed from)
the display. The default selections are IO/s and MB/s.

Value Statistics to Graph – selects Average, Current, Maximum, and Minimum. When
one of these choices are added (or removed), a line/bar is added to (or removed from)
each of the graphs. The default selections are Average and Current.

X Value – selects Default, IO/s, MB/s, I/O Completion/Response Time, or Queue Depth.
Only one selection may be made. When a choice other than Default is selected, the
X Value Statistic and X Value Sort options become active. The default selection is
Default.

X Value Statistic – selects Average, Current, Maximum, or Minimum. Only one selection
may be made. The default selection is Average.

X Value Sort – selects None, Ascending, or Descending. Only one selection may be
made. The default selection is None. For this parameter, None means that the values are
not sorted but are displayed in the same chronological order as the test was performed.

The Graph Style – selects Line graph, Smooth line graph, or Bar graph to view the data
as it best fits your needs. The default selection is Line graph.

• Line graph – provides a point-to-point graphing of the measured data.
• Smooth line graph – provides a smoothing of the line graph to provide a more

aesthetic view of the line graph. When the graph is smoothed, the high and low
values may have a slight loss of accuracy.

• Bar graph – shows the measured values relative to each other in standard bar graph
format.

Read/Write, Read, and Write Tabs

The configuration editors have an I/O Payload tab that allows you to select the Read/Write
Mix setting: either Read/Write, Read Only, Write Only, or Specify Custom Read/Write
Mix. When you select a test planning group in the History Summaries pane that ran using
multiple configurations with different Read/Write Mix settings, their graphs will be grouped
showing their Read/Write Mix on a tab labeled Read/Write, Read, or Write.

Pain and Maim Tabs

When you select a test planning group in the History Summaries pane that ran using two
different tool configurations (one using Pain and one using Maim), their graphs will be
grouped by their tools one showing a Pain tab or a Maim tab.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 96 Version 7.8 July 2023

Burst and Static Tabs

When Maim is selected in a configuration, by default, the Queue Depth uses burst
queuing. The Queue Depth also has the Keep Queue Depth Static check box. If Keep
Queue Depth Static is selected, continuous queuing is used.

When you select a test plan in the History Summaries pane that uses both types of
queuing (burst and continuous), their graphs will be grouped by their queuing type with
burst queuing displayed on the Burst tab and continuous queuing displayed on the Static
tab.

Graph Legends

When there is only one plot on a graph, no legend is displayed. When there is more than
one plot on a graph, a legend is displayed as described below. See Figure 55.

• If multiple IO sizes are plotted, the legend is display at the right of the graph.
• If multiple statics are plotted, the legend is displayed above the graph.

Figure 55 Graphs Legends

Displaying the Highest Value on a Plot

The highest value on a plot can be identified by clicking any point on a plot or by click any
legend. Once the plot or the legend is clicked, a star is inserted on the plot showing the
highest value or point. If you have multiple plots on a graph, you can click once on each
plot to show the highest value of each. In Figure 56, the upper graph shows both plots
displaying their highest value and the lower graph shows one plot after it was clicked.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 97

Figure 56 Displaying the Highest Value on a Plot

Displaying Values on Line Graphs

You can display the value at any point on a line graph or a smooth line graph by moving
the cursor to a point on the plot and hovering over that point. A text box showing the values
is displayed.

As shown in Figure 57, hovering your cursor over a point on the plot displays the values of
the graph’s coordinates at that point.

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 98 Version 7.8 July 2023

Figure 57 Value Displayed by Hovering the Mouse Cursor Over the Plot

Zooming In/Out

For graphs with Elapsed Time as the horizontal axis, you can zoom in to view the graph at
a higher resolution. Click the graph to give it focus, then zoom in (or out) using the:

• mouse’s scroll wheel
• keyboard’s +/- keys or the “q”/”w” keys

When the information becomes too wide to be displayed without scrolling, a scroll bar is
provided at the bottom of the graph.

Saving the Graphs

Right-clicking a graph displays the image shown in Figure 58. You can save the graph as
a Comma-Separated Values file (.csv) to be used in a spreadsheet or as an image file.
When you select to save the graph as an image, you may save it as a Portable Network
Graphic (.png), as a JPEG (.jpg), or as bitmap (.bmp) image.

Figure 58 Saving the Graph

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 99

Test Log Tab

For the Test Log tab (see Figure 59), data is provided for selections made in the History
Tests pane only. If no selection is made in the History Tests pane, the data from the first
one will be automatically displayed. This tab displays exactly what would be shown on your
display by running the command line on your computer. Until other tests are selected, the
first test will be displayed by default.

Figure 59 Test Log Tab

Chapter 2 Using the Graphical User Interface
Test Analysis Tab

 Medusa Labs Test Tools Suite User’s Guide
Page 100 Version 7.8 July 2023

Latency Histogram Tab

Latency histogram collects latency histogram per target. The collection bins are specified
when using the “Custom Configuration Editor” on page 100 and the “Performance Config-
uration Editor” on page 132. The bins are sorted by the magnitude of the upper bound
values, and the range of each bin is constructed such that the upper bound is as specified
and the lower bound is the upper bound of the previous bin (see Figure 60).

The Bin column lists the upper-bound of the range as you give it in the command line. The
Upper (msec) column is the upper bound value normalized to milliseconds. As an
example, a 10us bin would be normalized as 0.01 while 5s would be normalized as 5000.
The other columns, R%, W%, and R+W% display the percentage of Reads Write, or
Read/Write operations with measured latency that are within the bin; while CR%, CW%,
and CR+W% display the cumulative value of the percentage for Read, Write, or
Read/Write operations with measured latency through each bin. The last row, rest, is a bin
that is added for operations with latency greater than the largest specified bin. INF (for
infinity) is inserted in this row as this bin cannot be normalized.

Figure 60 Latency Histogram Tab

IMPORTANT
The Latency Histogram table (with its data) is only displayed when the drive (of a config-
uration) utilizing Latency Histogram is selected in the History Summaries pane. If no
drive has been selected, the Latency Histogram tab advises you to select a drive.

NOTE
The Latency Histogram table will not be displayed when the test is running and it will be
available for viewing after all tests in the Test Group or Test Plan are completed.

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 101

3

Chapter 3 Using the Configuration Editors

This chapter describes how to set up the Medusa Labs Test Tools Suite configuration using
the configuration editors. The topics discussed in this chapter are as follows:

• “Using the GUI Configuration Editors” on page 102
• “Configuration Editors” on page 105
• “Custom Configuration Editor” on page 106
• “Integrity Configuration Editor” on page 125
• “Performance Configuration Editor” on page 138
• “Storage CLI Configuration Editor” on page 146
• “Socket Configuration Editor” on page 147
• “TCP App Simulation Configuration Editor” on page 160
• “Network CLI Configuration Editor” on page 171
• “Format and Secure Erase Configuration Editor” on page 172
• “Trim Configuration Editor” on page 176

Chapter 3 Using the Configuration Editors
Using the GUI Configuration Editors

 Medusa Labs Test Tools Suite User’s Guide
Page 102 Version 7.8 July 2023

Using the GUI Configuration Editors
This chapter provides detailed information for editing configurations. Configurations will
normally be edited when creating new configurations in the “Configurations Area” on
page 63 or when editing existing configurations with the “Configuration Editor” on page 76
of the Test Plans Editor pane. Each of these areas has the New Configuration button
described below. Each of the configuration editors are described in this chapter.

New Configuration Button
This button opens the following drop-down list of configurations. Selecting one of the
configurations creates a new blank configuration in the User Configurations folder that is
located in the area below the button. You can also select the Configuration Chooser from
the menu to open the Configuration Chooser window.

Figure 61 Create New Configuration Button

NOTE
Configuration Editors are accessible using a variety of methods in the Configurations
area and the Test Plans area. To access configurations from the:
– Configurations area, refer to “Configurations Area” on page 63
– Test Plans area, refer to “New Test Plan Button” on page 66

Chapter 3 Using the Configuration Editors
Using the GUI Configuration Editors

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 103

Configuration Chooser Window

The Configuration Chooser window (see Figure 62) allows you to select the configura-
tion for the test that you want to run.

Figure 62 Configuration Chooser Window

Select the radio button of the configuration you want to use and click OK.

Chapter 3 Using the Configuration Editors
Using the GUI Configuration Editors

 Medusa Labs Test Tools Suite User’s Guide
Page 104 Version 7.8 July 2023

The following configurations are available:

• Custom Configuration
Custom Configuration allows you to modify any and all options available through the
tools. It is intended for users who are finding that they cannot accomplish their testing
through Performance and/or Integrity configuration. An invalid configuration can be
created and will be run as configured. For more information on how to edit custom
configuration settings, see “Custom Configuration Editor” on page 106.

• Integrity Configuration
Integrity Configuration testing exposes the most common and useful options for
ensuring that a target is correctly writing and reading data. Data comparisons are
allowed and different data patterns can be used. Use Integrity Configuration when
you want to ensure that data is being properly written to and read from a device. For
more information on how to edit integrity configuration settings, see “Integrity Config-
uration Editor” on page 125.

• Performance Configuration
Performance Configuration testing disables options that are not beneficial to
checking the performance of a device. Data comparisons are disabled as well as a
few logging options. Use Performance Configuration when you want to make sure a
device is performing at the expected speed. For more information on how to edit
performance configuration settings, see “Performance Configuration Editor” on
page 138.

• Storage Command Line Configuration
Storage Command Line Configuration supports pain and maim commands. For infor-
mation on using the Storage Command Line configuration editor, see “Storage CLI
Configuration Editor” on page 146.

• Socket Configuration
Socket Configuration only works with socket targets. Generally this configuration can
be used to test the performance of a network. For more information on how to edit
socket configuration settings, see “Socket Configuration Editor” on page 147.

• TCP Application Simulation Configuration
TCP Application Simulation Configuration is meant to emulate TCP traffic by using
transactional data instead of read/write mixes. Options are similar to that of a regular
socket configuration; however, traffic patterning replaces read/write I/O. For more
information on how to edit TCP application simulation configuration settings, see
“TCP App Simulation Configuration Editor” on page 160.

• Network Command Line Configuration
Network Command Line Configuration supports socket commands. For information
on using the Network Command Line configuration editor, see “Network CLI Configu-
ration Editor” on page 171.

• Format and Secure Erase
Format and Secure Erase Configuration allows you to erase a disk before running
other tests. For information on using the Format and Secure Erase configuration
editor, see “Format and Secure Erase Configuration Editor” on page 172.

Chapter 3 Using the Configuration Editors
Configuration Editors

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 105

• Trim
Trim Configuration allows you to erase unused blocks to pre-condition a target disk
before running other tests. For information on using the Trim configuration editor, see
“Trim Configuration Editor” on page 176.

Configuration Editors
You can modify the different test configurations through the configuration editors. Each of
the configuration editors is described in the following sections:

• “Custom Configuration Editor” on page 106
• “Integrity Configuration Editor” on page 125
• “Performance Configuration Editor” on page 138
• “Storage CLI Configuration Editor” on page 146
• “Socket Configuration Editor” on page 147
• “TCP App Simulation Configuration Editor” on page 160
• “Network CLI Configuration Editor” on page 171
• “Format and Secure Erase Configuration Editor” on page 172
• “Trim Configuration Editor” on page 176

Test a Range Controls
On the I/O Payload tab of each configuration editor, the Testing Threads, the Queue
Depth, and the Testing Sizes areas allow you to select a range for testing. This “Test a
Range” option allows you the set specific Start and End values for these parameters.

It also provides you Adding and Multiplying settings. Use the Adding and Multiplying
to define how the configuration gets from the start value to the end value.

Using Testing Threads as an example, if you have the thread count set to start at 1 and
end at 64:

If you select Add by 1,
you will get thread counts of:

If you select Multiply by 2,
you will get thread counts of:

pain -t64pain -t1
pain -t2
pain -t3
pain -t4
…
pain -t63

pain -t1
pain -t2
pain -t4
pain -t8
pain -t16
pain -t32
pain -t64

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 106 Version 7.8 July 2023

Custom Configuration Editor
The Custom configuration editor allows you to edit available options when you want to
create unique testing configurations.

To open the editor, double-click the custom configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the GUI Configuration Editors” on page 102.

The editor has eight tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab
The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time between starting the test and the first
sample collection. This delay allows devices the allotted time to get setup. The H
(Hour), M (Minute), and S (Second) numeric spinners allow you to delay the start of
the testing up to 23 hours, 59 minutes, and 59 seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.
Every Target – sets the Max I/O Throughput value to apply to every target.
Every Thread – sets the Max I/O Throughput value to apply to every thread.
Max I/O Throughput – provides the maximum I/O throughput limitation value that is
applied to every target or thread.

External Application – runs any application of your choosing after every test has been
run. For example, if you want to run an independent application to collect data (such as a
log file) from a device, you can use this to start the application.

NOTE
Some of the options on the editor may be grayed out or not displayed based on the
methodology selected or other option dependencies. The editor opens in the same
mode, depending on the mode when it was closed.

– “General Tab” on page 106
– “Journal Tab” on page 108
– “I/O Payload Tab” on page 110
– “I/O Behavior Tab” on page 115

– “Advanced I/O Tab” on page 118
– “Patterns Tab” on page 119
– “Comments Tab” on page 123
– “Command Lines Tab” on page 123

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 107

The Run External Application After Test check box must be selected before you can
select the application and wait times.

Application allows for you to browse to and select the desired application.
Wait for External Application allows you to input a period to wait for the application
to start to run. Tests tools will continue testing once the external application begins
running.
Latency Histogram – collects latency histogram per target.

The collection bins are specified by entering the upper bound of each bin as a comma-
separated list in the Time Range Bin text box. The list is sorted by the magnitude of the
upper bound values, and the range of each bin is constructed such that the upper bound
is as specified and the lower bound is the upper bound of the previous bin.

Upper bounds may be specified as a floating point value (e.g. "0.5" or "4.5").
The time unit suffix may be used:

'n' for "nano" 'u' for "micro" 'm' for "milli" 's' for "seconds"

If no time unit suffix is given, 'm' for "milli" is assumed.

The “Latency Histogram Tab” on page 93 displays the collected histogram data.

Steady State

Steady State determines the steady state for a target across five consecutive test runs.
With the test plan set to run indefinitely or several times (5 times or more), when steady
state is achieved, the test plan will be stopped when the current test iteration completes. If
the test plan is part of a planning group, the next test plan in the group will begin.

If steady state is not achieved during the specified number of test runs, the test plan will
complete its last iteration and testing is terminated. Subsequent test plans in the planning
group are ignored. If you select to run the test plan indefinitely and steady state is not
achieved, you will need to stop the test manually.

Select the Check for Steady State check box to enable this feature. Once the check
box is selected, you can set the following options:

NOTE
A quick and easy method of specifying the upper bound of each bin in the Time Range
Bin text box is by copying the values in the Example and pasting them into the text
box.

You can then edit the values in the Time Range Bin text box if you choose.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 108 Version 7.8 July 2023

Tag text box allows you to enter an arbitrary string that is not 'r', 'iops', 'mbps' or 'lat'
which can be used to uniquely identify a steady state testing case. This tag will be
added to the steady-state.csv file name.
Tracking Variable group allows you to select one of the Tracking radio buttons and
set the Deviation percentages.

Tracking radio buttons:
IOPSTracks IOPS for steady state. (default value)
MBPSTracks MBPS for steady state.
IO LatencyTracks I/O latency for steady state.
Deviation percentages:
% Range Deviation: Allowed deviation of minimum and maximum tracked
values from the average. The default value is 20%.
% Slope Deviation: Allowed deviation of minimum and maximum points in a
best linear fit line through the tracked values. The default value is 10%.

Journal Tab
The General tab shows the following settings for this configuration editor.

Setting –

Enable – enables (or disables) either the Perform (Journal) or the Verify options by
selecting (or deselecting) this check box.
Perform – records a log file of recent write operation characteristics (buffer size,
thread count, queue depth, file size, pattern used, etc.). Then, when a power loss to
the initiator or the target device is simulated during testing, the log file is saved. The
log file preserves the status of the last several write operations. A path and directory
must be specified as a location to save the .log file using the Directory text box (or
by using the Browse... button.) The specified directory must already exist.

You can specify a raw disk as the journal directory using the Directory text box.
For example:
- on Windows you would specify: \\.\PhysicalDrive1
- on Linux you would specify: /dev/sdb

Journal data is written starting at 1MB offset of the specified disks. Using a raw disk
can reduce the journal data update latency and better ensure the journal data integ-
rity.

NOTE
The GUI does not browse remote host file systems. The Browse... button only works for
tests on the local system.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 109

Verify – when the power is restored, this selection retrieves the saved log file and
verifies the last known completed write operations prior to the power loss.

If a path and directory was identified in the initial save portion of the process, the
same path and directory must be identified during the verify process. Specify the path
and directory of the saved .log file using the Directory text box (or the Browse...
button). The journal file is created in the working directory that the tools run from by
default. A best practice is to always specify the journal location so that the log can be
found during a verify operation.

When the journal verification is run, the following summary information is output to
the screen and the log file at the end of the test:

JOURNAL VERIFICATION SUMMARY
 TOTAL (both queued and confirmed writes):
 240
 CONFIRMED (confirmed writes):
 227
 VERIFIED (queued or confirmed writes that passed):
 239
 FAILED (confirmed writes with data corruption):
 0
 SKIPPED (skipped verification due to overwrite by newer write(s)):
 0
 UNDEFINED (queued writes that failed verification):
 1

In addition, the log file also lists the details for each recorded write operation that was
verified. Here are examples of three records:

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:0
 JOURNAL: OFFSET : 4377804800 (0x0000000104F00000)
 JOURNAL: LBA : 8550400 (0x0000000000827800)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0
 JOURNAL: TIMESTAMP : 0x51AC51A7E2B9E010
 JOURNAL: WRITE : QUEUED
 JOURNAL: VERIFY : OK

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:0
 JOURNAL: OFFSET : 4377673728 (0x0000000104EE0000)
 JOURNAL: LBA : 8550144 (0x0000000000827700)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0

NOTE
When Verify is selected, only the Journal, I/O Payload, Comments, and Command Lines
tabs are displayed. The General, I/O Behavior, Advanced I/O, and Patterns tabs are hid-
den because they are not applicable when verification is being performed.

NOTE
When you perform journaling in pain, verification must also be done in pain. Likewise,
when you perform journaling in maim, verification must also be done in maim.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 110 Version 7.8 July 2023

 JOURNAL: TIMESTAMP : 0x51AC51A7E2B9E00E
 JOURNAL: WRITE : CONFIRMED
 JOURNAL: VERIFY : OK

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:15
 JOURNAL: OFFSET : 11024896 (0x0000000000A83A00)
 JOURNAL: LBA : 21533 (0x000000000000541D)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0
 JOURNAL: TIMESTAMP : 0x51AC55D16454B001
 JOURNAL: WRITE : CONFIRMED
 JOURNAL: VERIFY : SKIP (OVERWRITE @ 0x51AC55D16BF5D000)

In these examples:
"OFFSET:", "LBA:", and "SIZE:" detail the I/O location and transfer size.
"LOOP:" is the sequential I/O loop count during which the recorded write occurred.
"TIMESTAMP:" is a concatenation of 52-bit microsecond time stamp and 12-bit
sequence number to uniquely identify a recorded write. This number is unique within
each I/O context ("CTX:").
"WRITE:" status can be "QUEUED" or "CONFIRMED". Before each write, the record
for the write is set to "QUEUED" state and committed to the journal. When the write
operation completes, the record for the write is set to "CONFIRMED" state and
committed to the journal.
"VERIFY:" status is set during journal verification as each recorded data is read back
and a data integrity check is performed on it.
The status indicators are set based on the following definitions:

OK if "CONFIRMED" or "QUEUED" write passes data integrity check.
FAIL if a "CONFIRMED" write fails data integrity check. This also raises the

regular "Data corruption" error.
SKIP if the pain/maim detects that the I/O location was overwritten by a later

write operation, and data verification is skipped in order to avoid
falsely raising a data corruption error. In addition, the "TIME-
STAMP" corresponding to over-writing I/O is given next to the
status.

UNDEFINED if a "QUEUED" write (i.e. queued but not confirmed write operation)
fails data integrity check. Because the write was not confirmed, this
is not flagged as a data corruption error.

I/O Payload Tab
The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing
style (synchronous or asynchronous), testing threads, queue depth, I/O operation size,
read/write mix, I/O type, I/O marking and signing, and logging level.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 111

Performance – Select the Enable Performance mode check box to enable the perfor-
mance mode. This mode increases the speed of testing by optimizing the use of internal
memory buffers.

When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the
appropriate SCSI passthrough option from the drop-down menu, if use of the SCSI
passthough mode is desired. The options are listed below:

Table 6 Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 233)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 233)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 218)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 228)

SCSI Passthrough Off Not using direct SCSI command.
READ/WRITE 10 Incorporates Protection Information in the

SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 10 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

SCSI UNMAP / ATA TRIM Supports the TRIM command. A more
complete description is provided below.

READ/WRITE 32 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 112 Version 7.8 July 2023

The SCSI UNMAP / ATA TRIM option turns on SCSI UNMAP (or ATA TRIM) as a write
operation for normal I/O engine tests. Reads are done using the normal operating system
functions, while writes are replaced with UNMAP or TRIM to the requested offset using
buffer size. The assumption is that most devices will return buffers filled with “0’s” for reads
after TRIM (without any write in-between).

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the
Queue Depth area.

Testing Threads – Set the threads for testing. With Pain, each thread executes a single
I/O at a time, with each thread starting at a different base offset. With Maim, tests will issue
multiple IO requests per thread, equal to the defined queue depth. The number of threads
successfully run is dependent on the available memory resource. The practical limitation
also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads
check box. Set the Thread Count Start and the Thread Count End values and then set
the Adding or Multiplying values. The adding/multiplying value increments the tested
threads through the specified range from the start to the end. Refer to “Test a Range
Controls” on page 105 for more information about the Adding and Multiplying selections.

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker
thread. The value of queue depth successfully run is dependent on the available memory
resource. The practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric
spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue
Depths check box. Set the Queue Depth Start and the Queue Depth End values and
then set the Adding or Multiplying values. The adding/multiplying value increments the
queue depth through the specified range from the start to the end. Refer to “Test a Range
Controls” on page 105 for more information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict
Sequential.

Select Keep Queue Depth Static to add -m16 option to the command line to use
continuous queuing. If this option is not selected, by default burst queuing will be
used.

READ/WRITE 32 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 113

Select Strict Sequential to add the -m1 option to the command line which will make
the test have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down
menu. In this case, Units refers to a block size that is reported back from the target device;
for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down
button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O
Operation Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size
End values and then set the Adding or Multiplying values. The adding/multiplying value
increments the queue depth through the specified range from the start to the end. Refer to
“Test a Range Controls” on page 105 for more information about the Adding and Multi-
plying selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation
Size as basis for the testing area. For synchronous tests (pain), the file size is equal
to the I/O size. For asynchronous tests (maim), the file size is the I/O size multiplied
by the queue depth.
Specify Testing Area – Select this button and specify the file size or disk area to use
per worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from
the drop-down menu. In this case, Units refers to a block size that is reported back
from the target device; for example, a block sizes of 512 bytes or some other block
size that is standard to the target.
Test Using the Entire Target – Select this check box to use the entire target for the
test. This is not applicable for file system and memory testing.

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through
the various read/write modes. When this check box is selected, the following Read/
Write mix settings are not applicable and they are not displayed.
Read / Write – Select this option to have a balance of read and write testing (reading
back the same areas that were written).
Read Only – Select this option to have a read-only test. If this option is selected, the
Force Initial Write and Do Not Perform Initial Write radio buttons and will be avail-
able.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.
Using this option will allow for data comparison during the remaining read-only
portion of the test.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 114 Version 7.8 July 2023

Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables
data comparison automatically.

Write Only – Select this option to perform a write-only test.
Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50%
chance to Read/Write to be the next IO. This results in a random mix of reads/writes.
Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to
the left increases the write operations, while sliding it to the right increases the read
operations.

- Sliding to the left most makes it a Write only test, where it writes a test
pattern but does not read it.

- Sliding to the right most makes it a Read only test, where it only returns the
data that exists in the file or device area.

- If any Read/Write mix is used (including 50%-50%), the reads will have no
correlation to the writes (e.g. it is not reading back the same data that was
written).

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards,
First FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding
it to the right increases the sequential operation.

This slider works in unison with the % Random and the % Sequential boxes so that the
sum of both values is 100 percent. As the slider is moved, the values in the % Random
and the % Sequential box values change to reflect the slider position.

Likewise, when either the % Random or the % Sequential boxes are changed by entering
a value or using the numeric spinner, the other box and the slider are adjusted to reflect
the change.

The Enable Random Offset Alignment check box enables the random offset alignment
size. You can set the random offset alignment size to ensure that random I/Os are issued
on boundaries of the indicated size. This setting is available when the % Random value is
greater than 0.

You can set the random offset alignment size by entering the value or clicking the numeric
spinner. The minimum value is equal to the size of the sector. The size unit can be set to
Bytes, KB, MB, GB, TB, PB, EB, or Units from the drop-down menu.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down
list. For details on I/O signatures, refer to Appendix K “I/O Signatures” .

No I/O Markings – No I/O signatures are applied to each sector of every write.
Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every
write.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 115

Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as
part of the I/O signature. Timestamps are vital components for data integrity
checking, and they are also useful for debugging purposes.
Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the
test session. Select this option to add timestamp (in milliseconds) for the I/O event as
part of the I/O signature. Time stamps are vital components for data integrity
checking, and they are also useful for debugging purposes.
Override Session Id – Select this to override the default session ID and specify your
own. The default session ID is a semi-unique field in the I/O signature that created
using the hex values of the ASCII representation of the last two characters of the
target name. It is way to help identify the host and target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the
level of information to be posted to the log file. The default option posts the maximum
amount of information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and
console performance output.
Outputs to logfile in test performance format (minimal logging) – Removes
headers and logs performance output only.
No outputs to logfile, minimal screen outputs, PRF log summary – No .log file
generated, and logs minimal screen output.
Disable CSV log – Standard logging, but .csv file will not be created.
Single line output with system name, performance, and errors – Includes
system name and other details on single output lines for easier importation or
parsing.
Disable completion statistics in PRF file – Disables completion calculations and
output. In IOPS intensive tests where the CPU is heavily taxed, using this option may
result in a slight performance gain.
Enable logging of informational events in Windows event log – This option will
send informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear
in the textbox. See Chapter 4 “Using the Command Line Switches” for details of the
command line settings.

I/O Behavior Tab
The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup trig-
gering options based on test results, use non-default target offsets, and setup error
handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A
byte-for-byte data comparison of write and read data will catch any possible data corrup-

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 116 Version 7.8 July 2023

tion. Data comparison is usually recommended except in special cases, such as when the
overhead of full buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.
Full byte-for-byte Comparison – Each byte is checked for integrity (default value).
Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique
I/O signature in the data buffer. This substantially reduces processor utilization in the
host system.
Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares
only the session ID used in the data signature. The session ID is generated from the
host and target names. This option can be used with the “Override default session
ID” option and is usually used in multi-initiator setups as a quick way of verifying that
an initiator’s storage has not been written to by another initiator.
Session ID Comparison, Followed by Full – This option is a combination of the
Session ID Comparison Only check with a full data comparison check. This is
another method used in multi-initiator setups, typically used when large file sizes are
being tested, as a way of quickly determining whether an illegal storage access has
been made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – (displayed for Asynchronous (Maim) only) Select the check
box and edit the time value in Hours, Minutes, and Seconds to set the burst interval
duration.
Specify Thread Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before issuing the next thread. This requires a
multi-threaded test definition.
For the start delay: 1) The first thread is issued. 2) There is a pause (for the time
value of the start delay.) 3) The next thread is issued. 4) There is a pause (for the
time value of the start delay.) 5) The next thread is issued. 6) and so forth.
Specify Target Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before starting an I/O to the next target. This
requires multiple targets in the test plan.
Retry Failed I/O – Select the check box and specify the number retries for failed
I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours,
Minutes, and Seconds to set the delay between retries.

I/O Behavior dropdown list
Keep File Handles Open Between I/Os – Select this option to keep the target
file descriptor (handle) open rather than the default behavior of closing and re-
opening it after each FOP. This option is ignored for 'sock'.
Close File Handles After Every I/O – Select this option to close the target file
descriptor (handle) and re-open after each FOP.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 117

Keep File Handles and Flush Every I/O – Select this option to sync (flush) after
each FOP. This makes a request to the operating system to commit all written
data to the target device, but it may not bypass the device cache. This option is
ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O
to the target device on critical errors with the idea that an analyzer can be set to trigger on
the write data. It also saves the contents of the read and write buffers for the transaction.
The data value to trigger on occurs in the first two words of the data frame. The options
associated with this switch are:

Disable Triggering – disables the triggering option.
Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCA-
CACACA for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error
trigger.
Write 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEAD-
DEAD for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error
trigger.
Select any of the two previous options to continue testing if data corruption or I/O
error are detected, but generate a trigger. A write command is sent to the target
device on critical errors with the idea that an analyzer can be set to trigger on the
write data. It also saves the contents of the read and write buffers for the transaction
and are also extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer. Because the data frame
is consistent with FC or serial storage, but not parallel storage testing, the trigger can
be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or
stuck I/O is detected.
Stop Testing Immediately - No Trigger Written – Exits the application immediately
and no trigger is written.
Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA)
trigger and exits immediately.
Trigger External Application – Executes external application when triggers are
detected. Enter the application in the Application text box. Enter the arguments to
use when running an external Application in the Arguments text box.
This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop
capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box. See “-! (or -#)
 Enable Analyzer trigger writes” on page 240 for additional information.

Target Offsets –

Override Default/Test Plan Offsets – Select this check box to override the MLTT default
device base offset setting. By default, I/O starts at a 1MB offset on the specified device.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 118 Version 7.8 July 2023

Use Default Offset – uses the default offset.
Use a Shared Offset – allows multiple host systems or multiple sessions of the tools
on a single system to access the same device or file concurrently.
Specify Start Offset – specifies the starting offset number. Select from the drop-
down menu the unit of the value you specified. The offset value must be a multiple of
the logical block size of the target device.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Advanced I/O Tab
The Advanced I/O tab allows you to specify custom read/write and I/O mixes.

Advanced Read / Write Mix

When you make changes in this area, the Read / Write Mix , the I/O Operation Size, and
the Base File Size on I/O Operation Size settings on the I/O Payload tab are rendered
void and as such this area is not displayed on the tab.

To specify a custom read/write mix:

1 Select the Specify Custom Read / Write Mix check box.

2 Click Add to add a new custom read/write mix.

3 Select the newly added custom read/write mix from the list.

4 Click the Rebalance to 100% button to automatically change the access percentage
values of the custom read/write mixes to total 100%.

5 Use the options in the Read/Write Specification panel to customize the read/write
mix.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 119

To remove a custom read/write mix:

1 Select the custom read/write mix from the list.

2 Click Remove.

Advanced I/O Mix

When you make changes in this area, the I/O Type settings on the I/O Payload tab are
rendered void and as such this area is not displayed on the tab.

To specify a custom I/O mix:

1 Select the Specify Custom I/O Mix check box.

2 Set the value for % Forward Sequential.

3 Set the value or % Backward Sequential.

4 Set the value for % Random.

The Enable Random Offset Alignment check box enables the random offset alignment
size. You can set the random offset alignment size to ensure that random I/Os are issued
on boundaries of the indicated size. This setting is available when the % Random value is
greater than 0.

You can set the random offset alignment size by entering the value or clicking the numeric
spinner. The minimum value is equal to the size of the sector. The size unit can be set to
Bytes, KB, MB, GB, TB, PB, EB, or Units from the drop-down menu.

Patterns Tab
The Patterns tab (see Figure 63) allows you to add specific patterns to the test, such as
flip/flop patterns, inverted patterns, pattern reversals, data scrambling, or unique data
patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available
for the tests. Several folders are displayed for each available category. Click on the plus/
minus sign beside the category type folder to show the list of patterns available in that cate-
gory.

Selected Patterns – This pane on the upper left of the tab page shows the selected
patterns for the current test configuration. This pane displays the test description, the test
number, and the command line for the test.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 120 Version 7.8 July 2023

Figure 63 Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the
Available Patterns pane and drag it into the Selected Patterns pane. You can also click
a folder and drag it to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl
buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected
Patterns pane. The description of the selected pattern is displayed directly beneath the
tab name. The options change for the various types of patterns. Select the options for the
specific test being performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each
transition cycle and is often used to create bit-blink variations over bus architectures.
Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look
like false data corruptions. Reversals should be allowed anytime data comparisons
are being performed as a means of insuring that stale data is not being read.
Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within
the blinking data pattern. The term “flip/flop” means that the pattern starts at an initial
value, inverts (blinks) the value, returns to the initial value, then walks a bit and
repeats the sequence.
Scramble Data – Shows options to pre-scramble data patterns according to SAS or
SATA specifications. When these patterns are written by MLTT, hardware scrambling
will have the effect of de-scrambling the data into the desired pattern. This is an
effective means of signal integrity testing on these architectures when combined with
the Fibre Channel data patterns. The SAS and SATA options will automatically use
default frame data lengths for the scrambler reset. The data length/reset interval can
be overridden by specifying the data length in bytes.

No Data Scrambling – No scrambling of data patterns.
SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifi-
cations.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 121

SATA Data Scrambling – Pre-scrambles data patterns according to SATA spec-
ifications.
Scramble Reset Interval – When you specify a reset interval, you override the
data length/reset interval for the scrambled pattern. Select the Specify Reset
Interval check box and then edit the number to specify the data length. The size
can be set to Bytes, KB, MB, GB, or Units from the drop-down menu. In this
case, Units refers to a block size that is reported back from the target device; for
example, a block sizes of 512 bytes or some other block size that is standard to
the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to
repeat each cycle of a data pattern before moving to the next unit. Select the Cycle
Data Pattern check box and set the cycle length. In general, the unit of data pattern
refers to its length in bytes or bits. An example use of this option is to run an 8-bit
pattern four times to produce, effectively, a 32-bit pattern. In this case, each byte is
run four times before moving on to the next byte.
Phase shift – This pertains to most blinking data patterns. If the Use Default Phase
Shift or Specify Phase Cycle Length options are selected, the data pattern shifts at
the specified cycle length, such that the square wave, created by the on/off bits in the
blinking byte values, reverses. The frequency of this shift is determined by the cycle
length setting. Cycle length multiplied by pattern length determines the shift
frequency.
To use this feature, select either Use Default Phase Shift or Phase Cycle Length.
When Specify Phase Cycle Length is selected, enter the number of cycle units to
run before doing the phase shift. Change the number of units by entering a value in
the text box or using the numeric spinner.
Data Pattern Specification – Allows you to specify a static value to use as the static
repeating pattern if you do not want to use with the default. All data patterns that use
the Data Pattern Specification field default to an all-zero value in the GUI (the
length depends on the size of the repeating value data pattern, but it always defaults
to all zeros).
The Data Pattern Specification setting corresponds to the CLI data pattern option
"-y<hex value>", which does default to the thread number if it is not explicitly set in a
CLI command (but only in the CLI). This is repeated continuously. Change this value
using the numeric spinner.
Random Seed – Specifies an initialization value for the pseudorandom number
generator used to generate a random pattern.
Walking Bit Options – This walks an opposing bit across the sequence when the
pattern is a blinking pattern.

NOTE
Each of the Walking Bit options are shown in Table 7. The opposing bits are shaded in
the table so the walking effect can be seen easily.

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 122 Version 7.8 July 2023

Do Not Use Walking Bits – Walking bits are not used.
Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.
Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.
Walk Bits on Both Cycle – Walking bits are walked across both cycles.
Hold Pattern for cycles before walking – Keeps the walking bit in its position
for the specified number of cycles before advancing the bit to its the next posi-
tion. The number of cycles is maintained at each of the bit’s walking positions.
Change the specified number of cycles by entering a value in the text box or
using the numeric spinner.
Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change the blink length
by entering a value in the text box or using the numeric spinner.

The following settings applies when the Compression & Dedup pattern is selected:
Random Seed

Seed – Select the check box to specify a 32-bit random number seed value.
Enter a random seed value by entering a value in the text box or using the
numeric spinner.

Compression and Deduplication Settings
Compression / Deduplication / Both radio buttons – Select the option that
your testing requires. Select Compression for compression testing only; select
Deduplication for deduplication testing only; or select Both for both of the
previous options. This selection affects which of the following compression/
deduplication options are active.
Entropy Strength – Specifies how compressible the payload is.
0 (no entropy, most compressible) to 100 (most entropy, least compressible). It
basically defines the percentage of original data that is written after compression
is applied. Change the entropy strength by entering a value in the text box or

Table 7 Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 123

using the numeric spinner.
For example, when the value is set to 25, this results in data output that is about
25% of the original data size after compression with typical data compression
algorithms. The default value is 100.
Dedup % – Specifies the percentage of written data that can be deduplicated by
the target device. The percentage of duplicated data blocks can be specified
from 0 to 100 percent. Change the dedup percentage by entering a value in the
text box or using the numeric spinner. For example, using a value of 30 results in
about 70% of generated data being unique and about 30% being filled from a
pool of duplicate blocks that can repeated (thus be deduplicated by the target
device.) The default value is 0.
Duplicate Block – Sets the number of unique blocks in the duplicate block pool
to draw from. Change the number of unique blocks by entering a value in the text
box or using the numeric spinner. The block correlates with whatever dedup
block size that is used by the target's dedup engine and the default block size is
set to 8KB. From the second time a block from this pool is written out, it can be
deduplicated. The default value is 1.
Dedup Block Size – Specifies the dedup block size. It should be set to whatever
the value the target storage device’s deduplication system uses. Change the
block size by entering a value in the text box or using the numeric spinner. The
“units” list allows you to select either kilobytes (KB) or megabytes (MB). The
default for MLTT is 8 kilobytes. The maximum allowable dedup block size is
1032MB.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the
listing. The command line listing can be copied by selecting the command lines, right-

Chapter 3 Using the Configuration Editors
Custom Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 124 Version 7.8 July 2023

clicking on the selection, and choosing the Copy option. This is useful when using any of
the modes that create multiple tests with one configuration file (i.e. ranged values, cycle
read/write modes, or multiple data patterns, etc.)

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 125

Integrity Configuration Editor
The Integrity configuration editor allows you to edit the most common and useful options
when you want to ensure that a target is writing and reading data correctly.

To open the editor, double-click the Integrity configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the GUI Configuration Editors” on page 102.

The editor has six tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab
The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time between starting the test and the first
sample collection. This delay allows devices the allotted time to get setup. The H
(Hour), M (Minute), and S (Second) numeric spinners allow you to delay the start of
the testing up to 23 hours, 59 minutes, and 59 seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.
Every Target – sets the Max I/O Throughput value to apply to every target.
Every Thread – sets the Max I/O Throughput value to apply to every thread.
Max I/O Throughput – provides the maximum I/O throughput limitation value that is
applied to every target or thread.

External Application – runs any application of your choosing after every test has been run.
For example, if you want to run an independent application to collect data (such as a log
file) from a device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select
the application and wait times.

NOTE
Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode, depending
on the mode when it was closed.

– “General Tab” on page 125
– “I/O Payload Tab” on page 126
– “I/O Behavior Tab” on page 130

– “Patterns Tab” on page 133
– “Comments Tab” on page 137
– “Command Lines Tab” on page 137

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 126 Version 7.8 July 2023

Application allows for you to browse to and select the desired application.
Wait for External Application allows you to input a period to wait for the application to
start to run. Tests tools will continue testing once the external application begins
running.

I/O Payload Tab
The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing
style (synchronous or asynchronous), testing threads, queue depth, I/O operation size,
I/O type, I/O marking and signing, and logging level.

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory
buffers. When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the
appropriate SCSI passthrough option from the drop-down menu, if use of the SCSI
passthough mode is desired. The options are listed below:

Table 8 Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 233)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 233)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 218)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 228)

SCSI Passthrough Off Not using direct SCSI command.
READ/WRITE 10 Incorporates Protection Information in the

SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 10 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 127

The SCSI UNMAP / ATA TRIM option turns on SCSI UNMAP (or ATA TRIM) as a write
operation for normal I/O engine tests. Reads are done using the normal operating system
functions, while writes are replaced with UNMAP or TRIM to the requested offset using
buffer size. The assumption is that most devices will return buffers filled with “0’s” for reads
after TRIM (without any write in-between).

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the Queue
Depth area.

Testing Threads – Set the threads for testing. With Pain, each thread executes a single
I/O at a time, with each thread starting at a different base offset. With Maim, tests will issue
multiple IO requests per thread, equal to the defined queue depth. The number of threads
successfully run is dependent on the available memory resource. The practical limitation
also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check
box. Set the Thread Count Start and the Thread Count End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the tested threads through
the specified range from the start to the end. Refer to “Test a Range Controls” on page 105
for more information about the Adding and Multiplying selections.

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker
thread. The value of queue depth successfully run is dependent on the available memory
resource. The practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric
spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue
Depths check box. Set the Queue Depth Start and the Queue Depth End values and then
set the Adding or Multiplying values. The adding/multiplying value increments the queue

READ/WRITE 16 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

SCSI UNMAP / ATA TRIM Supports the TRIM command. A more
complete description is provided below.

READ/WRITE 32 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

READ/WRITE 32 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 128 Version 7.8 July 2023

depth through the specified range from the start to the end. Refer to “Test a Range
Controls” on page 105 for more information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequen-
tial.

Select Keep Queue Depth Static to add -m16 option to the command line to use
continuous queuing. If this option is not selected, by default burst queuing will be
used.
Select Strict Sequential to add the -m1 option to the command line which will make
the test have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down
menu. In this case, Units refers to a block size that is reported back from the target device;
for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down
button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Oper-
ation Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End
values and then set the Adding or Multiplying values. The adding/multiplying value incre-
ments the queue depth through the specified range from the start to the end. Refer to “Test
a Range Controls” on page 105 for more information about the Adding and Multiplying
selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size
as basis for the testing area. For synchronous tests (pain), the file size is equal to the
I/O size. For asynchronous tests (maim), the file size is the I/O size multiplied by the
queue depth.
Specify Testing Area – Select this button and specify the file size or disk area to use
per worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from
the drop-down menu. In this case, Units refers to a block size that is reported back
from the target device; for example, a block sizes of 512 bytes or some other block
size that is standard to the target.
Test Using the Entire Target – Select this check box to use the entire target for the
test. This is not applicable for file system and memory testing.

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards, First
FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding
it to the right increases the sequential operation.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 129

This slider works in unison with the % Random and the % Sequential boxes so that the
sum of both values is 100 percent. As the slider is moved, the values in the % Random and
the % Sequential box values change to reflect the slider position.

Likewise, when either the % Random or the % Sequential boxes are changed by entering
a value or using the numeric spinner, the other box and the slider are adjusted to reflect
the change.

The Enable Random Offset Alignment check box enables the random offset alignment size.
You can set the random offset alignment size to ensure that random I/Os are issued on
boundaries of the indicated size. This setting is available when the % Random value is
greater than 0.

You can set the random offset alignment size by entering the value or clicking the numeric
spinner. The minimum value is equal to the size of the sector. The size unit can be set to
Bytes, KB, MB, GB, TB, PB, EB, or Units from the drop-down menu.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down
list. For details on I/O signatures, refer to Appendix K “I/O Signatures” .

No I/O Markings – No I/O signatures are applied to each sector of every write.
Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write.
Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part
of the I/O signature. Timestamps are vital components for data integrity checking,
and they are also useful for debugging purposes.
Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the test
session. Select this option to add timestamp (in milliseconds) for the I/O event as part
of the I/O signature. Time stamps are vital components for data integrity checking,
and they are also useful for debugging purposes.
Override Session Id – Select this to override the default session ID and specify your
own. The default session ID is a semi-unique field in the I/O signature that created
using the hex values of the ASCII representation of the last two characters of the
target name. It is way to help identify the host and target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the
level of information to be posted to the log file. The default option posts the maximum
amount of information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and
console performance output.
Outputs to logfile in test performance format (minimal logging) – Removes headers
and logs performance output only.
No outputs to logfile, minimal screen outputs, PRF log summary – No .log file gener-
ated, and logs minimal screen output.
Disable CSV log – Standard logging, but .csv file will not be created.
Single line output with system name, performance, and errors – Includes system
name and other details on single output lines for easier importation or parsing.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 130 Version 7.8 July 2023

Disable completion statistics in PRF file – Disables completion calculations and
output. In IOPS intensive tests where the CPU is heavily taxed, using this option may
result in a slight performance gain.
Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in
the textbox. See Chapter 4 “Using the Command Line Switches” for details of the
command line settings.

I/O Behavior Tab
The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup trig-
gering options based on test results, use non-default target offsets, and setup error
handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A byte-
for-byte data comparison of write and read data will catch any possible data corruption.
Data comparison is usually recommended except in special cases, such as when the over-
head of full buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.
Full byte-for-byte Comparison – Each byte is checked for integrity (default value).
Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique
I/O signature in the data buffer. This substantially reduces processor utilization in the
host system.
Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares
only the session ID used in the data signature. The session ID is generated from the
host and target names. This option can be used with the “Override default session
ID” option and is usually used in multi-initiator setups as a quick way of verifying that
an initiator’s storage has not been written to by another initiator.
Session ID Comparison, Followed by Full – This option is a combination of the
Session ID Comparison Only check with a full data comparison check. This is another
method used in multi-initiator setups, typically used when large file sizes are being
tested, as a way of quickly determining whether an illegal storage access has been
made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – (displayed for Asynchronous (Maim) only) Select the check
box and edit the time value in Hours, Minutes, and Seconds to set the burst interval
duration.
Specify Thread Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before issuing the next thread. This requires a
multi-threaded test definition.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 131

For the start delay: 1) The first thread is issued. 2) There is a pause (for the time
value of the start delay.) 3) The next thread is issued. 4) There is a pause (for the
time value of the start delay.) 5) The next thread is issued. 6) and so forth.
Specify Target Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before starting an I/O to the next target. This
requires multiple targets in the test plan.
Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours,
Minutes, and Seconds to set the delay between retries.

I/O Behavior dropdown list
Keep File Handles Open Between I/Os – Select this option to keep the target file
descriptor (handle) open rather than the default behavior of closing and re-
opening it after each FOP. This option is ignored for 'sock'.
Close File Handles After Every I/O – Select this option to close the target file
descriptor (handle) and re-open after each FOP.
Keep File Handles and Flush Every I/O – Select this option to sync (flush) after
each FOP. This makes a request to the operating system to commit all written
data to the target device, but it may not bypass the device cache. This option is
ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to
the target device on critical errors with the idea that an analyzer can be set to trigger on
the write data. It also saves the contents of the read and write buffers for the transaction.
The data value to trigger on occurs in the first two words of the data frame. The options
associated with this switch are:

Disable Triggering – disables the triggering option.
Write 0xCACACACA 0xCACACACA on Data Corruption,
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACA-
CACA for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error
trigger.
Writes 0xDEADDEAD 0xDEADDEAD on Data Corruption,
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEAD-
DEAD for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error
trigger.
Select any of the two previous options to continue testing if data corruption or I/O
error are detected, but generate a trigger. A write command is sent to the target
device on critical errors with the idea that an analyzer can be set to trigger on the
write data. It also saves the contents of the read and write buffers for the transaction
and are also extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer. Because the data frame
is consistent with FC or serial storage, but not parallel storage testing, the trigger can
be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or
stuck I/O is detected.
Stop Testing Immediately - No Trigger Written – Exits the application immediately and
no trigger is written.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 132 Version 7.8 July 2023

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.
Trigger External Application – Executes external application when triggers are
detected. Enter the application in the Application text box. Enter the arguments to
use when running an external Application in the Arguments text box.
This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop
capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box. See ““-! (or -#)
 Enable Analyzer trigger writes” on page 240 for additional information.

Target Offsets –

Override Default/Test Plan Offsets – Select this check box to override the MLTT default
device base offset setting. By default, I/O starts at a 1MB offset on the specified device.

Use Default Offset – uses the default offset.
Use a Shared Offset – allows multiple host systems or multiple sessions of the tools
on a single system to access the same device or file concurrently.
Specify Start Offset – specifies the starting offset number. Select from the dropdown
menu the unit of the value you specified. The offset value must be a multiple of the
logical block size of the target device.

Error Handlers – allows you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries so that you can set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 133

Patterns Tab
The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns,
inverted patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available
for the tests. Several folders are displayed for each available category. Click on the plus/
minus sign beside the category type folder to show the list of patterns available in that cate-
gory.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns
for the current test configuration. This pane displays the test description, the test number,
and the command line for the test.

Figure 64 Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the
Available Patterns pane and drag it into the Selected Patterns pane. You can also click a
folder and drag it to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl
buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected
Patterns pane. The description of the selected pattern is displayed directly beneath the tab
name. The options change for the various types of patterns. Select the options for the
specific test being performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each tran-
sition cycle and is often used to create bit-blink variations over bus architectures.
Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look
like false data corruptions. Reversals should be allowed anytime data comparisons
are being performed as a means of insuring that stale data is not being read.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 134 Version 7.8 July 2023

Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within
the blinking data pattern. The term “flip/flop” means that the pattern starts at an initial
value, inverts (blinks) the value, returns to the initial value, then walks a bit and
repeats the sequence.
Scramble Data – Shows options to pre-scramble data patterns according to SAS or
SATA specifications. When these patterns are written by MLTT, hardware scrambling
will have the effect of de-scrambling the data into the desired pattern. This is an
effective means of signal integrity testing on these architectures when combined with
the Fibre Channel data patterns. The SAS and SATA options will automatically use
default frame data lengths for the scrambler reset. The data length/reset interval can
be overridden by specifying the data length in bytes.

No Data Scrambling – No scrambling of data patterns.
SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifica-
tions.
SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifi-
cations.
Scramble Reset Interval – When you specify a reset interval, you override the
data length/reset interval for the scrambled pattern. Select the Specify Reset
Interval check box and then edit the number to specify the data length. The size
can be set to Bytes, KB, MB, GB, or Units from the drop-down menu. In this case,
Units refers to a block size that is reported back from the target device; for
example, a block sizes of 512 bytes or some other block size that is standard to
the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat
each cycle of a data pattern before moving to the next unit. Select the Cycle Data
Pattern check box and set the cycle length. In general, the unit of data pattern refers
to its length in bytes or bits. An example use of this option is to run an 8-bit pattern
four times to produce, effectively, a 32-bit pattern. In this case, each byte is run four
times before moving on to the next byte.
Phase shift – This pertains to most blinking data patterns. If the Use Default Phase
Shift or Specify Phase Cycle Length options are selected, the data pattern shifts at the
specified cycle length, such that the square wave, created by the on/off bits in the
blinking byte values, reverses. The frequency of this shift is determined by the cycle
length setting. Cycle length multiplied by pattern length determines the shift
frequency.
To use this feature, select either Use Default Phase Shift or Phase Cycle Length.
When Specify Phase Cycle Length is selected, enter the number of cycle units to run
before doing the phase shift. Change the number of units by entering a value in the
text box or using the numeric spinner.
Data Pattern Specification – Allows you to specify a static value to use as the static
repeating pattern if you don’t want to use with the default. All data patterns that use
the Data Pattern Specification field default to an all-zero value in the GUI (the
length depends on the size of the repeating value data pattern, but it always defaults
to all zeros).

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 135

The Data Pattern Specification setting corresponds to the CLI data pattern option
"-y<hex value>", which does default to the thread number if it is not explicitly set in a
CLI command (but only in the CLI). This is repeated continuously. Change this value
using the numeric spinner.
Random Seed – Specifies an initialization value for the pseudorandom number gener-
ator used to generate a random pattern.
Walking Bit Options – This walks an opposing bit across the sequence when the
pattern is a blinking pattern.

Do Not Use Walking Bits – Walking bits are not used.
Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.
Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.
Walk Bits on Both Cycle – Walking bits are walked across both cycles.
Hold Pattern for cycles before walking – Keeps the walking bit in its position for
the specified number of cycles before advancing the bit to its the next position.
The number of cycles is maintained at each of the bit’s walking positions.
Change the specified number of cycles by entering a value in the text box or
using the numeric spinner.
Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change the blink length
by entering a value in the text box or using the numeric spinner.

The following settings applies when the Compression & Dedup pattern is selected:
Random Seed

NOTE
Each of the Walking Bit options are shown in Table 9. The opposing bits are shaded in
the table so the walking effect can be seen easily.

Table 9 Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 136 Version 7.8 July 2023

Seed – Select the check box to specify a 32-bit random number seed value.
Enter a random seed value by entering a value in the text box or using the
numeric spinner.

Compression and Deduplication Settings
Compression / Deduplication / Both radio buttons – Select the option that your
testing requires. Select Compression for compression testing only; select Dedu-
plication for deduplication testing only; or select Both for both of the previous
options. This selection affects which of the following compression/deduplication
options are active.
Entropy Strength – Specifies how compressible the payload is.
0 (no entropy, most compressible) to 100 (most entropy, least compressible). It
basically defines the percentage of original data that is written after compression
is applied. Change the entropy strength by entering a value in the text box or
using the numeric spinner. For example, when the value is set to 25, this results
in data output that is about 25% of the original data size after compression with
typical data compression algorithms. The default value is 100.
Dedup % – Specifies the percentage of written data that can be deduplicated by
the target device. The percentage of duplicated data blocks can be specified
from 0 to 100 percent. Change the dedup percentage by entering a value in the
text box or using the numeric spinner. For example, using a value of 30 results in
about 70% of generated data being unique and about 30% being filled from a
pool of duplicate blocks that can repeated (thus be deduplicated by the target
device.) The default value is 0.
Duplicate Block – Sets the number of unique blocks in the duplicate block pool to
draw from. Change the number of unique blocks by entering a value in the text
box or using the numeric spinner. The block correlates with whatever dedup
block size that is used by the target's dedup engine and the default block size is
set to 8KB. From the second time a block from this pool is written out, it can be
deduplicated. The default value is 1.
Dedup Block Size – Specifies the dedup block size. It should be set to whatever
the value the target storage device’s deduplication system uses. Change the
block size by entering a value in the text box or using the numeric spinner. The
“units” list allows you to select either kilobytes (KB) or megabytes (MB). The
default for MLTT is 8 kilobytes. The maximum allowable dedup block size is
1032MB.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Chapter 3 Using the Configuration Editors
Integrity Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 137

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the
listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option. This is useful when using any of
the modes that create multiple tests with one configuration file (i.e. ranged values, cycle
read/write modes, or multiple data patterns, etc.)

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 138 Version 7.8 July 2023

Performance Configuration Editor
The Performance configuration editor allows you to make a configuration that ensures a
device is performing at the expected speed. It is intended for users that find they are not
accomplishing their testing requirements through Integrity configurations provided in the
default samples.

To open the editor, double-click the Performance configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the GUI Configuration Editors” on page 102.

The editor has four tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab
The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time between starting the test and the first
sample collection. This delay allows devices the allotted time to get setup. The H
(Hour), M (Minute), and S (Second) numeric spinners allow you to delay the start of
the testing up to 23 hours, 59 minutes, and 59 seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.
Every Target – sets the Max I/O Throughput value to apply to every target.
Every Thread – sets the Max I/O Throughput value to apply to every thread.
Max I/O Throughput – provides the maximum I/O throughput limitation value that is
applied to every target or thread.

External Application – runs any application of your choosing after every test has been run.
For example, if you want to run an independent application to collect data (such as a log
file) from a device, you can use this to start the application.

NOTE
Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode depending
on the mode when it was closed.

– “General Tab” on page 138
– “I/O Payload Tab” on page 140

– “Comments Tab” on page 145
– “Command Lines Tab” on page 145

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 139

The Run External Application After Test check box must be selected before you can select
the application and wait times.

Application allows for you to browse to and select the desired application.
Wait for External Application allows you to input a period to wait for the application to
start to run. Tests tools will continue testing once the external application begins
running.
Latency Histogram – collects latency histogram per target.

The collection bins are specified by entering the upper bound of each bin as a comma-
separated list in the Time Range Bin text box. The list is sorted by the magnitude of the
upper bound values, and the range of each bin is constructed such that the upper bound
is as specified and the lower bound is the upper bound of the previous bin.

Upper bounds may be specified as a floating point value (e.g. "0.5" or "4.5").
The time unit suffix may be used:

'n' for "nano" 'u' for "micro" 'm' for "milli" 's' for "seconds"

If no time unit suffix is given, 'm' for "milli" is assumed.

The Latency Histogram tab (see page 93) displays the collected histogram data.

Steady State

Steady State determines the steady state for a target across five consecutive test runs.
With the test plan set to run indefinitely or several times (5 times or more), when steady
state is achieved, the test plan will be stopped when the test plan iteration is complete. The
planning group will start the next test plan.

If steady state is not achieved during the specified number of test runs, the test plan will
complete its last iteration and testing is terminated. Subsequent test plans in the planning
group are ignored. If you select to run the test plan indefinitely and steady state is not
achieved, you will need to stop the test manually.

Select the Check for Steady State check box to enable this feature. Once the check
box is selected, you can set the following options:

NOTE
A quick and easy method of specifying the upper bound of each bin in the Time Range Bin text
box is by copying the values in the Example and pasting them into the text box.

You can then edit the values in the Time Range Bin text box if you choose.

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 140 Version 7.8 July 2023

Tag text box allows you to enter an arbitrary string that is not 'r', 'iops', 'mbps' or 'lat'
which can be used to uniquely identify a steady state testing case. This tag will be
added to the steady-state.csv file name.
Tracking Variable group allows you to select one of the Tracking radio buttons and set
the Deviation percentages.

Tracking radio buttons:
IOPSTracks IOPS for steady state. (default value)
MBPSTracks MBPS for steady state.
IO LatencyTracks I/O latency for steady state.
Deviation percentages:
% Range Deviation: Allowed deviation of minimum and maximum tracked
values from the average. The default value is 20%.
% Slope Deviation: Allowed deviation of minimum and maximum points in a
best linear fit line through the tracked values. The default value is 10%.

I/O Payload Tab
The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing
style (synchronous or asynchronous), testing threads, queue depth, testing sizes, I/O
operation sizes, read/write mix, I/O type, and logging levels.

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory
buffers. When this check box is selected, the following settings are automatically set:

Testing Style – Select Synchronous (Pain) or Asynchronous (Maim).

Table 10 Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 233)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 233)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 218)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 228)

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 141

When Synchronous (Pain) is selected, set the Testing Threads area. Also select the appro-
priate SCSI passthrough option from the drop-down menu, if use of the SCSI
passthough mode is desired. The options are listed below:

The SCSI UNMAP / ATA TRIM option turns on SCSI UNMAP (or ATA TRIM) as a write
operation for normal I/O engine tests. Reads are done using the normal operating system
functions, while writes are replaced with UNMAP or TRIM to the requested offset using
buffer size. The assumption is that most devices will return buffers filled with “0’s” for reads
after TRIM (without any write in-between).

When Asynchronous (Maim) is selected, set the Testing Threads area. Also set the Queue
Depth area.

Testing Threads – Set the threads for testing. With Pain, each thread executes a single
I/O at a time, with each thread starting at a different base offset. With Maim, tests will issue
multiple IO requests per thread, equal to the defined queue depth. The number of threads
successfully run is dependent on the available memory resource. The practical limitation
also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check
box. Set the Thread Count Start and the Thread Count End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the tested threads through

SCSI Passthrough Off Not using direct SCSI command.
READ/WRITE 10 Incorporates Protection Information in the

SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 10 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

SCSI UNMAP / ATA TRIM Supports the TRIM command. A more
complete description is provided below.

READ/WRITE 32 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

READ/WRITE 32 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 142 Version 7.8 July 2023

the specified range from the start to the end. Refer to “Test a Range Controls” on page 105
for more information about the Adding and Multiplying selections.

Queue Depth – (displayed for Asynchronous (Maim) only) Set the queue depth.

The queue depth is the maximum number of current I/Os to execute in a single worker
thread. The value of queue depth successfully run is dependent on the available memory
resource. The practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric
spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue
Depths check box. Set the Queue Depth Start and the Queue Depth End values and then
set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range
Controls” on page 105 for more information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequen-
tial.

Select Keep Queue Depth Static to add -m16 option to the command line to use
continuous queuing. If this option is not selected, by default burst queuing will be
used.
Select Strict Sequential to add the -m1 option to the command line which will make
the test have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down
menu. In this case, Units refers to a block size that is reported back from the target device;
for example, a block sizes of 512 bytes or some other block size that is standard to the
target.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down
button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Oper-
ation Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End
values and then set the Adding or Multiplying values. The adding/multiplying value incre-
ments the queue depth through the specified range from the start to the end. Refer to “Test
a Range Controls” on page 105 for more information about the Adding and Multiplying
selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size
as basis for the testing area. For synchronous tests (pain), the file size is equal to the
I/O size. For asynchronous tests (maim), the file size is the I/O size multiplied by the
queue depth.

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 143

Specify Testing Area – Select this button and specify the file size or disk area to use
per worker thread. The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from
the drop-down menu. In this case, Units refers to a block size that is reported back
from the target device; for example, a block sizes of 512 bytes or some other block
size that is standard to the target.
Test Using the Entire Target – Select this check box to use the entire target for the
test. This is not applicable for file system and memory testing.

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through the
various read/write modes. When this check box is selected, the following Read/Write
mix settings are not applicable and they are not displayed.
Read / Write – Select this option to have a balance of read and write testing (reading
back the same areas that were written).
Read Only – Select this option to have a read-only test. If this option is selected, the
Force Initial Write and Do Not Perform Initial Write radio buttons and will be available.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.
Using this option will allow for data comparison during the remaining read-only
portion of the test.
Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables
data comparison automatically.

Write Only – Select this option to perform a write-only test.
Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50%
chance to Read/Write to be the next IO. This results in a random mix of reads/writes.
Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to
the left increases the write operations, while sliding it to the right increases the read
operations.
– Sliding to the left most makes it a Write only test, where it writes a test pattern

but does not read it.
– Sliding to the right most makes it a Read only test, where it only returns the data

that exists in the file or device area.
– If any Read/Write mix is used (including 50%-50%), the reads will have no

correlation to the writes (e.g. it is not reading back the same data that was
written).

I/O Type – Choose from Forwards Only, Alternate Between Forwards and Backwards, First
FOP Forwards, Rest Backwards, Backwards Only, and Custom Mixture.

When you select Custom Mixture, use the slider to set the percentage mix of random and
sequential I/Os. Sliding it to the left increases the percentage of randomness, while sliding
it to the right increases the sequential operation.

This slider works in unison with the % Random and the % Sequential boxes so that the
sum of both values is 100 percent. As the slider is moved, the values in the % Random and
the % Sequential box values change to reflect the slider position.

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 144 Version 7.8 July 2023

Likewise, when either the % Random or the % Sequential boxes are changed by entering
a value or using the numeric spinner, the other box and the slider are adjusted to reflect
the change.

The Enable Random Offset Alignment check box enables the random offset alignment size.
You can set the random offset alignment size to ensure that random I/Os are issued on
boundaries of the indicated size. This setting is available when the % Random value is
greater than 0.

You can set the random offset alignment size by entering the value or clicking the numeric
spinner. The minimum value is equal to the size of the sector. The size unit can be set to
Bytes, KB, MB, GB, TB, PB, EB, or Units from the drop-down menu.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down
list. For details on I/O signatures, refer to Appendix K “I/O Signatures” .

No I/O Markings – No I/O signatures are applied to each sector of every write.
Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write,
unless disabled.
Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part
of the I/O signature. Timestamps are vital components for data integrity checking,
and they are also useful for debugging purposes.
Add Time Stamps in Milliseconds – Select to choose a time stamp for the test
session. Select this option to add timestamp (in milliseconds) for the I/O event as part
of the I/O signature. Time stamps are vital components for data integrity checking,
and they are also useful for debugging purposes.
Override Session Id – Select this to override the default session ID and specify your
own. The default session ID is a semi-unique field in the I/O signature that created
using the hex values of the last two characters of the target name. It is way to help
identify the host and target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the
level of information to be posted to the log file. The default option posts the maximum
amount of information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and
console performance output.
Outputs to logfile in test performance format (minimal logging) – Removes headers
and logs performance output only.
No outputs to logfile, minimal screen outputs, PRF log summary – No .log file gener-
ated, and logs minimal screen output.
Disable CSV log – Standard logging, but .csv file will not be created.
Single line output with system name, performance, and errors – Includes system
name and other details on single output lines for easier importation or parsing.
Disable completion statistics in PRF file – Disables completion calculations and
output. In IOPS intensive tests where the CPU is heavily taxed, using this option may
result in a slight performance gain.

Chapter 3 Using the Configuration Editors
Performance Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 145

Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in
the textbox. See Chapter 4 “Using the Command Line Switches” for details of the
command line settings.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the
listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option. This is useful when using any of
the modes that create multiple tests with one configuration file (i.e. ranged values, cycle
read/write modes, or multiple data patterns, etc.)

Chapter 3 Using the Configuration Editors
Storage CLI Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 146 Version 7.8 July 2023

Storage CLI Configuration Editor
The Storage CLI configuration editor allows pain and maim command lines to be run from
the MLTT GUI. This method also allows the use of seldom used MLTT Command Line
options that have not been exposed in the MLTT GUI configuration templates.

To open the editor, double-click the Storage CLI configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the GUI Configuration Editors” on page 102.

The editor has two tabs for specifying testing parameters and information:

Command Line Tab
The Command Line tab allows you to enter and send pain and maim commands. This is
useful when you want to run a command from the GUI.

The Paste button pastes a previously-copied command line to the configuration editor.

The Copy button copies the configuration editor’s command line once it is selected.

The Storage CLI Configuration editor only accepts pain or maim commands. For sock
commands, refer to “Network CLI Configuration Editor” on page 171.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

NOTE
The pain and maim commands sent from this editor do not have error checking. If
invalid commands are entered and sent, these commands are ignored and are not
reported.

– Command Lines – Comments

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 147

Socket Configuration Editor
The Socket configuration editor allows you to edit available options relevant to network
tests with TCP/IP sockets.

To open the editor, double-click the Socket configuration that you added to the User Config-
uration folder in the Configurations area. You may also use one of the methods discussed
in “Using the GUI Configuration Editors” on page 102.

To use more advanced parameters, click the Show Ranged Controls check box.

The editor has seven tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab
The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time between starting the test and the first
sample collection. This delay allows devices the allotted time to get setup. The H
(Hour), M (Minute), and S (Second) numeric spinners allow you to delay the start of
the testing up to 23 hours, 59 minutes, and 59 seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.
Every Target – sets the Max I/O Throughput value to apply to every target.
Every Thread – sets the Max I/O Throughput value to apply to every thread.
Max I/O Throughput – provides the maximum I/O throughput limitation value that is
applied to every target or thread.

External Application – runs any application of your choosing after every test has been run.
For example, if you want to run an independent application to collect data (such as a log
file) from a device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select
the application and wait times.

Application allows for you to browse to and select the desired application.

– “General Tab” on page 147)
– “I/O Payload Tab” on page 148)
– “I/O Behavior Tab” on page 151)
– “Advanced I/O Tab” on page 154)

– “Patterns Tab” on page 154
– “Comments Tab” on page 158
– “Command Lines Tab” on page 158

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 148 Version 7.8 July 2023

Wait for External Application allows you to input a period to wait for the application to
start to run. Tests tools will continue testing once the external application begins
running.

Socket Type – Sets the protocol for the Socket configuration.

TCP (Transmission Control Protocol) – Sets the socket configuration protocol to TCP.
UDP (User Datagram Protocol) – Sets the socket configuration protocol to UDP.

I/O Payload Tab
The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing
threads,
I/O operation size, read/write mix, I/O marking and signing, and logging level. Queue depth
is also available after other parameters on the tab are changed.

Performance – Select the Enable Performance mode check box to enable the performance
mode. This mode increases the speed of testing by optimizing the use of internal memory
buffers. When this check box is selected, the following settings are automatically set:

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time.
The number of threads successfully run is dependent on the available memory resource.
The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check
box. Set the Thread Count Start and the Thread Count End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the tested threads through
the specified range from the start to the end. Refer to “Test a Range Controls” on page 105
for more information about the Adding and Multiplying selections.

Queue Depth – (available after other tab parameters are changed) Set the queue depth.

Table 11 Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 233)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 233)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 218)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 228)

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 149

The queue depth is the maximum number of current I/Os to execute in a single worker
thread. The value of queue depth successfully run is dependent on the available memory
resource. The practical limitation also depends on the target capabilities.

You can set the queue depth by entering the value or clicking the Queue Depth numeric
spinner.

You can also set a range for the queue depth by selecting the Test a Range of Queue
Depths check box. Set the Queue Depth Start and the Queue Depth End values and then
set the Adding or Multiplying values. The adding/multiplying value increments the queue
depth through the specified range from the start to the end. Refer to “Test a Range
Controls” on page 105 for more information about the Adding and Multiplying selections.

The Queue Depth has two additional options, Keep Queue Depth Static and Strict Sequen-
tial.

Select Keep Queue Depth Static to add -m16 option to the command line to use
continuous queuing. If this option is not selected, by default burst queuing will be
used.
Select Strict Sequential to add the -m1 option to the command line which will make
the test have continuous queuing and strict sequential access.

Testing Sizes – Select the I/O Operation Size to be used for testing.

You can set the I/O operation size by entering the value or clicking the I/O Operation Size
numeric spinner. The size can be set to Bytes, KB, MB, GB, or Units from the drop-down
menu. In this case, the Units option refers to a fixed 512 bytes.

Edit the number or click the numeric spinner. Select the unit by clicking the drop-down
button.

You can also set a range for the I/O operation size by selecting the Test a Range of I/O Oper-
ation Sizes check box. Set the I/O Operation Size Start and the I/O Operation Size End
values and then set the Adding or Multiplying values. The adding/multiplying value incre-
ments the queue depth through the specified range from the start to the end. Refer to “Test
a Range Controls” on page 105 for more information about the Adding and Multiplying
selections.

Additional Testing Sizes settings include:

Base File Size on I/O Operation Size – Select this option to use the I/O Operation Size
as basis for the testing area.
Specify Testing Area – Select this button and specify the size of data portions to be
counted for the iteration counter.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 150 Version 7.8 July 2023

Read/Write Mix – Select the read or write mode of the test.

Cycle Through the Read / Write Modes – Select this check box to cycle through the
various read/write modes. When this check box is selected, the following Read/Write
mix settings are not applicable and they are not displayed.
Read / Write – Select this option to have a balance of read and write testing.
Read Only – Select this option to have a read-only test. If this option is selected, the
Force Initial Write and Do Not Perform Initial Write radio buttons and will be available.

Force Initial Write – Performs a Write I/O once followed by continuous Reads.
Do Not Perform Initial Write – Performs pure read-only I/Os. This also disables
data comparison automatically.

Write Only – Select this option to have a write-only test.
Specify Custom Read/Write Mix – Setting the slider in the middle gives 50%/50%
chance to Read/Write to be the next IO. This results in a random mix of reads/writes.
Use the slider to set the percentage mix of random and sequential I/Os. Sliding it to
the left increases the write operations, while sliding it to the right increases the read
operations.
– Sliding to the left most makes it a Write only test, where it writes a test pattern

but does not read it.
– Sliding to the right most makes it a Read only test, where it only returns the data

that exists in the file or device area.
– Setting the slider in the middle gives 50%/50% chance to Read/Write to be the

next IO. Data comparison must be disabled in this mode.

I/O Marking and Signing – Select the I/O Marking and Signing option from the drop-down
list. For details on I/O signatures, refer to Appendix K “I/O Signatures” .

No I/O Markings – No I/O signatures are applied to each sector of every write.
Uniquely Mark I/O (Default) – I/O signatures are applied to each sector of every write.
Add Time Stamps to I/O – Select this option to add timestamp for the I/O event as part
of the I/O signature. Timestamps are vital components for data integrity checking,
and they are also useful for debugging purposes.
Add Time Stamps in Milliseconds to I/O – Select to choose a time stamp for the test
session. Select this option to add timestamp (in milliseconds) for the I/O event as part
of the I/O signature. Time stamps are vital components for data integrity checking,
and they are also useful for debugging purposes.

NOTE
In the case of sockets, the term "write" is used to refer to the TCP or UDP stream from
the initiator system(s) to the target system(s), and the term "read" to refer to the TCP or
UDP stream returning from the target system(s) to the initiator system(s).

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 151

Override Session Id - Select this to override the default session ID and specify your
own. The default session ID is a semi-unique field in the I/O signature that created
using the hex values of the last two characters of the target name. It is way to help
identify the host and target when you are debugging.

Logging Level – Select the type of logging you want for the configuration to indicate the
level of information to be posted to the log file. The default option posts the maximum
amount of information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and
console performance output.
Outputs to logfile in test performance format (minimal logging) – Removes headers
and logs performance output only.
No outputs to logfile, minimal screen outputs, PRF log summary – No .log file gener-
ated, and logs minimal screen output.
Disable CSV log – Standard logging, but .csv file will not be created.
Single line output with system name, performance, and errors – Includes system
name and other details on single output lines for easier importation or parsing.
Disable completion statistics in PRF file – Disables completion calculations and
output. In IOPS intensive tests where the CPU is heavily taxed, using this option may
result in a slight performance gain.
Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in
the textbox. See Chapter 4 “Using the Command Line Switches” for details of the
command line settings.

I/O Behavior Tab
The I/O Behavior tab allows you to specify data comparisons, set I/O behavior, setup trig-
gering options based on test results, use non-default target offsets, and setup error
handlers.

Data Compare Mode – Click the drop-down list to choose a data comparison mode. A byte-
for-byte data comparison of write and read data will catch any possible data corruption.
Data comparison is usually recommended except in special cases, such as when the over-
head of full buffer comparisons decreases the I/O throughput to the target.

Disable Data Comparisons – Data comparisons are turned off.
Full byte-for-byte Comparison – Each byte is checked for integrity (default value).
Signature Comparison Only – (2-3 words every 512 bytes) Checks only the unique I/
O signature in the data buffer. This substantially reduces processor utilization in the
host system.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 152 Version 7.8 July 2023

Session ID Comparison Only – (16 bit ID at 2nd word every 512 bytes) Compares
only the session ID used in the data signature. The session ID is generated from the
host and target names. This option can be used with the “Override default session
ID” option and is usually used in multi-initiator setups as a quick way of verifying that
an initiator’s storage has not been written to by another initiator.
Session ID Comparison, Followed by Full – This option is a combination of the
Session ID Comparison Only check with a full data comparison check. This is another
method used in multi-initiator setups, typically used when large file sizes are being
tested, as a way of quickly determining whether an illegal storage access has been
made by another initiator.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours, Minutes, and
Seconds to set the burst interval duration.
Specify Thread Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before issuing the next thread. This requires a
multi-threaded test definition.
For the start delay: 1) The first thread is issued. 2) There is a pause (for the time
value of the start delay.) 3) The next thread is issued. 4) There is a pause (for the
time value of the start delay.) 5) The next thread is issued. 6) and so forth.
Specify Target Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before starting an I/O to the next target. This
requires multiple targets in the test plan.
Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours,
Minutes, and Seconds to set the delay between retries.

I/O Behavior dropdown list
Keep File Handles Open Between I/Os – Select this option to keep the target file
descriptor (handle) open rather than the default behavior of closing and re-
opening it after each FOP. This option is ignored for 'sock'.
Close File Handles After Every I/O – Select this option to close the target file
descriptor (handle) and re-open after each FOP.
Keep File Handles and Flush Every I/O – Select this option to sync (flush) after
each FOP. This makes a request to the operating system to commit all written
data to the target device, but it may not bypass the device cache. This option is
ignored for 'sock'.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to
the target device on critical errors with the idea that an analyzer can be set to trigger on
the write data. It also saves the contents of the read and write buffers for the transaction.
The data value to trigger on occurs in the first two words of the data frame. The options
associated with this switch are:

Disable Triggering – disables the triggering option.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 153

Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACA-
CACA for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error
trigger.
Write 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEAD-
DEAD for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error
trigger.
Select any of the two previous options to continue testing if data corruption or I/O
error are detected, but generate a trigger. A write command is sent to the target
device on critical errors with the idea that an analyzer can be set to trigger on the
write data. It also saves the contents of the read and write buffers for the transaction
and are also extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer. Because the data frame
is consistent with FC or serial storage, but not parallel storage testing, the trigger can
be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or
stuck I/O is detected.
Stop Testing Immediately - No Trigger Written – Exits the application immediately and
no trigger is written.
Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA)
trigger and exits immediately.
Trigger External Application – Executes external application when triggers are
detected. Enter the application in the Application text box. Enter the arguments to
use when running an external Application in the Arguments text box.
This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop
capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box. See “-! (or -#)
 Enable Analyzer trigger writes” on page 240 for additional information.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.

To remove an error handler:

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 154 Version 7.8 July 2023

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Advanced I/O Tab
The Advanced I/O tab allows you to specify custom read/writes.

Advanced Read / Write Mix

When you make changes in this area, the Read / Write Mix settings on the I/O Payload tab
are rendered void and as such this area is not displayed on the tab.

To specify a custom read/write mix:

1 Select the Specify Custom Read / Write Mix check box.

2 Click Add to add a new custom read/write mix.

3 Select the newly added custom read/write mix from the list.

4 Click the Rebalance to 100% button to automatically change the access percentage
values of the custom read/write mixes to total 100%.

5 Use the options in the Read/Write Specification panel to customize the read/write mix.

To remove a custom read/write mix:

1 Select the custom read/write mix from the list.

2 Click Remove.

Patterns Tab
The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns,
inverted patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available
for the tests. Several folders are displayed for each available category. Click on the plus/
minus sign beside the category type folder to show the list of patterns available in that cate-
gory.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns
for the current test configuration. This pane displays the test description, the test number,
and the command line for the test.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 155

Figure 65 Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the
Available Patterns pane and drag it into the Selected Patterns pane. You can also click a
folder and drag it to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl
buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected
Patterns pane. The description of the selected pattern is displayed directly beneath the tab
name. The options change for the various types of patterns. Select the options for the
specific test being performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each tran-
sition cycle and is often used to create bit-blink variations over bus architectures.
Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look
like false data corruptions. Reversals should be allowed anytime data comparisons
are being performed as a means of insuring that stale data is not being read.
Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within
the blinking data pattern. The term “flip/flop” means that the pattern starts at an initial
value, inverts (blinks) the value, returns to the initial value, then walks a bit and
repeats the sequence.
Scramble Data – Shows options to pre-scramble data patterns according to SAS or
SATA specifications. When these patterns are written by MLTT, hardware scrambling
will have the effect of de-scrambling the data into the desired pattern. This is an
effective means of signal integrity testing on these architectures when combined with
the Fibre Channel data patterns. The SAS and SATA options will automatically use
default frame data lengths for the scrambler reset. The data length/reset interval can
be overridden by specifying the data length in bytes.

No Data Scrambling – No scrambling of data patterns.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 156 Version 7.8 July 2023

SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifica-
tions.
SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifi-
cations.
Scramble Reset Interval – When you specify a reset interval, you override the
data length/reset interval for the scrambled pattern. Select the Specify Reset
Interval check box and then edit the number to specify the data length. The size
can be set to Bytes, KB, MB, GB, or Units from the drop-down menu. In this case,
Units refers to a block size that is reported back from the target device; for
example, a block sizes of 512 bytes or some other block size that is standard to
the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat
each cycle of a data pattern before moving to the next unit. Select the Cycle Data
Pattern check box and set the cycle length. In general, the unit of data pattern refers
to its length in bytes or bits. An example use of this option is to run an 8-bit pattern
four times to produce, effectively, a 32-bit pattern. In this case, each byte is run four
times before moving on to the next byte.
Phase shift – This pertains to most blinking data patterns. If the Use Default Phase
Shift or Specify Phase Cycle Length options are selected, the data pattern shifts at the
specified cycle length, such that the square wave, created by the on/off bits in the
blinking byte values, reverses. The frequency of this shift is determined by the cycle
length setting. Cycle length multiplied by pattern length determines the shift
frequency.
To use this feature, select either Use Default Phase Shift or Phase Cycle Length.
When Specify Phase Cycle Length is selected, enter the number of cycle units to run
before doing the phase shift. Change the number of units by entering a value in the
text box or using the numeric spinner.
Data Pattern Specification – Allows you to specify a static value to use as the static
repeating pattern if you don’t want to use with the default. All data patterns that use
the Data Pattern Specification field default to an all-zero value in the GUI (the
length depends on the size of the repeating value data pattern, but it always defaults
to all zeros).
The Data Pattern Specification setting corresponds to the CLI data pattern option
"-y<hex value>", which does default to the thread number if it is not explicitly set in a
CLI command (but only in the CLI). This is repeated continuously. Change this value
using the numeric spinner.
Random Seed – Specifies an initialization value for the pseudorandom number gener-
ator used to generate a random pattern.
Walking Bit Options – This walks an opposing bit across the sequence when the
pattern is a blinking pattern.

NOTE
Each of the Walking Bit options are shown in Table 12. The opposing bits are shaded in
the table so the walking effect can be seen easily.

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 157

Do Not Use Walking Bits – Walking bits are not used.
Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.
Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.
Hold Pattern for cycles before walking – Keeps the walking bit in its position for
the specified number of cycles before advancing the bit to its the next position.
The number of cycles is maintained at each of the bit’s walking positions.
Change the specified number of cycles by entering a value in the text box or
using the numeric spinner.
Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change the blink length
by entering a value in the text box or using the numeric spinner.

The following settings applies when the Compression & Dedup pattern is selected:
Random Seed

Seed – Select the check box to specify a 32-bit random number seed value.
Enter a random seed value by entering a value in the text box or using the
numeric spinner.

Compression and Deduplication Settings
Compression / Deduplication / Both radio buttons – Select the option that your
testing requires. Select Compression for compression testing only; select Dedu-
plication for deduplication testing only; or select Both for both of the previous
options. This selection affects which of the following compression/deduplication
options are active.
Entropy Strength – Specifies how compressible the payload is.
0 (no entropy, most compressible) to 100 (most entropy, least compressible). It
basically defines the percentage of original data that is written after compression
is applied. Change the entropy strength by entering a value in the text box or

Table 12 Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 158 Version 7.8 July 2023

using the numeric spinner.
For example, when the value is set to 25, this results in data output that is about
25% of the original data size after compression with typical data compression
algorithms.
The default value is 100.
Dedup % – Specifies the percentage of written data that can be deduplicated by
the target device. The percentage of duplicated data blocks can be specified
from 0 to 100 percent. Change the dedup percentage by entering a value in the
text box or using the numeric spinner. For example, using a value of 30 results in
about 70% of generated data being unique and about 30% being filled from a
pool of duplicate blocks that can repeated (thus be deduplicated by the target
device.) The default value is 0.
Duplicate Block – Sets the number of unique blocks in the duplicate block pool to
draw from. Change the number of unique blocks by entering a value in the text
box or using the numeric spinner. The block correlates with whatever dedup
block size that is used by the target's dedup engine and the default block size is
set to 8KB. From the second time a block from this pool is written out, it can be
deduplicated. The default value is 1.
Dedup Block Size – Specifies the dedup block size. It should be set to whatever
the value the target storage device’s deduplication system uses. Change the
block size by entering a value in the text box or using the numeric spinner. The
“units” list allows you to select either kilobytes (KB) or megabytes (MB). The
default for MLTT is 8 kilobytes. The maximum allowable dedup block size is
1032MB.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the

Chapter 3 Using the Configuration Editors
Socket Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 159

listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option. This is useful when using any of
the modes that create multiple tests with one configuration file (i.e. ranged values, cycle
read/write modes, or multiple data patterns, etc.)

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 160 Version 7.8 July 2023

TCP App Simulation Configuration Editor
The TCP App Simulation configuration editor allows you edit settings for emulating TCP
traffic by using transactional data instead of read/write mixes.

To open the editor, double-click the TCP App Simulation configuration that you added to
the User Configuration folder in the Configurations area. You may also use one of the
methods discussed in “Using the GUI Configuration Editors” on page 102.

The editor has six tabs for specifying testing parameters:

The description of each of these tabs and its parameters in the following pages.

General Tab
The General tab shows the following settings for this configuration editor.

Startup Options –

Initial Sample Delay – Sets the delay time between starting the test and the first
sample collection. This delay allows devices the allotted time to get setup. The H
(Hour), M (Minute), and S (Second) numeric spinners allow you to delay the start of
the testing up to 23 hours, 59 minutes, and 59 seconds.

Throughput Limitation – sets the limitations for the maximum I/O throughput

Infinity – sets the maximum I/O throughput to have no limitations.
Every Target – sets the Max I/O Throughput value to apply to every target.
Every Thread – sets the Max I/O Throughput value to apply to every thread.
Max I/O Throughput – provides the maximum I/O throughput limitation value that is
applied to every target or thread.

External Application – runs any application of your choosing after every test has been run.
For example, if you want to run an independent application to collect data (such as a log
file) from a device, you can use this to start the application.

The Run External Application After Test check box must be selected before you can select
the application and wait times.

NOTE
Some of the options on the editor may be grayed out based on the methodology
selected or other option dependencies. The editor opens in the same mode, either in
basic or advanced, depending on the mode when it was closed.

– “General Tab” on page 160
– “I/O Payload Tab” on page 161
– “I/O Behavior Tab” on page 163

– “Patterns Tab” on page 165
– “Comments Tab” on page 169
– (“Command Lines Tab” on page 169

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 161

Application allows for you to browse to and select the desired application.
Wait for External Application allows you to input a period to wait for the application to
start to run. Tests tools will continue testing once the external application begins
running.

I/O Payload Tab
The I/O Payload tab shows the basic parameters for a Test Tool test, such as the testing
threads, requests from the client, responses from the server side, and the logging level
selections. Queue depth is also available after other parameters on the tab are changed.

Performance performance mode – Select the Enable Performance mode check box to
enable the performance mode. This mode increases the speed of testing by optimizing the
use of internal memory buffers. When this check box is selected, the following settings are
automatically set:

Testing Threads – Set the threads for testing. Each thread executes a single I/O at a time.
The number of threads successfully run is dependent on the available memory resource.
The practical limitation also depends on the target capabilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

You can also set a range of threads to test by selecting the Test a Range of Threads check
box. Set the Thread Count Start and the Thread Count End values and then set the Adding
or Multiplying values. The adding/multiplying value increments the tested threads through
the specified range from the start to the end. Refer to “Test a Range Controls” on page 105
for more information about the Adding and Multiplying selections.

Requests (from client side) - Add or remove requests from the client side.

To add a request:

Table 13 Performance Mode Settings

GUI Setting Command Line Setting

I/O Marking and Signing is set to No I/O Markings
No I/O signatures are applied to each sector of every write.

-u (page 233)

Data Compare Mode is set to Disable Data Comparisons
Data comparisons are turned off.

-n (page 233)

I/O Behavior is set to Keep File Handles Open Between I/Os
Keeps the target file descriptor (handle) open rather than the default
behavior of closing and re-opening it after each FOP.

 -o (page 218)

Use Pattern Reversals check box is not selected (cleared)
Leaves the data patterns reversal after each FOP (forward, then
backward) turned off.

-N (page 228)

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 162 Version 7.8 July 2023

1 Click Add.

2 Adjust the settings for the request by specifying size and traffic percentage.

3 Select the Rebalance to 100% button to balance the traffic across the requests.

To remove a request:

1 Select the request from the list.

2 Click Remove.

Responses (from server side) - Add or remove responses from the server side.

To add a response:

1 Click Add.

2 Adjust the settings for the response by specifying size and traffic percentage.

3 Select the Rebalance to 100% button to balance the traffic across the responses.

To remove a response:

1 Select the response from the list.

2 Click Remove.

Logging Level – Select the type of logging you want for the configuration to indicate the
level of information to be posted to the log file. The default option posts the maximum
amount of information which is helpful for analyzing errors.

Standard logfile generation/output – Default option, includes detailed headers and
console performance output.
Outputs to logfile in test performance format (minimal logging) – Removes headers
and logs performance output only.
No outputs to logfile, minimal screen outputs, PRF log summary – No .log file gener-
ated, and logs minimal screen output.
Disable CSV log – Standard logging, but .csv file will not be created.
Single line output with system name, performance, and errors – Includes system
name and other details on single output lines for easier importation or parsing.
Disable completion statistics in PRF file – Disables completion calculations and
output. In IOPS intensive tests where the CPU is heavily taxed, using this option may
result in a slight performance gain.
Enable logging of informational events in Windows event log – This option will send
informational output to Windows event log, such as test start and stop details.

Command Line – As options are selected, the equivalent command line settings appear in
the textbox. See Chapter 4 “Using the Command Line Switches” for details of the
command line settings.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 163

I/O Behavior Tab
The I/O Behavior tab allows you to specify Coordinated Burst Mode, Transactions, I/O
Behavior, Triggering, and Error Handling options based on test results.

Coordinated Burst Mode – enable this option by selecting the Enable check box.

In coordinated burst mode, I/O threads are coordinated such that all threads send
their requests to their remote targets at the same time. This can cause the remote
peers to simultaneously send back a large amount of data. This can cause the so-
called “TCP incast” condition where the switch must drop some incoming packets
and end up with severe under-utilization of actually available bandwidth. In coordi-
nated burst mode, the coordinator also waits for all threads to receive their replies
from the remote targets before the next burst signal. The completion of one request-
response data transfer by all threads combined is a coordinated burst.

Once Coordinated Burst Mode is enabled, select either Stand Alone or In a Session.

In Stand Alone mode, the sock process does not coordinate with other sock processes.

While In a Session mode, the burst for all coordinators in the session (multiple sock
processes from different machines) can be coordinated by a master coordinator. These
coordinators must specify a same session ID.

While In a Session mode, slave coordinators signal their I/O threads to begin the burst
only when receiving a signal from the designated master coordinator in the same session.
A session is designated by a session ID, which is an arbitrary string chosen by the user.
A coordinator in a session ignores any communication from coordinators in different
sessions. Some notes and restrictions exist for coordinated burst mode:

– Due to the use of broadcast UDP messages, only 1 session controlled sock
process can run per host (you can have as many standalone coordinator sock
processes per host, though).

– All coordinators (sock) participating in a same session must be in the same
subnet (due to the UDP broadcast usage for control messages.) The target
systems can be in any subnet as long as they can be reached by sock.

– Slave coordinators will ignore any Specify Burst Interval setting since they only
wait for the "go" signal from the master.

Transactions – Select the options for transactions in this panel.

1 Select Specify the number of transactions per connection to set minimum and
maximum number of transactions.

2 Set the Minimum transactions.

NOTE
The master coordinator is designated at the test plan’s run time. The first session listed
in the Sockets folder of the test plan is designated as the master.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 164 Version 7.8 July 2023

3 Set the Maximum transactions. As an alternative, you can select the Use minimum
check box to use the minimum transactions number as the maximum value also.

I/O Behavior – Modify the behavioral aspects of I/O in a test.

Specify Burst Interval – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the time between bursts. This selection is available
when Coordinated Burst Mode is selected.
Specify Thread Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before issuing the next thread. This requires a
multi-threaded test definition.
For the start delay: 1) The first thread is issued. 2) There is a pause (for the time
value of the start delay.) 3) The next thread is issued. 4) There is a pause (for the
time value of the start delay.) 5) The next thread is issued. 6) and so forth.
Specify Target Start Delay – Select the check box and edit the time value in Hours,
Minutes, and Seconds to set the delay before starting an I/O to the next target. This
requires multiple targets in the test plan.
Retry Failed I/O – Select the check box and specify the number retries for failed I/Os.

Retry Delay – When Retry Failed I/O is selected, edit the time value in Hours,
Minutes, and Seconds to set the delay between retries.

Triggering – Set up the triggers during your test. It instructs the tools to send a write I/O to
the target device on critical errors with the idea that an analyzer can be set to trigger on
the write data. It also saves the contents of the read and write buffers for the transaction.
The data value to trigger on occurs in the first two words of the data frame. The options
associated with this switch are:

Disable Triggering – disables the triggering option.
Write 0xCACACACA 0xCACACACA on Data Corruption
Write 0xCACACACA 0xDEADBEEF on I/O Error – Writes 0xCACACACA 0xCACA-
CACA for data corruption trigger and 0xCACACACA 0xDEADBEEF for I/O error
trigger.
Writes 0xDEADDEAD 0xDEADDEAD on Data Corruption
Write 0xDEADDEAD 0xDEADBEEF on I/O Error – Writes 0xDEADDEAD 0xDEAD-
DEAD for data corruption trigger, and 0xDEADDEAD 0xDEADBEEF for I/O error
trigger.
Select any of the two previous options to continue testing if data corruption or I/O
error are detected, but generate a trigger. A write command is sent to the target
device on critical errors with the idea that an analyzer can be set to trigger on the
write data. It also saves the contents of the read and write buffers for the transaction
and are also extremely useful with regard to debugging and analysis. The data value
to trigger on occurs in the first two words in the data transfer. Because the data frame
is consistent with FC or serial storage, but not parallel storage testing, the trigger can
be used to catch I/O disruptions on an analyzer. The I/O trigger is sent when a halt or
stuck I/O is detected.
Stop Testing Immediately - No Trigger Written – Exits the application immediately and
no trigger is written.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 165

Write Default (0xCACACACA) Trigger and Exit – Writes default (0xCACACACA) trigger
and exits immediately.
Trigger External Application – Executes external application when triggers are
detected. Enter the application in the Application text box. Enter the arguments to
use when running an external Application in the Arguments text box.
This last option can be used to trigger the Xgig Analyzer to start (trigger) or stop
capture.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application to triggeranalyzer.cmd and enter the arguments
as “My Domain(1,1,1)” XGIG01001234 in the Arguments text box.See
“-! (or -#) Enable Analyzer trigger writes” on page 240 for additional information.

Error Handlers – allow you to specify error handlers.

To add an error handler:

1 Click Add.

2 Select the Handled Error Value from the drop-down list.

3 Select the Label Value as an Error, Warning, or Information.

4 Select the Trigger behavior from the drop-down menu.

5 Select Specify Trigger Pattern to enter the trigger pattern.

6 Specify the Exit Mode from the drop-down list.

7 Select Specify Retries to set number of retries for that error handler.

To remove an error handler:

1 Select the error handler from the Error Handlers list.

2 Click Remove.

Patterns Tab
The Patterns tab allows you to add specific patterns to the test, such as flip/flop patterns,
inverted patterns, pattern reversals, data scrambling, or unique data patterns.

Available Patterns – This pane on the upper left of the tab page lists the patterns available
for the tests. Several folders are displayed for each available category. Click on the plus/
minus sign beside the category type folder to show the list of patterns available in that cate-
gory.

Selected Patterns – This pane on the upper left of the tab page shows the selected patterns
for the current test configuration. This pane displays the test description, the test number,
and the command line for the test.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 166 Version 7.8 July 2023

Figure 66 Available Patterns and Selected Patterns

To add a pattern for the current test configuration, click the desired pattern name in the
Available Patterns pane and drag it into the Selected Patterns pane. You can also click a
folder and drag it to the Selected Patterns pane to add all of the patterns in the folder.

To remove a pattern from the Selected Patterns pane, select it and press Delete on your
keyboard. You can select multiple patterns to delete using the keyboard’s Shift or Ctrl
buttons.

Pattern Editor Tab

This tab shows the description and the settings for the selected pattern in the Selected
Patterns pane. The description of the selected pattern is displayed directly beneath the tab
name. The options change for the various types of patterns. Select the options for the
specific test being performed.

Invert Patterns – This option causes a bit inversion of the data pattern with each tran-
sition cycle and is often used to create bit-blink variations over bus architectures.
Use Pattern Reversals – Most data patterns reverse after each FOP (forward, then
backward). In some tests (multi-mode, for example), data pattern reversals may look
like false data corruptions. Reversals should be allowed anytime data comparisons
are being performed as a means of insuring that stale data is not being read.
Reset Pattern Each Cycle – This option causes a “flip/flop” variation to occur within
the blinking data pattern. The term “flip/flop” means that the pattern starts at an initial
value, inverts (blinks) the value, returns to the initial value, then walks a bit and
repeats the sequence.
Scramble Data – Shows options to pre-scramble data patterns according to SAS or
SATA specifications. When these patterns are written by MLTT, hardware scrambling
will have the effect of de-scrambling the data into the desired pattern. This is an
effective means of signal integrity testing on these architectures when combined with
the Fibre Channel data patterns. The SAS and SATA options will automatically use
default frame data lengths for the scrambler reset. The data length/reset interval can
be overridden by specifying the data length in bytes.

No Data Scrambling – No scrambling of data patterns.
SAS Data Scrambling – Pre-scrambles data patterns according to SAS specifica-
tions.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 167

SATA Data Scrambling – Pre-scrambles data patterns according to SATA specifi-
cations.
Scramble Reset Interval – When you specify a reset interval, you override the
data length/reset interval for the scrambled pattern. Select the Specify Reset
Interval check box and then edit the number to specify the data length. The size
can be set to Bytes, KB, MB, GB, or Units from the drop-down menu. In this case,
Units refers to a block size that is reported back from the target device; for
example, a block sizes of 512 bytes or some other block size that is standard to
the target.

Data Pattern Cycle Length – The cycle length indicates the number of times to repeat
each cycle of a data pattern before moving to the next unit. Select the Cycle Data
Pattern check box and set the cycle length. In general, the unit of data pattern refers
to its length in bytes or bits. An example use of this option is to run an 8-bit pattern
four times to produce, effectively, a 32-bit pattern. In this case, each byte is run four
times before moving on to the next byte.
Phase shift – This pertains to most blinking data patterns. If the Use Default Phase
Shift or Specify Phase Cycle Length options are selected, the data pattern shifts at the
specified cycle length, such that the square wave, created by the on/off bits in the
blinking byte values, reverses. The frequency of this shift is determined by the cycle
length setting. Cycle length multiplied by pattern length determines the shift
frequency.
To use this feature, select either Use Default Phase Shift or Phase Cycle Length.
When Specify Phase Cycle Length is selected, enter the number of cycle units to run
before doing the phase shift. Change the number of units by entering a value in the
text box or using the numeric spinner.
Data Pattern Specification – Allows you to specify a static value to use as the static
repeating pattern if you don’t want to use with the default. All data patterns that use
the Data Pattern Specification field default to an all-zero value in the GUI (the
length depends on the size of the repeating value data pattern, but it always defaults
to all zeros).
The Data Pattern Specification setting corresponds to the CLI data pattern option
"-y<hex value>", which does default to the thread number if it is not explicitly set in a
CLI command (but only in the CLI). This is repeated continuously. Change this value
using the numeric spinner.
Random Seed – Specifies an initialization value for the pseudorandom number gener-
ator used to generate a random pattern.
Walking Bit Options – This walks an opposing bit across the sequence when the
pattern is a blinking pattern.

NOTE
Each of the Walking Bit options are shown in Table 14. The opposing bits are shaded in
the table so the walking effect can be seen easily.

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 168 Version 7.8 July 2023

Do Not Use Walking Bits – Walking bits are not used.
Walk Bits on ‘ON’ Cycle – Walking bits only walks “0” across the “1’s” cycle.
Walk Bits on ‘OFF’ Cycle – Walking bits only walks “1” across the “0’s” cycle.
Walk Bits on Both Cycle – Walking bits are walked across both cycles.
Hold Pattern for cycles before walking – Keeps the walking bit in its position for
the specified number of cycles before advancing the bit to its the next position.
The number of cycles is maintained at each of the bit’s walking positions.
Change the specified number of cycles by entering a value in the text box or
using the numeric spinner.
Set Blink Length – Sets the length of the “ON” (‘1’) bits. Change the blink length
by entering a value in the text box or using the numeric spinner.

The following settings applies when the Compression & Dedup pattern is selected:
Random Seed

Seed – Select the check box to specify a 32-bit random number seed value.
Enter a random seed value by entering a value in the text box or using the
numeric spinner.

Compression and Deduplication Settings
Compression / Deduplication / Both radio buttons – Select the option that your
testing requires. Select Compression for compression testing only; select Dedu-
plication for deduplication testing only; or select Both for both of the previous
options. This selection affects which of the following compression/deduplication
options are active.
Entropy Strength – Specifies how compressible the payload is.
0 (no entropy, most compressible) to 100 (most entropy, least compressible). It
basically defines the percentage of original data that is written after compression
is applied. Change the entropy strength by entering a value in the text box or

Table 14 Walking Bits Using an 8-bit Blinking Example

Do Not Use
Walking Bits

Walk Bits
on ‘ON’ Cycle

Walk Bits
on ‘OFF’ Cycle

Walk Bits
on Both Cycle

00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111
00000000
11111111

00000000
01111111
00000000
10111111
00000000
11011111
00000000
11101111
00000000
11110111
00000000
11111011
00000000
11111101
00000000
11111110

10000000
11111111
01000000
11111111
00100000
11111111
00010000
11111111
00001000
11111111
00000100
11111111
00000010
11111111
00000001
11111111

10000000
01111111
01000000
10111111
00100000
11011111
00010000
11101111
00001000
11110111
00000100
11111011
00000010
11111101
00000001
11111110

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 169

using the numeric spinner.
For example, when the value is set to 25, this results in data output that is about
25% of the original data size after compression with typical data compression
algorithms.
The default value is 100.
Dedup % – Specifies the percentage of written data that can be deduplicated by
the target device. The percentage of duplicated data blocks can be specified
from 0 to 100 percent. Change the dedup percentage by entering a value in the
text box or using the numeric spinner. For example, using a value of 30 results in
about 70% of generated data being unique and about 30% being filled from a
pool of duplicate blocks that can repeated (thus be deduplicated by the target
device.) The default value is 0.
Duplicate Block – Sets the number of unique blocks in the duplicate block pool to
draw from. Change the number of unique blocks by entering a value in the text
box or using the numeric spinner. The block correlates with whatever dedup
block size that is used by the target's dedup engine and the default block size is
set to 8KB. From the second time a block from this pool is written out, it can be
deduplicated. The default value is 1.
Dedup Block Size – Specifies the dedup block size. It should be set to whatever
the value the target storage device’s deduplication system uses. Change the
block size by entering a value in the text box or using the numeric spinner. The
“units” list allows you to select either kilobytes (KB) or megabytes (MB). The
default for MLTT is 8 kilobytes. The maximum allowable dedup block size is
1032MB.

Hexadecimal Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in hexadecimal
format.

Binary Preview Tab

This tab displays the selected data pattern in the Selected Patterns pane in binary format.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the

Chapter 3 Using the Configuration Editors
TCP App Simulation Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 170 Version 7.8 July 2023

listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option. This is useful when using any of
the modes that create multiple tests with one configuration file (i.e. ranged values, cycle
read/write modes, or multiple data patterns, etc.)

Chapter 3 Using the Configuration Editors
Network CLI Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 171

Network CLI Configuration Editor
The Network CLI configuration editor saves sock command lines so the command lines
can be sent from the configuration editor.

To open the editor, double-click the Network CLI configuration that you added to the User
Configuration folder in the Configurations area. You may also use one of the methods
discussed in “Using the GUI Configuration Editors” on page 102.

The editor has two tabs for specifying testing parameters and information:

Command Line Tab
The Command Line tab allows you to enter sock commands. This is useful when you want
to run a command from the GUI.

The Paste button pastes a previously-copied command line to the configuration editor.

The Copy button copies the configuration editor’s command line once it is selected.

The Network CLI Configuration editor only accepts sock commands. For pain and maim
commands, refer to “Storage CLI Configuration Editor” on page 146.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

NOTE
The sock commands sent from this editor do not have error checking. If invalid com-
mands are entered and sent, these commands are ignored and are not reported.

– Command Line – Comments

Chapter 3 Using the Configuration Editors
Format and Secure Erase Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 172 Version 7.8 July 2023

Format and Secure Erase Configuration Editor
The Format and Secure Erase configuration editor erases the data on a drive leaving it in
a clean state after the test process. Using the Format and Secure Erase configuration
results in a complete cleaning which means EVERYTHING on the drive will be erased.

To use the "Format and Secure Erase" configuration option select it from the "New Config-
uration" icon or right-click menu to open the editor. It is also possible to use one of the
methods discussed in “Using the GUI Configuration Editors” on page 102.

The editor has three tabs for specifying testing information and parameters:

SE Operation Tab
The SE Operation tab allows you to select the type of secure erase that you want to
perform. Optionally, you may provide a time-out value to end the test if the erasure opera-
tion has not completed in the specified time.

Mode – sets the erasure level for the solid state drive used as the target. The erasure levels
are:

ATA Devices:

Security Erase
Enhanced Security Erase

SCSI/NVMe Devices:

Sanitize Block Erase
Sanitize Cryptographic Erase
Sanitize Overwrite with Invert=0, Overwrite count =1
Sanitize Overwrite with Invert=1, Overwrite count =1
Sanitize Overwrite with Invert=1, Overwrite count =2
SCSI Format Unit / NVMe Format NVM PI Type=0
SCSI Format Unit / NVMe Format NVM PI Type=1
SCSI Format Unit / NVMe Format NVM PI Type=2
SCSI Format Unit / NVMe Format NVM PI Type=3

NOTE
The Individual Test Setup settings in the Planning Group Editor (shown in Figure 37 on
page 71) and the Test Plan Editor (shown in Figure 38 on page 74) have no effect on
the Format and Secure Erase configuration.

– “SE Operation Tab” on page 172
– “Command Lines Tab” on page 175

– “Comments Tab” on page 175

Chapter 3 Using the Configuration Editors
Format and Secure Erase Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 173

Based on the PI type, you will use the Secure Erase SCSI Device’s Format Unit or NVMe
Format NVM selections in conjunction with the Testing Style Synchronous (Pain) drop-
down list selection on the I/O Payload tab. This table provides guidance with how these
settings are used together.

NOTE
At the time of the MLTT 7.4.0 release, Windows does not support NVMe Protection
Information or metadata

Format Unit or
Format NVM

PI Type
Valid Testing Style
Selections

Invalid Testing Style
Selections (applies to
SCSI targets, not NVMe
targets)

PI Type=0 SCSI /NVMe Passthrough
Off
SCSI READ/WRITE 10
SCSI READ/WRITE 10 +
FUA
SCSI READ/WRITE 16
SCSI READ/WRITE 16 +
FUA
or
NVMe READ/WRITE
NVMe READ/WRITE + FUA

SCSI READ/WRITE 32
SCSI READ/WRITE 32 +
FUA

PI Type=1 SCSI READ/WRITE 10
SCSI READ/WRITE 10 +
FUA
SCSI READ/WRITE 16
SCSI READ/WRITE 16 +
FUA
or
NVMe READ/WRITE
NVMe READ/WRITE + FUA

SCSI READ/WRITE 32
SCSI READ/WRITE 32 +
FUA

PI Type=2 SCSI READ/WRITE 32
SCSI READ/WRITE 32 +
FUA
or
NVMe READ/WRITE
NVMe READ/WRITE + FUA

SCSI READ/WRITE 10
SCSI READ/WRITE 10 +
FUA
SCSI READ/WRITE 16
SCSI READ/WRITE 16 +
FUA

Chapter 3 Using the Configuration Editors
Format and Secure Erase Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 174 Version 7.8 July 2023

Perform full device TRIM or UNMAP if secure erase operation fails check box enables
a fall-back to full-device TRIM command for ATA and UNMAP command for SCSI and
NVMe devices if the specified erase command fails. For example, if the Security Erase
command fails on a SATA drive because it is in Security Frozen state, this option sends a
TRIM command for every LBA as a fall-back erase method.

This option requires valid targets to be specified. An ATA device must be in security state
"SEC1" where the security features must be supported but not enabled or in some locked
state. (Security states are defined in the INCITS ATA/ATAPI Command Set 3
documentation - refer to http://www.t13.org.) For example, it is not possible to perform
Security Erase if the device is in Security Frozen or Security Locked state.

Standard erase for ATA, format unit for SCSI, or format NVM for NVMe –
- For ATA devices, this selection goes through and marks each cell as empty.
- For SCSI devices, this selection requests that the device server format the

medium into application accessible logical blocks.
- For NVMe drives, this selection sends a NVMe Format Namespace admin

command.
Enhanced erase for ATA, sanitize for SCSI, or sanitize for NVMe –

- For ATA devices, this selection writes predetermined data patterns (set by
the manufacturer) to all user data areas, including sectors that are no longer
in use due to reallocation.

- For SCSI devices, this selection sends a SCSI sanitize command with the
user specifications set.

- For NVMe devices, this selection will request a NVMe sanitize command to
be sent with the user specifications set.

PI Type=3 SCSI READ/WRITE 10
SCSI READ/WRITE 10 +
FUA
SCSI READ/WRITE 16
SCSI READ/WRITE 16 +
FUA
or
NVMe READ/WRITE
NVMe READ/WRITE +FUA

SCSI READ/WRITE 32
SCSI READ/WRITE 32 +
FUA

Note: If SCSI/NVMe Passthrough OFF is selected for any PI Type, then the OS,
not MLTT, handles the metadata and PI.

Format Unit or
Format NVM

PI Type
Valid Testing Style
Selections

Invalid Testing Style
Selections (applies to
SCSI targets, not NVMe
targets)

http://www.t13.org

Chapter 3 Using the Configuration Editors
Format and Secure Erase Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 175

Time Out – Sets the Max allowed time (a time-out value) which will end the test if the
erasure operation has not completed in the specified time. If the erase operation is not
completed, the program will exit with the TIMEOUT_ERROR program exit code. If no time
out value is set (Max allowed time is left in the default value of 0H 0M 0S), there is no active
time out setting and the erasure operation is allowed to run until it is complete.

You can set the maximum time allowed by entering the value or clicking the Max allowed
time numeric spinner.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the
listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option.

Chapter 3 Using the Configuration Editors
Trim Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 176 Version 7.8 July 2023

Trim Configuration Editor
The Trim configuration erases specified data blocks. It may be run as a target drive pre-
conditioning step before running I/O tests.

Select the "TRIM configuration" option from the "New configuration" icon or right-click
menu to open the editor. You may also use one of the methods discussed in “Using the
GUI Configuration Editors” on page 102.

The editor has three tabs for specifying testing parameters and information:

Trim Operation Tab
The Trim Operation tab allows you to set the parameters for erasing specified blocks from
the target drive.

Threads – sets the number of threads on the drive being pre-conditioned for testing. A trim
command is executed for each specified thread. The number of threads is dependent on
the available memory resource. The practical limitation also depends on the target capa-
bilities.

You can set the thread count (number of threads) by entering the value or clicking the
Thread Count numeric spinner.

Testing Sizes – sets the data block sizes to be erased. Testing Sizes settings include:

Specify Testing Area – Select this button and specify the file size or disk area to erase
per thread.
The size can be set to Bytes, KB, MB, GB, TB, PB, or Units from the drop-down
menu. In this case, Units refers to a block size that is reported back from the target
disk; for example, a block sizes of 512 bytes or some other block size that is standard
to the target.
Test Using the Entire Target – Select this check box to erase the entire data area on
the target drive.

Target Offsets – begins the trim/erase operation at the specified offset.

NOTE
The Individual Test Setup settings in the Planning Group Editor (shown in Figure 37 on
page 71) and the Test Plan Editor (shown in Figure 38 on page 74) have no effect on
the Trim configuration.

– “Trim Operation Tab” on page 176
– “Command Lines Tab” on page 177

– “Comments Tab” on page 177

Chapter 3 Using the Configuration Editors
Trim Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 177

Starting Offset – specifies the starting offset number of the erase operation. Select
from the dropdown menu the unit of the value you specified. The offset value must be
a multiple of the logical block size of the target disk.

Time Out – Sets the Max allowed time (a time-out value) which will end the test if the trim/
erase operation has not completed in the specified time. If the operation is not completed,
the program will exit with the TIMEOUT_ERROR program exit code. If no time out value
is set (Max allowed time is left in the default value of 0H 0M 0S), there is no active time out
setting and the erasure operation is allowed to run until it is complete.

You can set the maximum time allowed by entering the value or clicking the Max allowed
time numeric spinner.

Comments Tab
Enter your comments for the configuration in the comment box of the Comments tab.

Command Lines Tab
The Command Lines tab allows you to display a listing of the command line commands
generated by the GUI configuration. Select the List Command Lines button to display the
listing. The command line listing can be copied by selecting the command lines, right-
clicking on the selection, and choosing the Copy option.

Chapter 3 Using the Configuration Editors
Trim Configuration Editor

 Medusa Labs Test Tools Suite User’s Guide
Page 178 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 179

4

Chapter 4 Using the Command Line Switches

This chapter describes the functionality of each command line switch.
Topics discussed in this chapter are as follows:

• “Syntax” on page 180
• “Basic Switches” on page 181
• “Concurrent Workloads and Workload Groups” on page 192
• “Switches by Category” on page 196

Chapter 4 Using the Command Line Switches
Syntax

 Medusa Labs Test Tools Suite User’s Guide
Page 180 Version 7.8 July 2023

Syntax
You use switches at the command line to enter the parameters you want for your test. A
basic command line entry contains the following:

Application name, target, I/O size, file size, queue depth or thread
count, data pattern

The following example shows the syntax for a test:

pain -f\\.\physicaldrive2 -b512k 100 -t8 -125

where:

pain is the application name.
-f is the target (see “Target Specification” on page 182)
\\.\physicaldrive2 is the target device.
-b512k is the buffer size (see “I/O Size” on page 184)
100 is the file size (see “file_size” on page 186).
-t8 is the thread count (see “Thread Count” on page 188)
-125 is the data pattern (see “--target-partition Target Partition Range” on
page 255)

Command Line Switch Conventions
In the Usage section of each command line switch, the following conventions are used to
convey how each switch is defined:

Courier Font denotes commands, options, and separators that must be entered
exactly as it is shown.

Italic Font denotes a descriptor of required or optional information to be
entered for the desired results.

< > brackets denotes that the information within the brackets is required informa-
tion that must be added to the command.

[] brackets denotes that the information within these brackets is optional infor-
mation that may be added to the command.

IMPORTANT
You can specify the command line switches in any order. All Medusa Labs Test Tools
(MLTT) switches are case sensitive.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 181

Basic Switches
This section describes the switches you use for most test runs. The switches are listed by
function.

Target Specification

“-f Target” specifies the desired target.

I/O Size

“-b Buffer size” specifies the buffer size for each I/O.

File Size

“file_size” specifies the desired “file” size as a number.

Queue Depth

“-Q Queue_Depth (Maim only)” specifies the maximum number of outstanding I/Os when
using Maim.

Thread Count

“-t Thread Count” specifies the number of worker threads.

Data Pattern

“-l Data Pattern” specifies the desired data pattern number.

Online Help

“-h Online Help” displays the online help.

Override Default Session ID

“-A Override Default Session ID” overrides the default session ID in data signatures with
the specified 16-bit ID.

Timestamps

“-U I/O Signature Timestamp Units” sets timestamps in I/O signature in seconds or in milli-
seconds.

License Client Operation

 manages license operation.

Seconds Between Performance Samples

“-Y Seconds Between Performance Samples” specifies the number of seconds between
performance samples displayed on the screen and printed to log files.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 182 Version 7.8 July 2023

Target Specification

-f Target

Usage:

-f<target>

Description:

Use -f to specify the desired target. The target can be a file, logical drive, or physical drive
that resides in the host system or is externally attached via SCSI, USB, FireWire, LAN,
SAN, and others.

When using sock, the target may specify the hostname or an IP (or IPv6) address of a peer
for TCP/IP network I/O.

When running pain -m9 or pain -m10 virtual memory target modes, the target can specify
one or more NUMA nodes.

For physical targets, the target can specify split write and read device paths which can be
useful when testing multi-pathed devices (such as dual-port NVMe controllers with shared
namespaces).

For physical and logical targets, appending a partition modifier defines a strict test area
boundary within the device. This is useful when assigning different test areas within the
same target device to concurrent workloads or test processes.

Default:

If no target is specified, each worker thread creates a file in the current directory.

Examples:

Physical: -f\\.\physicaldrive1

Logical: -f\\.\g:

File: -fg:\file1.dat

Linux device: -f/dev/sdc

NOTE
If the switch is not specified, one file of the specified size is created in the current
directory by each worker thread.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 183

NUMA node (for pain -m9 and pain -m10) : -f1 (where ‘1’ is the NUMA node number)

TCP/IP peer (sock): -fhostname or -f10.23.1.101 or -f10.23.1.80:10.23.1.101
(where 10.23.1.80 is a specific local IP if there is more than one network interface to
choose from).

When specifying an IPv6 address pair, use ‘-’ to separate the local and remote addresses
(e.g. -ffe80::c62c:3ff:fe08:a66c%en0-fe80::221:9bff:fe50:90ec).
For a link-local IPv6 address pair, the scope ID of the outgoing interface must be appended
to the local address (e.g. “%en0” or “%5”).

The tools also support a multi-target mode, where multiple targets can be accessed in a
single process. The Catapult -t switch option performs this automatically.
See “-t Multi-target mode” on page 296. Multiple targets may also be specified manually
in one of several manners:

• Create a text file called “targets.dat” that contains desired targets, one per line.
Catapult can create this file for you. For example:

catapult -p -t

Then pass this file name, with path if necessary, to pain or maim with the -f switch.
pain -ftargets.dat

• You can also specify multiple targets on the command line, separated by commas.
For example:

pain -f\\.\physicaldrive1,\\.\physicaldrive2

• You can also use a prefix system, where a common prefix is terminated with a semi-
colon, followed by suffixes that are comma separated. For example:

pain -f\\.\physicaldrive;1,2,3

• Generate TCP/IP I/O to 10.23.1.101 and 10.23.1.102 from 10.23.1.80.
sock -f”10.23.1.80:10.23.1.;101,102”

Split write/read channels: -f/dev/nvme0n1:/dev/nvme1n1 (the format is -
f<write_channel>:<read_channel>)

NOTE
On Unix systems, the shell interprets ';' as the command separation character; there-
fore, the target name should be quoted. For example, the shell interprets the following:
pain -f/dev/sd;b,c,d

as a sequence of the two commands shown below:
pain -f/dev/sd

b,c,d

To prevent such errors, the target specification must have quotes added as shown:
pain -f"/dev/sd;b,c,d"

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 184 Version 7.8 July 2023

In the above example, /dev/nvme0n1 and /dev/nvme1n1 are Linux block device paths
representing the ports of a dual-port controller with a shared namespace. MLTT writes to
the /dev/nvme0n1 path and reads from the /dev/nvme1n1 path and performs data compar-
ison.

Defining a target partition: -f\\.\physicaldrive1:@10g-200g, -f/dev/
sdc:@10g-100g (format is -f<target>:@<area>)

In the above example, the appended partition specifies an area between byte offsets
10GiB (inclusive) and 200GiB – 1.

If the workload-wide --target-partition is specified, the partition specifier appended to the
target specifier overrides the workload-wide specifier.

If both split write/read channels and partition are specified, only one partition specifier must
be appended at the end: e.g. -f/dev/nvme0n1:/dev/nvme1n1:@10g-100g.

In the following example, first workload performs mapped random-access I/O within the
first 60% of the target while concurrently performing non-uniform buffer size sequential-
access I/O to the remaining 40% of the same target:

pain -%x100 --random-x-map -b4k --full-device -f/dev/nvme0n1:@60%
. -b128k,256k,1m --full-device -f/dev/nvme0n1:@60%-100%

Please refer to “--target-partition Target Partition Range” on page 255 for the partition
area syntax.

 I/O Size

-b Buffer size

Usage:

-b<buffer_size_set>

Description:

Use -b to specify the buffer size for each I/O. This equates to the I/O operation size from
the application level. Typically, this value also corresponds to the “transfer size” at the
protocol level. The “<buffer_size_set>” is a set of one or more size specifiers. If the
set contains exactly one size, then that is the uniform buffer size for all I/Os in the workload.

CAUTION
Physical and logical drive access is destructive! Existing data WILL be overwritten.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 185

If the set contains more than one size, then, for each I/O, MLTT randomly picks a size from
this set of non-uniform buffer sizes.

The “<buffer_size_set>” syntax is as follows:

<size_spec[,<size_spec>[,<size_spec>[,…]]] where a <size_spec> is
specified as a discrete value or a range as [weight@]<buffer_size>[-<buffer_-
size>[.alignment]] where a <buffer_size> is <size[unit]>

The optional weight has the same meaning as it does for custom read/write mix specifica-
tion (“-%”). Please see “Reads, Writes, And Data Integrity Checking” on page 41 for the
explanation on the weight values and how they correspond to percentages. The default
weight value, if not specified, is ‘1’.

In the range form, each I/O picks a random buffer size from the specified range. If an
optional alignment value is specified for the range, then all buffer sizes will be multiples of
this alignment value. The default alignment value, if not specified, is â€œ1uâ€ (see units
below).

g = gigabytes

m = megabytes

k = kilobytes

b = bytes (default)

u = LB (logical block) size units, usually 512 bytes of the target device (commonly 512
bytes for physical drive, 8 bytes for memory targets, 512 bytes for all other target types).

The default unit, if no unit is specified, is bytes (‘B’).

Examples:

-b1m = 1 megabyte (1048576 bytes.)

-b4k = 4 kilobytes (4096 bytes.)

-b8192 = 8 kilobytes

NOTE
For mapped random-access mode, weight values are ignored (i.e. all <size_specs>
have equal weight.)

NOTE
For physical drive targets, buffer sizes and alignment values must be multiples of the
target device's logical block size (usually 512 bytes.) For memory targets, they must be
multiples of 8 bytes. For other types of targets (such as a regular file), they must be a
multiple of 512 bytes.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 186 Version 7.8 July 2023

-b16k-256k = For each I/O, use a random buffer size between 16KB and 256KB. Each
size is a multiple of default alignment value “1u”.

-b10@4k,20@16k,70@64k-1m.16k = 10% of I/Os at 4KB, 20% of I/Os at 16KB,
remaining 70% of I/O sizes are randomly picked values between 64KB and 1M where each
randomly picked size is a multiple of the specified alignment value, 16KB.

-b1@1k-16k.1k,2@64k,7@256k = 1/10 of I/O sizes are randomly picked values
between 1K and 16K where each randomly picked size is a multiple of 1KB, 2/10 of I/Os
at 64K, and 7/10 of I/Os at 256K

-b16k,64k,512k = each I/O randomly picks 16k, 64k, or 512k, where all values have the
same probability of having picked.

Default:

The default buffer size in MLTT is 64 kilobytes (65536 bytes).

file_size

Usage:

file_size

Description:

The desired “file” size is specified as a number, with no preceding switch argument.
You can specify the size in bytes or use a numeric value and unit designator:

g = gigabytes

m = megabytes (default)

k = kilobytes

u = LB (logical block) size units, usually 512 bytes

Examples:

1g

100m

512k

The file size must be at least the same as the I/O size, or a multiple of the I/O size.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 187

Maximum file size is as allowed by the operating system.

The file size can apply to an actual file in file system based testing or the extent of linear
space to utilize on a logical or physical drive. Note that file size will be utilized per thread
(that is, each worker thread in our thread-based tools will utilize the extent specified by the
file size – 8 threads x 100m [-t8 100] would equal 800 megabytes total.) The default file
size varies in each tool.

Default:

The default file size per thread in Pain is 4MB.

The default file size for the single worker thread in Maim is 10MB.

Queue Depth

-Q Queue_Depth (Maim only)

Usage:

-Q<queue_depth>

Description:

Use -Q to specify the maximum number of outstanding I/Os (queue depth) when using
Maim. The maximum number of outstanding (pending) I/Os is dependent on the operating
system and memory resources. The practical limitation also depends on the target capa-
bilities.

Example:

The following switch specifies a queue depth of 8 I/Os to be created by the worker thread.

-Q8

Default:

The default queue depth is one (1).

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 188 Version 7.8 July 2023

Thread Count

-t Thread Count

Usage:

-t<thread_count>[p]

Description:

Use -t to specify number of worker threads in pain, maim, and sock. In sock, this corre-
sponds to the number of concurrent socket connections per sock process. In pain
(synchronous I/O), since each thread dispatches a single I/O at a time, this number roughly
correlates to queue depth. In maim (asynchronous I/O), each thread tries to maintain
concurrent I/O operations specified by -Q so the potential maximum I/O operations in-flight
per target device is the product of the thread count and the queue depth.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 189

Figure 67 Thread Count Command (Threads per Target) Example

Figure 67 shows examples of normal thread count usage (without 'p' suffix) using 3 targets.
For each target, <thread_count> number of I/O threads is created. The total number of
I/O threads created in this case is "#targets x <thread_count>".

Figure 68 shows the [p] option with the <thread_count> command. With 'p' used,
<thread_count> specifies the maximum number of total I/O threads to use per process.
So rather than creating "threads-per-target", it assigns "targets-per-thread". This option is
valid only for Maim.

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 190 Version 7.8 July 2023

Figure 68 Thread Count Command (Threads Per Process) Example

Note that with the "-t4p, 3 targets" case, even though the <thread_count> is 4, it ends up
creating 3 total threads because there are only 3 targets. The actual number of I/O threads
created is adjusted to be at most the number of targets in use.

With the 'p' modifier, the total number of I/O threads is at most the specified
<thread_count> value, no matter the target count.

NOTE
If you specify the special case "-t0p", then the program sets the <thread_count> to the
number of available CPUs. For example, if the system has 4 CPUs, then "-t0p" is
same as "-t4p". If in that same system you also specify "-T2" (i.e. use only the first 2
CPUs), then "-t0p" is same as "-t2p".

Chapter 4 Using the Command Line Switches
Basic Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 191

Default:

The default thread count is -t1..

Data Pattern

-l Data Pattern

Usage:

-l<pattern_number>

Description:

Use -l to specify the desired data pattern number. Data pattern refers to the content of
the application payload. Typically, you would want to indicate a specific data pattern for any
test involving data or signal integrity. The available data patterns are listed in the command
line help and in Appendix A “Data Pattern Numbers” .” Refer to Chapter 6 “Data Pattern
Reference”” for more details on the use of this switch and other related switches.

Default:

The default data pattern varies in each tool.

Chapter 4 Using the Command Line Switches
Concurrent Workloads and Workload Groups

 Medusa Labs Test Tools Suite User’s Guide
Page 192 Version 7.8 July 2023

Concurrent Workloads and Workload Groups
Starting from 7.6.0, MLTT supports running multiple workloads concurrently as well as
groups of workloads that run sequentially once the previous group has finished.

A period “.” separated list of switch options represents workloads that will run concurrently.
A dash “-” separated list of one or more workloads represents workload groups which will
run sequentially.

Concurrent Workloads
It is possible to run multiple workloads at the same time by having a period separated list
of workloads. Within each workload, it is possible to assign different switch options such
as running each workload to different targets or having each workload run with a different
number of threads. There are however, limitations as to what switches are allowed in work-
loads and it should also be noted that some switches apply to all workloads within a work
group.

It is also possible to handle errors using the --handler (“--handler Specify Custom Error
Handling” on page 283) switch with the w option. When errors within workloads are
handled this way, if one of the workloads error out, it will not stop the other workloads (i.e.
the entire group) or the program but will only stop the workload that had an error.

Workload Group Global Options

The following list of switches must be placed within the first workload of a workload group
and will apply to all workloads within a workload group:

– “-d Test Duration in Seconds” on page 199
– “--latency-histogram Collect Latency Histogram” on page 206
– “-M I/O Monitoring Mode” on page 280

Examples:

pain -d30 -f/dev/sdc . -f/dev/sdb

In the example above, a pain test will run for 30 seconds to both /dev/sdc and /dev/sdb.

pain -d30 -f/dev/sdc . -f/dev/sdb - -d60 --latency-histo-
gram=100u,500u,1m,3,5,10 -f/dev/sdc . -f/dev/sdb

NOTE
Due to the artificial assignment of synchronous and asynchronous I/O to separate exe-
cutables, MLTT does not allow the mixing of synchronous and asynchronous I/O in a
process.

Chapter 4 Using the Command Line Switches
Concurrent Workloads and Workload Groups

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 193

For this example, there are two workload groups separated by a hyphen “-”. In the first
workload group, it will run a pain test for 30 seconds to target /dev/sdc and /dev/sdb. Once
that test finishes, it will then move onto the next workload group which is another pain test.
For the second workload group however, it will run for 60 seconds and also collect latency
histogram data while it is running the pain test to both /dev/sdc and /dev/sdb.

First Workload of the First Workload Group

Application Global Options

There are some options the when used will apply to every workload no matter the workload
group. These global application options must be specified before the first use of either
workload delimiter, “.” or “-” (i.e. the first workload of the first workload group). The following
list of command line switches are application global options.

– “--log-utc Coordinated Universal Time(UTC) Timestamps” on page 207
– “-S Seconds to Delay Between Thread Creation” on page 201
– “--sample-delay Specify Sample Delay” on page 203
– “--smart S.M.A.R.T Monitoring” on page 260
– “--x-csv Per-Sample Period CSV Additions” on page 208
– “-Y Seconds Between Performance Samples” on page 203
– --exit-grace-period
– --posix-sigignore
– --target-no-identify
– --tcp-port

Empty Workload Group

In addition to having the ability to place application global options, the first workload of the
first workload group is also the only workload group that is allowed to be empty.

Examples:

pain . -f/dev/sdc -t3

The above command line will run a default pain test for the first group and another pain
test with three threads to /dev/sdc. This is valid input

pain -f/dev/sdc -t3 .

The above command line is not valid since there is an empty workload after the first work-
load.

pain - . -f/dev/sdc -t3

Chapter 4 Using the Command Line Switches
Concurrent Workloads and Workload Groups

 Medusa Labs Test Tools Suite User’s Guide
Page 194 Version 7.8 July 2023

The above command line is not valid since the first workload of the second work group is
empty.

pain - -f/dev/sdc -t3

The above command line is valid since the first workload of the first group is empty, which
is allowed, and the second workload group does not have any empty workloads.

Illegal Workload Options

Non-Workload Options

The following list of switches (and any switch that depends on the specification of these
switches) are non-workload options and therefore can only be specified in the absence of
workload/workload group delimiters “.” and “-”.

– “-h Online Help” on page 204
– “-D Display the Data Pattern” on page 261
– “--io-trace-parse Parse I/O Traces” on page 212
– “--nvme-get-features Get NVMe Features” on page 223
– “--nvme-set-features NVMe Set Features” on page 224
– “--secure-erase Erase the Target Device and Exit” on page 217
– “--trim Send Trim to Target” on page 219
– “-Z License Client Operation” on page 217
– --target-check

Workload Exceptions

The following list of switches (and any switch that depends on the specification of these
switches) will result in workload exceptions and can only be specified in the absence of
workload/workload group delimiters “.” and “-”.

– “--journal Run I/O test with journaling enabled” on page 276
– “-V Reverify Existing Data to a Specified Data Pattern/Verify Journaled Write

Operations” on page 272
– -%T (Sock transaction mode) “-% I/O Profile Specification” on page 235
– -%T: (Sock TCP coordinated burst mode) “-% I/O Profile Specification” on

page 235
– “--cap Limit I/O Throughput” on page 247

Chapter 4 Using the Command Line Switches
Concurrent Workloads and Workload Groups

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 195

Sequential Workload Groups
In addition to being able to run multiple workloads concurrently, it is also possible to run
multiple workload groups sequentially by separating them with a hyphen “-”. When running
workloads this way, all workloads of the previous workload group must exit first before the
next workload group is started.

It is also possible to handle errors using the --handler switch with the g option. When
errors within the workload group are handled this way, if one of the workload groups error
out, it will not stop the entire process (i.e. other workload groups) but will only stop the
workload groups that had an error before moving onto the next workload group.

Rules and Limitations

In addition to all rules and limitations found in “Concurrent Workloads” on page 192, a
workload group must contain at least one valid workload specification.

Examples:

pain -t4 -f/dev/sdb -d10 - -t3 -f/dev/sdc

This is a valid command because all workload groups have at least one valid workload.

pain - -t3 -f/dev/sdc

This is also a valid command because the first workload of the first workload group is the
only one that is allowed to be empty, (“First Workload of the First Workload Group” on
page 193) making it a valid workload.

pain - . -t3 -f/dev/sdc

This is not a valid command because the first workload of the second workload group is
empty which means that there is an invalid workload in the second workload group.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 196 Version 7.8 July 2023

Switches by Category
In this section, the command-line switches are described by category. Within each
category, the switches are listed in alphabetical order. All command line switches
can be divided into the following categories:

• “General Switches” on page 199
– “-d Test Duration in Seconds” on page 199
– “-i Number of Iterations” on page 200
– “-q Control log Output Level” on page 200
– “-S Seconds to Delay Between Thread Creation” on page 201
– “-T Set I/O Thread/CPU Affinity” on page 202
– “-Y Seconds Between Performance Samples” on page 203
– “--sample-delay Specify Sample Delay” on page 203
– “-h Online Help” on page 204
– “-A Override Default Session ID” on page 204
– “-U I/O Signature Timestamp Units” on page 205
– “--steady-state Determine Steady State” on page 205
– “--latency-histogram Collect Latency Histogram” on page 206
– “--log-utc Coordinated Universal Time(UTC) Timestamps” on page 207
– “--x-csv Per-Sample Period CSV Additions” on page 208
– “--io-trace I/O Operation History Trace and Payload Data Logging” on page 208
– “--io-trace-dir Specify a Directory for I/O Trace” on page 209
– “--io-trace-size Specify Maximum Number of I/O Traces” on page 210
– “--io-trace-on-error Specify Action on Error for I/O Trace” on page 210
– “--io-trace-perf Specify Write Types for I/O Trace” on page 211
– “--io-trace-parse Parse I/O Traces” on page 212
– “--io-trace-output-csv Parse I/O Trace into CSV File” on page 212
– “--io-trace-play Streaming a Trace to a Target” on page 213
– “--io-trace-no-prescan Opting out of Initial Prescan” on page 214
– “. Running Concurrent workloads” on page 215
– “- Running Sequential Work Groups” on page 215

• “Stand-alone Switches” on page 217
– “-Z License Client Operation” on page 217
– “--secure-erase Erase the Target Device and Exit” on page 217
– “--trim Send Trim to Target” on page 219
– “--nvme-erase NVMe Format NVM and Sanitize Administration Commands” on

page 220

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 197

• “I/O Characteristic Switches” on page 225
– “-b Buffer size” on page 225
– “-B Sequential I/O Direction Control” on page 227
– “-c Commit or Flush Data” on page 228
– “-g Burst Mode Interval” on page 228
– “-m I/O Call Method Mode Number” on page 229
– “-Q Queue Depth (Maim only)” on page 230
– “-r Read-only Mode” on page 231
– “-ro Read-only with One Write Pass” on page 232
– “-R Read Buffering Mode” on page 232
– “-s Single Sector I/O Mode” on page 233
– “-t Thread Count” on page 233
– “-w Write-only Mode” on page 234
– “-W Write Buffering Mode” on page 235
– “-% I/O Profile Specification” on page 235
– “--ptio SCSI/NVME Pass-through I/O Mode” on page 244
– “--skip Sequential I/O Skip Size” on page 246
– “--cap Limit I/O Throughput” on page 247
– “--perf-mode Performance-optimized mode” on page 248
– “--nvme-io NVMe Commands” on page 248
– “--random-x-map Random Access Map” on page 249
– “--io-repeat I/O Repeat Count” on page 249

• “Target Related Switches” on page 250
– “File Size” on page 250
– “--f Target” on page 251
– “--file-per-thread Create Target Files for each Thread” on page 254
– “-o Keep Target Device or File Open” on page 256
– “-O Override Device Base Offset” on page 257
– “-x Starting Offset” on page 258
– “-X Shared Offset Mode - All Threads Issue I/Os to the Same Offsets” on

page 259
– “--full-device Run to Entire Target Device” on page 260
– “--smart S.M.A.R.T Monitoring” on page 260
– “--nvme-get-log NVMe Get Log” on page 221
– “--nvme-get-features Get NVMe Features” on page 223
– “--nvme-set-features NVMe Set Features” on page 224
– “--nvme-reset-zone ZNS Zone Reset” on page 224

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 198 Version 7.8 July 2023

• “Data Pattern Related Switches” on page 261
– “-D Display the Data Pattern” on page 261
– “-e Custom Blink Pattern Modifier/Duplicate Block Count” on page 262
– “-E Custom Blink Pattern Modifier (walking bit variations)/Entropy Strength” on

page 263
– “-F Custom Blink Pattern Modifier” on page 263
– “-I Invert Pattern Mode” on page 264
– “-j Data Scrambling Mode” on page 264
– “-J Data Scrambling Mode Reset Interval” on page 265
– “-l Specify a Data Pattern Number” on page 265
– “-L Number of Times to Repeat the Data Pattern Cycle/Continuous Fill/Dedup

%” on page 266
– “-N Disable Data Pattern Reversals” on page 266
– “-P Modify Data Patterns with a Phase Shift” on page 267
– “-y Create Data Patterns Based on Various Lengths/Random Seed Value” on

page 268
– “-@ Read Data Pattern from a File/Deduplication Unit” on page 268

• “Data Integrity Related Switches” on page 270
– “-C Comparison Mode” on page 270
– “-n Disable Data Corruption Checking” on page 271
– “-u Disable Unique I/O Marks” on page 271
– “-V Reverify Existing Data to a Specified Data Pattern/Verify Journaled Write

Operations” on page 272
– “--journal Run I/O test with journaling enabled” on page 276
– “--journal-flush-once Journal Only Flushed Once” on page 277
– “--jv-compat” on page 278

• “Error Related Switches” on page 279
– “-H Time to Wait Before Retrying an I/O Operation” on page 279
– “-M I/O Monitoring Mode” on page 280
– “-v Verify/Retry Count” on page 280
– “-! (or -#) Enable Analyzer trigger writes” on page 281
– “--handler Specify Custom Error Handling” on page 283
– “--reopen-on-retry” on page 285

NOTE
Not all switches are available in each tool. Use the online help for a complete listing of
switches applicable to each individual tool.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 199

General Switches
The switches described in this section are the general switch commands.

– “-d Test Duration in Seconds” on page 199
– “-i Number of Iterations” on page 200
– “-q Control log Output Level” on page 200
– “-S Seconds to Delay Between Thread Creation” on page 201
– “-T Set I/O Thread/CPU Affinity” on page 202
– “-Y Seconds Between Performance Samples” on page 203
– “--sample-delay Specify Sample Delay” on page 203
– “-h Online Help” on page 204
– “-A Override Default Session ID” on page 204
– “-U I/O Signature Timestamp Units” on page 205
– “--steady-state Determine Steady State” on page 205
– “--latency-histogram Collect Latency Histogram” on page 206
– “--log-utc Coordinated Universal Time(UTC) Timestamps” on page 207
– “--x-csv Per-Sample Period CSV Additions” on page 208
– “--io-trace I/O Operation History Trace and Payload Data Logging” on page 208
– “--io-trace-dir Specify a Directory for I/O Trace” on page 209
– “--io-trace-size Specify Maximum Number of I/O Traces” on page 210
– “--io-trace-on-error Specify Action on Error for I/O Trace” on page 210
– “--io-trace-perf Specify Write Types for I/O Trace” on page 211
– “--io-trace-parse Parse I/O Traces” on page 212
– “--io-trace-output-csv Parse I/O Trace into CSV File” on page 212
– “--io-trace-play Streaming a Trace to a Target” on page 213
– “--io-trace-no-prescan Opting out of Initial Prescan” on page 214

-d Test Duration in Seconds

Usage:

-d<seconds>

Description:

Use -d to limit the duration of a test to the specified number of seconds.
If -i is also specified, then the program terminates upon reaching the first exit condition.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 200 Version 7.8 July 2023

Default:

The default behavior of MLTT is to run until manual intervention or a critical error is encoun-
tered.

-i Number of Iterations

Usage:

-i<iterations>

Description:

Use -i to limit the run time of a test to the specified number of iterations before exiting.
An iteration, called a file operation (FOP), is a complete write and read of an entire file or
specified extent on a logical or physical drive. If -d is also specified, then the program
terminates upon reaching the first exit condition. For non-sequential I/O operations, -i
affects only the mapped random-access mode (see “--random-x-map Random Access
Map” on page 249). For all other types of random-access modes, -i has no effect and is
ignored.

Default:

The default behavior of MLTT is to run until manual intervention or a critical error is encoun-
tered.

-q Control log Output Level

Usage:

-q<mode_number>

Description:

Use -q (Quiet Mode) to control the amount of information printed to the screen and log
files. The available mode numbers are:

Mode Number Description
0 Standard log file generation/output (default)

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 201

In general, it is best to leave this setting at the default in order to have the greatest possible
amount of information available in the event an error is encountered.

Default:

0 is the default mode number, which is the standard log file generation and output.

-S Seconds to Delay Between Thread Creation

Usage:

-S<thread_delay> or
-S.<thread_delay> or
-S<thread_delay>.<target_delay>

Description:

Use -S to specify the number of <thread_delay> seconds to delay between each worker
thread’s starting I/O, or <target_delay> seconds to delay thread starting I/O to each
target device, or both use <thread_delay> and <target_delay>. You might need to use
this switch in some scenarios if the system does not tolerate the burst of initial threads.

Default:

The default behavior of MLTT is to launch all worker threads at once.

1 Outputs to log file in test performance format
2 No outputs to log file, minimal screen outputs
3 Disable CSV log
4 Single line output with system name, performance, and errors
5 Disable completion statistics in PRF file
6 Enable logging of informational events in Windows event log

Mode Number Description

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 202 Version 7.8 July 2023

-T Set I/O Thread/CPU Affinity

Usage:

-T<number_of_CPUs>

Description:

Use -T to specify the number of CPUs to use for I/O threads. In addition to limiting the
number of CPUs used, this option causes a thread to always run on the same CPU.
The number of CPUs specified must be equal to or less than the number of CPUs on
the system and equal to or less than the total number of I/O threads.

Use -T<N>n as a convenience notation to set the CPU affinity of the I/O threads to the
CPUs in the specified NUMA node “<N>”.

Examples:

Given a system with 2 quad-core CPUs (8 “logical” CPUs total):

pain -t16 -T2

The example above specifies that only the first 2 logical CPUs to be used for all 16 I/O
threads. In addition, specifying -T prevents thread migration among CPUs. Therefore, in
this example, the first thread always runs on the first CPU, the second thread always runs
on the second CPU, the third thread always runs on the first CPU, and so on.

Given the same 8 CPU system:

pain -t8 -T8

In this example, all available CPUs are utilized. If -T was not specified, the operating
system might schedule each I/O thread on different CPUs at different times. Because, -T
is specified, the first thread is always scheduled on the first CPU, the second thread is
always scheduled on the second CPU, and so on.

(Note that ‘-T0’ does not mean thread/CPU affinity is not set. It is reserved for a special
meaning that has not been implemented).

The user can also specify -T with selective CPU numbers.
For example: -T:1,4 or -T:1-4.

On a NUMA systems:

pain -t8 -T2n

In this example, only the CPUs that belong to the second NUMA node will be utilized.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 203

Default:

If -T is not specified in the command line, then -T is not set (“do not set thread/CPU
affinity”).

-Y Seconds Between Performance Samples

Usage:

-Y<seconds>

Description:

Use -Y to specify the number of seconds between performance samples displayed on the
screen and printed to log files.

Example:

-Y1 logs performance samples once per second to the screen.

Default:

Performance samples are taken at 5 second intervals by default.

--sample-delay Specify Sample Delay

Usage:

--sample-delay=<seconds>

Description:

Use --sample-delay to specify the delay performance sample collection by specified
number of 'seconds'.

Default:

--sample-delay=0

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 204 Version 7.8 July 2023

-h Online Help

Usage:

-h

Description:

Use the -h switch to display online help.

Example:

-h

This example displays the online help.

-h -v

This example displays the online help for the -v option.

-A Override Default Session ID

Usage:

-A

Description:

Use the -A switch to override the default session ID in data signatures with the specified
16-bit ID.

Default:

Not set

NOTE
-? can be used as an alternative to using the -h command to display the online help.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 205

-U I/O Signature Timestamp Units

Usage:

-U[m]

Description:

Use the -U switch to set timestamps in I/O signature in seconds (-U) or
in milliseconds (-Um).

Default:

Not set

--steady-state Determine Steady State

Usage:

--steady-state=[r.][.tag]<iops|mbps|lat>[:<%range_devia-
tion,%slope_deviation>]

Description:

Determine steady state per target across a measurement window of 5 runs.

The options are:

r If specified, start a new measurement window. If not specified,
the measurement window continues from previous runs.

tag An arbitrary string that is not 'r', 'iops', 'mbps' or 'lat' which can
be used to uniquely identify a steady state testing case. This
tag will be added to the steady-state.csv file name.

iops Track IOPS for steady state.
mbps Track MBPS for steady state.
lat Track I/O latency for steady state.
%<range_deviation> Allowed deviation of minimum and maximum tracked values

from the average. Default is 20%.

NOTE
When all targets have reached steady state without error, pain/maim exits with exit code
100 which can be monitored using a driving script.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 206 Version 7.8 July 2023

%<slope_deviation> Allowed deviation of minimum and maximum points in a best
linear fit line through the tracked values. Default is 10%.

Examples:

pain --steady-state=r.iops:20,10 (note the ‘r’ to reset).
pain --steady-state=iops:20,10 (no reset)
pain --steady-state=mbps.MySSDTest:20,10 (Note that “MySSDTest” used as a
tag.)

The following is a sample test script written as a Windows batch file:

@echo off
SetLocal EnableDelayedExpansion
pain -f\\.\physicaldrive1 --full-device -b128k -l35 -u -w -i2 -t8
echo Running initial loop.
pain -f\\.\physicaldrive1 -b4k -w –d60 --steady-state=r.iops -Y1
echo Starting steady state loop.
FOR /L %%l IN (2,1,25) DO (
pain -f\\.\physicaldrive1 -b4k -w –d60 -m17 --steady-state=iops -Y1
IF !ERRORLEVEL! EQU 100 goto DONE
)
goto EXIT
:DONE
echo Steady state reached.
:EXIT

Default:

Not set

--latency-histogram Collect Latency Histogram

Usage:

--latency-histogram=<upperbound1[,upper_bound2[,...]]>

Description:

Collect latency histogram per target.

The collection bins are specified using a comma-separated list specifying the upper bound
of each bin. The list is sorted by the magnitude of the upper bound values, and the range
of each bin is constructed such that the upper bound is as specified and the lower bound
is the upper bound of the previous bin.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 207

Upper bounds may be specified as a floating point value (e.g. "0.5" or "4.5").

The time unit suffix may be used:

If no time unit suffix is given, 'm' for "milli" is assumed as a default.

Examples:

--latency-histogram=100u,500u,1m,3,5,10

Referring to the following code

The "Bin" column lists the upper-bound of the range as you give it in the command line.

The "Upper (msec)" column is the upper bound value normalized to milliseconds.

The other columns, R%, W%, and R+W% display the percentage of Reads Write, or
Read/Write operations with measured latency that are within the bin; while CR%, CW%, and
CR+W% display the cumulative value of the percentage for Read, Write, or Read/Write oper-
ations with measured latency through each bin.

The last row, rest, is a bin that is added for operations with latency greater than the
largest specified bin. INF (for infinity) is inserted in this row as this bin cannot be
normalized.

LATENCY: TARGET:1 (\\.\PhysicalDrive1)
 Bin,Upper (msec), R%, CR%, W%, CW%, R+W%, CR+W%
 100u, 0.1, 21.4, 21.4, 21.2, 21.2, 21.3, 21.3
 500u, 0.5, 74.5, 95.9, 74.5, 95.7, 74.5, 95.8
 1m, 1, 3.32, 99.2, 3.61, 99.3, 3.47, 99.2
 3, 3, 0.789, 100, 0.737, 100, 0.763, 100
 5, 5, 0, 100, 0, 100, 0, 100
 10, 10, 0, 100, 0, 100, 0, 100
 rest, +INF, 0, 100, 0, 100, 0, 100

Default:

Not set

--log-utc Coordinated Universal Time(UTC) Timestamps

Usage:

--log-utc

'n' for "nano" 'u' for "micro" 'm' for "milli" 's' for "seconds"

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 208 Version 7.8 July 2023

Description:

Use --log-utc to log all timestamps in UTC rather than in the configured timezone of the
DUT host.

Default:

Timestamps are logged according to the configured timezone of the DUT host. MLTT
records the DUT host’s configured time offset from UTC and displays it in the MLTT
header.

--x-csv Per-Sample Period CSV Additions

Usage:

--x-csv

Description:

Use --x-csv to add minimum, maximum and average I/O completion times for every
sample period to the CSV file generated after a test completes Running --x-csv in
conjunction with --latency-histogram will add, track, and update per-sample period
latency histogram columns to the CSV file.

--io-trace I/O Operation History Trace and Payload Data
Logging

Usage:

--io-trace=<r|w|rw>[<,><p1|p2>]

Description:

Use --io-trace to enable examining the history of I/O operations performed by MLTT
and, optionally, viewing the payload data associated with each write operation. MLTT
creates separate files for I/O operation trace and payload data denoted by a .trace and
.datafile extension respectively. The I/O history trace is stored in a compact binary format,
named according to the following convention:

 <SESSION_ID>_t<THREAD_ID>-<FILE_SEQUENCE_ID>.trace

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 209

The <SESSION_ID> is generated from the start time of the test, prior to I/O generation,
encoded as “yymmddHHMMSS”.

<THREAD_ID> is the number of the I/O thread.

The <FILE_SEQUENCE_ID> is the sequence number of the trace file. As the maximum
number of trace events are logged in the trace file, a new trace file with an incremented
<FILE_SEQUENCE_ID> number will be created.

Payload data files have the same naming convention as the trace files except have a
“.data” file extension instead of a “.trace” file extension. These .data files correspond with
the SUBMIT, WRITE events in the .trace file - see “Trace Events” on page 291 for more
information. Each recorded write operation will provide a pointer into the .data file(if any)
to locate the associated payload data.

One of tracing options listed below can be enabled by appending it to the end of the
command:

Additionally, one of the payload logging options listed below can be enabled by appending
a “,”(comma) after the command followed by the logging option. If a payload logging option
is not specified, MLTT will not log the payload data by default:

--io-trace-dir Specify a Directory for I/O Trace

Usage:

--io-trace-dir=<directory>

r Only the read operations will be traced
w Only the write operations will be traced
rw Both the read and write operations will be traced

p1 Log the entire payload data associated with the write oper-
ations

p2 Log only the first 32 bytes of each LBA of the payload data
associated with write operations. This economizes storage
space at the expense of added CPU time. This may reduce
overall latency between each test I/O compared to the p1
logging option.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 210 Version 7.8 July 2023

Description:

Use --io-trace-dir with -io-trace to specify a directory where the trace and data
payload file(s) can be created. If the specified directory does not exist, MLTT will attempt
to create it. Failure to create the directory will result with a program STARTUP ERROR.

Default:

Trace files generated by --io-trace will be created in the current working directory of
the running MLTT process.

--io-trace-size Specify Maximum Number of I/O Traces

Usage:

--io-trace-size=<N>

Description:

Use --io-trace-size with --io-trace to specify the maximum number of I/O events
that can be logged in a trace file. Once the given number of events are logged, MLTT will
create a new .trace file and continue logging.

Default:

By default, there are 8192 trace events logged in each .trace file.

--io-trace-on-error Specify Action on Error for I/O Trace

Usage:

--io-trace-on-error=<1|2|3>

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 211

Description:

Use --io-trace-on-error with --io-trace to specify an action to take when a
failure occurs during trace file update attempts - e.g. when a file system may become full.
Use one of the options below:

Default:

The default option is --io-trace-on-error=1.

--io-trace-perf Specify Write Types for I/O Trace

Usage:

--io-trace-perf=<1|2>

Description:

Use --io-trace-perf with --io-trace to choose either blocking/synchronous or
non-blocking/asynchronous writes to the trace files. Use one of the below options:

1 Delete the oldest trace file created by the current test and
retry. If there has been only one trace file created - i.e.
there is no “oldest” trace file to delete - no trace file will be
deleted, and retry will be considered a failure. Failure of
either the delete operation or the retry operation shall
cause the test to terminate.

2 Ignore trace output error and continue the test if an error
is encountered. There will be no retry. Trace output
attempts will no longer be made upon a trace output error
occurring.

3 Exit test upon trace output error. There will be no retry.

1 Use non-blocking/asynchronous writes to trace files. In
addition, the writes will be buffered by the OS – this
should be more performant especially when the test itself
is asynchronous I/O (“maim”).

2 Use blocking/synchronous writes to trace files. In addition,
the writes will bypass OS buffering (e.g. “O_DIRECT” in
Linux). This should be used if and only if the test calls for
abrupt power-down of the host system

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 212 Version 7.8 July 2023

Default:

By default, --io-trace-perf=1 is assumed.

--io-trace-parse Parse I/O Traces

Usage:

--io-trace-parse=<filename.trace>

Description:

Use --io-trace-parse with --io-trace to parse the specified trace file into human-
readable format. This is to be run as a separate process after an I/O test ran with --io-
trace.

Default:

By default, this process will automatically concatenate multiple trace files, depending on
the FILE_SEQUENCE_ID. Typically the first trace file’s name should be used - e.g. the one
with a FILE_SEQUENCE_ID of 1 - so all subsequent trace files will be processed in order.

--io-trace-output-csv Parse I/O Trace into CSV File

Usage:

--io-trace-output-csv

Description:

Use --io-trace-output-csv with --io-trace-parse to output the trace data in
CSV format. The CSV file created will be in addition to the normal output and will be in the
current working directory. The CSV file has the following columns for each event’s attri-
butes:

Time Event timestamp, microsecond resolution
Event S for SUBMIT

C for COMPLETE
E for ERROR

Op R for READ
W for WRITE

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 213

--io-trace-play Streaming a Trace to a Target

Usage for Medusa Labs Test Tools trace:

<pain|maim> --io-trace-play=mltt:<Trace File>_t<number of
threads>-1.trace -i<number of iterations>

Usage for Xgig Trace:

<pain|maim> --io-trace-play=xgig:<Trace File>.txt -i<number of
iterations>

Description:

Use this switch to stream a trace to a target. The I/Os generated for the source trace can
be from anything, i.e., does not have to be from Medusa Labs Test Tools. The following I/O
information is streamed to the target as commands: read or write, offset/LBA, and transfer
size.

Default:

LBA I/O LBA in decimal
LBA(hex) I/O LBA in hex
Offset Byte offset of I/O LBA
Size I/O size in bytes
Size(alt) I/O size with friendly unit(e.g. 16KB)
Size(LB
count)

I/O size in LB count

Error For ERROR events, OS error code if any
Data file Data dump file for SUBMIT,WRITE
Data offset Byte offset of data dump in the data file
Data size Byte count of dumped data in the data file
Data First 32-byte sample of dumped data

NOTE
To examine all written data corresponding to a SUBMIT, WRITE event row in the CSV
file, open the data file in a hex viewer application, and examine Data size bytes start-
ing from Data offset.

NOTE
When playing an MLTT trace, the total thread count (number of threads x target
count) must be less than or equal to the maximum thread count of the source trace.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 214 Version 7.8 July 2023

The buffer size is automatically determined during a prescan of the file. If buffer size is
specified using -b, it will be ignored unless if the --io-trace-no-prescan switch is
used in combination with --io-trace-play. If number of iterations is not specified, then it will
repeat the play back of the trace indefinitely. There is one thread by default if number of
threads is not specified.

Example:

pain --io-trace=rw -d1
pain --io-trace-play=mltt:TraceFile.trace_t1-1.trace -i1
The first command makes a source trace while the second command will replay the trace.
The play back is designated to run with one thread and only run once.

--io-trace-no-prescan Opting out of Initial Prescan

Usage:

--io-trace-no-prescan

Description:

This switch is appended to the “--io-trace-play Streaming a Trace to a Target” switch when
you want to opt out of the initial prescan. Normally, without this switch, there is an initial
prescan of the trace file to determine the maximum transfer length. This switch is recom-
mended for instances of larger trace files as the prescan will take a considerable amount
of time in these cases.

Example:

pain -b64KB --io-trace=rw -d1
pain -b64KB --io-trace-play=mltt:TraceFile.trace_t1-1.trace -i1 --
io-trace-no-prescan
The first command makes a source trace while the second command will actually run the
trace and record it. The play back is designated to run with one thread and only run once.
There is no prescan before the playback so buffer size has to be specified.

NOTE
Prescan can be opted out of by appending the “--io-trace-no-prescan Opting out of Initial
Prescan” switch option to the command. This is recommend in instances of large trace
files as the prescan will take a considerable amount of time for large trace files.

NOTE
When using this command, the buffer size (“-b Buffer size” on page 184) must be spec-
ified as there is no prescan to determine the buffer size. The buffer size must be at least
equal to the maximum transfer size in the source trace.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 215

. Running Concurrent workloads

Usage:

<pain | Maim> <workload 1> [. workload 2 [...]]

Description:

It is possible to run multiple workloads from the command line concurrently by having a
period “.” separated list of workloads. With the exception of some switches, each workload
can be assigned different switch values to customize each workload. For more information
about workload switch limitations and procedure please refer to “Concurrent Workloads
and Workload Groups” on page 192

Example:

pain -d30 -t2 -i1 -f/dev/sdb . -t4 -%x100 -f/dev/sdc

This is a command which will run two workloads separated by the period delimiter. The
options pain and -d30 will be applied to all work loads which means that the first work load
and the second workload are set to run a pain test for 30 seconds. The first workload will
have 2 threads (-t2) run for one iteration (-i1) to the target /dev/sdb. In this case of the
first workload, it will exit after the first iteration is finished or 30 seconds have passed,
whichever happens first.

The second workload will run 4 threads (-t4) and run for 30 seconds to the target /dev/
sdc in random access mode (-%x100).

- Running Sequential Work Groups

Usage:

<pain | maim> <group1> [- group2 [...]]

Description:

It it possible to run multiple groups of workloads in the command line sequentially by using
a hyphen delimiter. Within each work group, it is possible to run multiple workloads which
results in groups of concurrent work loads that run sequentially. Workload switch limita-
tions still apply within each workload with the exception of pain or maim which will be
applied for each work group globally. For more information about work group/workload
switch limitations and procedures please refer to “Concurrent Workloads and Workload
Groups” on page 192

Examples:

pain -d30 -t1 -f/dev/sdb . -t2 -f/dev/sdc - -d10 -t3 -f/dev/sdb .
-t4 -f/dev/sdc

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 216 Version 7.8 July 2023

In this example two work groups, each with two work loads, are being ran. In the first work
group, each work load will be ran for 30 seconds. The first workload of the first work group
will have one thread run to the target, /dev/sdb. Workload two of group one will concur-
rently run two threads to the target /dev/sdc during this 30 second period.

Once all workloads in group one have exited, work group two will now start. All workloads
in group two will run for 10 seconds. The first workload of group two will run 3 threads to
the target /dev/sdb while the second workload of group two will concurrently run 4 threads
to the target /dev/sdc.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 217

Stand-alone Switches
The switches described in this section are the stand-alone switch commands.

– “-Z License Client Operation” on page 217
– “--secure-erase Erase the Target Device and Exit” on page 217
– “--trim Send Trim to Target” on page 219
– “--nvme-erase NVMe Format NVM and Sanitize Administration Commands” on

page 220
– “--nvme-get-log NVMe Get Log” on page 221
– “--nvme-get-features Get NVMe Features” on page 223
– “--nvme-set-features NVMe Set Features” on page 224
– “--nvme-reset-zone ZNS Zone Reset” on page 224

-Z License Client Operation

Usage:

-Z

Description:

This switch is used for license operations. To checkout a license, use -Z with the desired
number of days (ex. -Z3). To check-in a license, use a day value of 0 or -Z by itself (for
example, -Z0 or -Z). This switch is also used to activate a remote license. The syntax is
-Z#license_file_name.lic, where license_file_name.lic is the name and
path to a remotely checked out license file.

Default:

Not set

--secure-erase Erase the Target Device and Exit

Usage:

--secure-erase[=[ata_command][,[scsi_command]][t]]

Description:

Erase the target device and exit.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 218 Version 7.8 July 2023

This option sends a Security Erase command to ATA devices and a Sanitize Block Erase
command to SCSI devices. For NVMe devices on Windows, a Format Unit or a Sanitize
command is sent through SCSI translation layer. For NVMe devices on Linux, a Format
NVM or Sanitize command is sent through the NVMe pass-through IOCTL.

For ATA devices, the "ata_command" may be specified immediately after '=' and can be
one of the following:

1 Security Erase
2 Enhanced Security Erase

For SCSI/NVMe devices, the "scsi_command" may be specified after ',' and can be one
of the following:

1 Sanitize Block Erase
2 Sanitize Cryptographic Erase
3 Sanitize Overwrite (Invert=0, Overwrite Count=1)
4 Sanitize Overwrite (Invert=1, Overwrite Count=1)
5 Sanitize Overwrite (Invert=1, Overwrite Count=2)
6 Format Unit (T10-PI Type=0)
7 Format Unit (T10-PI Type =1)
8 Format Unit (T10-PI Type=2)
9 Format Unit (T10-PI Type=3)

Note that the Format Unit selections are only available command for SCSI devices.

If either "ata_command" or "scsi_command" is omitted, the command value defaults to
'1'.
For example:

"--secure-erase" is the same as "--secure-erase=1,1"
"--secure-erase=2" is the same as "--secure-erase=2,1"
"--secure-erase=,5" is the same as "--secure-erase=1,5"

Based on the T10-PI type, you will use the --secure-erase switches in conjunction with
the --scsi switches. This table provides guidance with how the switches are used
together.

PI Type Format Command Valid Commands Invalid Commands
0 --secure-erase=,6 --scsi=0,1,2,3,4 --scsi=6,7
1 --secure-erase=,7 --scsi=1,2,3,4 --scsi=6,7
2 --secure-erase=,8 --scsi=6,7 --scsi=1,2,3,4
3 --secure-erase=,9 --scsi=1,2,3,4 --scsi=6,7

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 219

The optional 't' suffix enables a fall-back to full-device TRIM command for ATA and
UNMAP for SCSI and NVMe devices if the specified erase command fails. For example, if
the Security Erase command fails on a SATA SSD because it is in Security Frozen state,
the 't' modifier sends a TRIM command for every LBA as a fall-back erase method.

This option requires valid targets to be specified. An ATA device must be in security state
"SEC1" where the security features must be supported but not enabled or in some locked
state. (Security states are defined in the INCITS ATA/ATAPI Command Set 3
documentation - refer to http://www.t13.org.) For example, it is not possible to perform
Security Erase if the device is in Security Frozen or Security Locked state.

The '-M' option may be used to specify the maximum wait time. When the wait time is
exceeded, the test will attempt to exit immediately regardless of the status of the operation.
If '-M' is not specified with '--secure-erase', then '-M0' is assumed for no time limit and
the test will run until the operation completes successfully or returns an error.

Default:

Not set (i.e. normal I/O mode)

--trim Send Trim to Target

Usage:

--trim

Description:

The Trim command allows an operating system to inform a solid-state drive (SSD) which
blocks of data are no longer considered in use and can be wiped internally. When the
command is used, TRIM is sent to a target device and then exits after execution.

For SAS drives, on Windows and Linux, MLTT will send SCSI UNMAP commands via the
SCSI pass-through OS function.

For NVMe drives on Windows, MLTT will send SCSI UNMAP commands via the SCSI
pass-through OS function. The OS will then translate that to a NVMe Dataset Management
NVM command with the Deallocate function and send that to the device.

Note: Complete --scsi switch information is found in “--ptio SCSI/NVME Pass-
through I/O Mode” on page 244.
--scsi=0 (off) is valid for all PI types but protection information will not be
used or included.

PI Type Format Command Valid Commands Invalid Commands

http://www.t13.org

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 220 Version 7.8 July 2023

For NVMe drives on Linux, MLTT will send a NVMe Dataset Management NVM command
with the Deallocate function via the NVMe pass-through OS function.

Pain/Maim use the following optional parameters to determine the LBA ranges for TRIM:
'-t', '-Q', '-b, '-O', '-x', '-m', '--full-device', and file size (with or
without '--file-size').

The '-M' option may be used to specify the maximum wait time. When the wait time is
exceeded, the test will attempt to exit immediately regardless of the status of the operation.
If '-M' is not specified with '--trim', then '-M0' is assumed for no time limit and the test will
run until the operation completes successfully or returns an error.

Default:

Not set

--nvme-erase NVMe Format NVM and Sanitize Administration
Commands

Usage:

--nvme-erase=<opt>,<opt>,...

For Linux Only

Description:

Use --nvme-erase with --secure-erase to NVMe devices to specify NVMe Format
NVM and Sanitize admin commands. Options can be a comma-separated list of one or
more of the following (case insensitive):

all Format NVM common namespace (0xFFFFFFFF)
lbaf:<n> Set Format NVM CDW10:LBAF=<n>
mset Set Format NVM CDW10.MSET=1
pil Set Format NVM CDW10.PIL=1
ses:<n> Set Format NVM CDW10:SES=<n>
sanact:<n> Set Sanitize CDW10.SANACT=<n>
ause Set Sanitize CDW10.AUSE=1
owpass:<n> Set Sanitize CDW10.OWPASS=<n>
iopbp Set Sanitize CDW10.IOBPB=1
ndas Set Sanitize CDW10.NDAS (No Deallocate After Sanitize)

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 221

--nvme-get-log NVMe Get Log

Usage:

--nvme-get-log=<page>[,<page>]...

ovrpat:<n> Set Sanitize CDW11.OVRPAT

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 222 Version 7.8 July 2023

Description:

Use --nvme-get-log to retrieve various NVMe log pages. The <page> argument may
be a comma-separated list of one or more of the following (NOT case-sensitive) in either
its decimal, hexadecimal, or mnemonic form:

Furthermore, each log page number or the mnemonic name can contain “DOT-separated”
options to further specify the CDW10/11/12/13/15 options and general options:

error (1) Error Information
smart (2) SMART/Health Information
fwslot (3) Firmware Slot Information
nschange (4) Changed Namespace List
cse (5) Commands Supported and Effects
dst (6) Device Self-test
thi (7) Telemetry Host-Initiated
tci (8) Telemetry Controller-Initiated
endg (9) Endurance Group Information (1.4.0)
platn (10) Predictable Latency Per NVM Set (1.4.0)
plate (11) Predictable Latency Event Aggregate (1.4.0)
ana (12) Asymmetric Namespace Access (1.4.0)
pelog (13) Persistent Event Log (1.4.0)
lbstat (14) LBA Status Information (1.4.0)
endge (15) Endurance Group Event Aggregate (1.4.0)
all Shortcut to retrieve and output all log pages
all4v Like ‘all’ but only for the device NVMe version

NOTE
MLTT can only distinguish pre-1.4.0 and 1.4.0 or later. If a device implements an NVMe
version older than 1.4.0, all4v will only skip the log pages introduced in 1.4.0. If the
target device, for example, implements 1.0 and if a log page was added in 1.3.0, all4v
will still attempt to retrieve that log page.

dumpraw Save raw binary output to a file (TBD: output file naming
scheme)

nsall Set Common NSID (0xFFFFFFFF)
lsp:<n> Set CDW10.LSP=<n>
rae Set CDW10.RAE

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 223

See Chapter 5 for examples.

--nvme-get-features Get NVMe Features

Usage:

--nvme-get-features=<feature>[,<feature>]...

Description:

Use --nvme-get-features to retrieve various NVMe feature attributes. The
<feature> argument may be a comma separated list of one or more of the following
(NOT case-sensitive):

lsid:<n> Set CDW11.”Log Specific Identifier” (1.4.0)
lpo:<n> Set CDW12.LPOL/VCDW13.LPOU=<n>
uuid:<n> Set CDW14.”UUID Index”-<n> (1.4.0)

arb Arbitration
pm Power Management
lrt LBA Range Type
tt Temperature Threshold
er Error Recovery
vwc Volatile Write Cache
nq Number of Queues
ic Interrupt Coalescing
ivc Interrupt Vector Configuration
wa Write Atomicity
aec Asynchronous Event Configuration
apst Autonomous Power State Transition
hmb Hot Memory Buffer
ts Timestamp
ket Keep Alive Timer
hctm Host Controller Thermal Management
nopsc Non-operational Power Stat Config

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 224 Version 7.8 July 2023

--nvme-set-features NVMe Set Features

Usage:

--nvme-set-features[-sv]=<feature:key=value>[,...]

Description:

Use --nvme-set-features to utilize the NVMe Set Features command. The
“feature” is one of the values defined for the --nvme-get-features option. The
key=value pairs are feature-specific attributes that can be changed. This option may be
specified multiple times, and all specifications will be kept unless the later instance over-
rides the feature:key=value specification of an earlier instance. If the -sv suffix is
present, the following feature:key=value will be saved by the controller (i.e. the “SV”
part of the command shall be turned on).

--nvme-reset-zone ZNS Zone Reset

Usage:

--nvme-reset-zone=all -f<target>

--nvme-reset-zone=<ZSLBA> -f<target>

Description:

This option sends ZNS zone Management Send command with “Reset Zone”action to the
specified target. Specify “all” to reset all zones, or specify a Zone starting LBA (ZSLBA) to
reset just the specified zone.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 225

I/O Characteristic Switches
The switches described in this section are the I/O characteristic commands.

• “-b Buffer size” on page 225
• “-B Sequential I/O Direction Control” on page 227
• “-c Commit or Flush Data” on page 228
• “-g Burst Mode Interval” on page 228
• “-m I/O Call Method Mode Number” on page 229
• “-Q Queue Depth (Maim only)” on page 230
• “-r Read-only Mode” on page 231
• “-ro Read-only with One Write Pass” on page 232
• “-R Read Buffering Mode” on page 232
• “-s Single Sector I/O Mode” on page 233
• “-t Thread Count” on page 233
• “-w Write-only Mode” on page 234
• “-W Write Buffering Mode” on page 235
• “-% I/O Profile Specification” on page 235
• “--ptio SCSI/NVME Pass-through I/O Mode” on page 244
• “--skip Sequential I/O Skip Size” on page 246
• “--cap Limit I/O Throughput” on page 247
• “--perf-mode Performance-optimized mode” on page 248
• “--nvme-io NVMe Commands” on page 248
• “--random-x-map Random Access Map” on page 249
• “--io-repeat I/O Repeat Count” on page 249

-b Buffer size

Usage:

-b<buffer_size_set>

Description:

Use -b to specify the buffer size for each I/O. This equates to the I/O operation size from
the application level. Typically, this value also corresponds to the “transfer size” at the
protocol level. The “<buffer_size_set>” is a set of one or more size specifiers. If the
set contains exactly one size, then that is the uniform buffer size for all I/Os in the workload.
If the set contains more than one size, then, for each I/O, MLTT randomly picks a size from
this set of non-uniform buffer sizes.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 226 Version 7.8 July 2023

The “<buffer_size_set>” syntax is as follows:

<size_spec[,<size_spec>[,<size_spec>[,…]]] where a <size_spec> is
specified as a discrete value or a range as [weight@]<buffer_size>[-<buffer_-
size>[.alignment]] where a <buffer_size> is <size[unit]>

The optional weight has the same meaning as it does for custom read/write mix specifica-
tion (“-%”). Please see “Reads, Writes, And Data Integrity Checking” on page 41 for the
explanation on the weight values and how they correspond to percentages. The default
weight value, if not specified, is ‘1’.

In the range form, each I/O picks a random buffer size from the specified range. If an
optional alignment value is specified for the range, then all buffer sizes will be multiples of
this alignment value. The default alignment value, if not specified, is â€œ1uâ€ (see units
below).

g = gigabytes

m = megabytes

k = kilobytes

b = bytes (default)

u = LB (logical block) size units, usually 512 bytes of the target device (commonly 512
bytes for physical drive, 8 bytes for memory targets, 512 bytes for all other target types).

The default unit, if no unit is specified, is bytes (‘B’).

Examples:

-b1m = 1 megabyte (1048576 bytes.)

-b4k = 4 kilobytes (4096 bytes.)

-b8192 = 8 kilobytes

-b16k-256k = For each I/O, use a random buffer size between 16KB and 256KB. Each
size is a multiple of default alignment value “1u”.

NOTE
For mapped random-access mode, weight values are ignored (i.e. all <size_specs>
have equal weight.)

NOTE
For physical drive targets, buffer sizes and alignment values must be multiples of the
target device's logical block size (usually 512 bytes.) For memory targets, they must be
multiples of 8 bytes. For other types of targets (such as a regular file), they must be a
multiple of 512 bytes.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 227

-b10@4k,20@16k,70@64k-1m.16k = 10% of I/Os at 4KB, 20% of I/Os at 16KB,
remaining 70% of I/O sizes are randomly picked values between 64KB and 1M where each
randomly picked size is a multiple of the specified alignment value, 16KB.

-b1@1k-16k.1k,2@64k,7@256k = 1/10 of I/O sizes are randomly picked values
between 1K and 16K where each randomly picked size is a multiple of 1KB, 2/10 of I/Os
at 64K, and 7/10 of I/Os at 256K

-b16k,64k,512k = each I/O randomly picks 16k, 64k, or 512k, where all values have the
same probability of having picked.

Default:

The default buffer size in MLTT is 64 kilobytes (65536 bytes).

-B Sequential I/O Direction Control

Usage:

-B<mode_number>

Description:

Use -B to control the “direction” of I/O traffic on a target. By default, I/Os will start at the
beginning (lowest LBA) of the specified file or device offset, run to the specified file size
(highest LBA), then repeat from the beginning. This switch allows you to request “back-
ward” I/O runs (start at end of the file, highest LBA, or highest device offset and run to the
beginning, lowest LBA, of the file).These modes are useful for video editing simulations.
The available modes are:

0 = All I/O forward
1 = Forward / Backward / Forward, etc.
2 = First I/O Forward, Rest Backward
3 = All I/O backward

Default:

By default, all I/Os only run in the forward direction or -B0.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 228 Version 7.8 July 2023

-c Commit or Flush Data

Usage:

-c

Description:

Use -c to specify that the tool should explicitly request a commit or flush of each write
command. This switch is currently only supported when running to file system targets. This
switch works independently of the write cache options (-W).

Default:

This option is disabled by default.

-g Burst Mode Interval

Usage:

-g<seconds>

Description:

This switch is used to set a time interval between I/O bursts in Maim. A burst equates to a
dispatch of simultaneous requests corresponding to the queue setting (-Q). The time
interval may be set in seconds or milliseconds. A numeric value by itself indicates seconds
(ex. -g1 equals 1 second between bursts.) If 'm' is added to the number, milliseconds will
be indicated. For example, -g10m equals 10 milliseconds between bursts. This switch only
applies to the non-continuous queuing Maim I/O modes.

This option is ignored in pain or in maim when running in non-burst (continuous) queuing
mode.\

Default:

Burst mode is disabled by default and I/O groups are sent immediately, one after another.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 229

-m I/O Call Method Mode Number

Usage:

-m<mode_number>

Description:

This option controls the following I/O traits.

Asynchronous I/O queuing mode (maim only):

• Burst queuing
The requested queue-depth of I/Os (see -Q) are issued at once. The Test Tool waits
for all pending I/Os to complete before issuing the next burst of I/Os.

• Continuous queuing
The request queue-depth of I/Os are issued once initially. Rather than waiting for
all I/Os to complete, the Test Tool issues a new I/O request each time one of the
pending I/Os completes. Continuous queuing is used for maximizing the number
of I/O requests per second (IOPS).

Device Access Mode:

• Sequential access
The Test Tool issues each new I/O to a device offset that is sequentially adjacent to
the previous I/O request.

• Random access
The Test Tool issues each new I/O to a randomly chosen device offset.

Device Coverage Mode:

• Partial Coverage
The Test Tool covers the area specified by file size.

• Full coverage
The Test Tool covers the entire target device.

Memory Stream Copy:

By bypassing the actual I/O to a target device or file, the Test Tool effectively runs in
memory-to-memory copy mode. This is a good way to test the system bus performance at
different levels (i.e. L1 cache, L2/L3 caches, RAM).

The mode_number may be one of the following:

NOTE
MLTT cannot bypass the host operating system’s virtual memory sub-system.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 230 Version 7.8 July 2023

1 General I/O mode

– Pain – synchronous I/O, sequential access
– Maim – asynchronous I/O, continuous queuing, strict sequential access

9 Memory stream copy (no I/O to device)

11 General burst queuing asynchronous I/O mode

– Pain – not applicable (reverts to -m1)
– Maim – asynchronous I/O, burst queuing, sequential access

16 Continuous queuing asynchronous I/O mode

– Pain – not applicable (reverts to -m1)
– Maim – asynchronous, continuous queuing, sequential access

17 Random access, full device coverage mode

– Pain – synchronous I/O, random access, full device coverage
– Maim – asynchronous I/O, continuous queuing, random access, full device

coverage

18 Sequential access, full device coverage mode

– Pain – synchronous I/O, sequential access, full device coverage
– Maim – asynchronous I/O, burst queuing, sequential access, full device

coverage

30 TCP/IP network I/O mode

31 UDP network I/O (use -f<ip> or -f<hostname> to specify the target peer)

Default:

The default mode is 1 for pain, 11 for maim, and 30 for sock.

-Q Queue Depth (Maim only)

Usage:

-Q<queue_depth>

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 231

Description:

Use -Q to specify the maximum number of outstanding I/Os (queue depth) per worker
thread in Maim, our asynchronous tool. The maximum number of outstanding (pending)
I/Os is dependent on the operating system and memory resources. The practical limitation
will also depend on the target capabilities.

This switch is ignored for Pain and Sock.

Default:

The default queue depth is one.

-r Read-only Mode

Usage:

-r

Description:

Use -r to indicate a read-only mode.

After the write pass, the tools issue repeated read-backs of the data with data integrity
checking enabled by default. If no initial write pass is desired, such as in performance tests
where data is not relevant, you can combine the -r switch with the -n and -o switches for
a pure read-only mode. This combination will result in the reads returning whatever data
exists in the file or device area. You must specify an existing file, logical device, or physical
device with a minimum size equal to or greater than the specified file size in order to
perform reads only.

Example:

pain -f\\.\physicaldrive2 -r -n -o

Default:

By default, the tools perform both write and read operations, with data comparison.

IMPORTANT
By default, the tools will still do a single write FOP in order to lay down the specified data
pattern.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 232 Version 7.8 July 2023

-ro Read-only with One Write Pass

Usage:

-ro

Description:

This switch is a macro that is the same as specifying the -n, -r, and -o switches,
except that one write pass is performed. This is useful for cases where you do not want
data comparisons, but you need a particular data pattern for read-only traffic. You might
want to use this macro in signal integrity testing, with an in-line analyzer set to trigger on
error conditions. The device or file is held open for the duration of the test to increase
performance.

Default:

By default, the tools perform both write and read operations, with data comparison.

-R Read Buffering Mode

Usage:

-R<0|1|2|3|4>

Description:

The -R switch is used to set the file open/creation flags that can affect read buffering. The
available read buffering modes are:

Windows 0 = Do not explicitly set file open flags

 1 = Cache allowed, no O/S buffering

 2 = Cache allowed, O/S buffered

 3 = Non-cached, no O/S buffering

 4 = Non-cached, O/S buffered

Linux 0 = Do not explicitly set file open flags

 1 = O_DIRECT on, O_SYNC on

 2 = O_DIRECT on, O_SYNC off

 3 = O_DIRECT off, O_SYNC on

 4 = O_DIRECT off, O_SYNC off

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 233

Default:

The default is -R2 for Linux; -R1 for other operating systems.

-s Single Sector I/O Mode

Usage:

-s<sectors>

Description:

Use -s to set the tool to a sector-based I/O mode. Basically, this switch acts as a macro
to optimize for intense reading to a small area on a disk. Read I/O is contained to the
number of sectors specified.

The following flags are set automatically: -q1 -r -o -n -R3, except on non-Windows
platforms, the -R3 flag is not set automatically. When you use this switch, you must
specify the file/device by using the -f switch. This switch is not available in all tools. Refer
to the command line help.

Default:

This option is disabled by default. This option is ignored for Sock.

-t Thread Count

Usage:

-t<thread_count>[p]

Description:

Use -t to specify number of worker threads in pain, maim, and sock. In sock, this corre-
sponds to the number of concurrent socket connections per sock process. In pain
(synchronous I/O), since each thread dispatches a single I/O at a time, this number roughly
correlates to queue depth. In maim (asynchronous I/O), each thread tries to maintain
concurrent I/O operations specified by -Q. Therefore, in maim, the potential maximum I/O
operations in-flight per target device is the product of the thread count and the queue depth
(Thread Count X Queue Depth). For examples, refer to Figure 67 on page 189.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 234 Version 7.8 July 2023

Figure 68 on page 190 shows the [p] option with the <thread_count> command. With 'p'
used, <thread_count> specifies the maximum number of total I/O threads to use per
process. So rather than creating "threads-per-target", it assigns "targets-per-thread". This
option is valid only for Maim.

With the 'p' modifier, the total number of I/O threads is at most the specified
<thread_count> value, no matter the target count.

Example:

The following switch specifies that 8 separate I/O generating threads will be created from
the central application.

-t8

Default:

The default thread count is one.

-w Write-only Mode

Usage:

-w

Description:

The -w switch is used to indicate a write-only mode. No reads are performed. This option
is ignored if -%r or -%w is specified.

Default:

By default, the tools perform both write and read operations, with data comparison.

NOTE
If you specify the special case "-t0p", then the program sets the <thread_count> to the
number of available CPUs. For example, if the system has 4 CPUs, then "-t0p" is
same as "-t4p". If in that same system you also specify "-T2" (i.e. use only the first 2
CPUs), then "-t0p" is same as "-t2p".

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 235

-W Write Buffering Mode

Usage:

-W<0|1|2|3|4>

Description:

Use the -W switch to set file open/creation flags that can affect write buffering. The available
write buffering modes are:

Default:

The default is -W2 for Linux; -W1 for other operating systems.

-% I/O Profile Specification

Usage:

-%[X:]<spec[,spec[,spec[,...]]]>

where:

X for weight multiplier

and where a spec is one of following specifiers:

r[weight][@buffer_size] for general mode read percentage or transaction
mode request size percentage

Windows 0 = Do not explicitly set file open flags

1 = Cache Allowed, no O/S buffering

2 = Cache Allowed, O/S buffered

3 = Non-cached, No O/S buffering

4 = Non-cached, O/S buffered

Linux 0 = Do not explicitly set file open flags

1 = O_DIRECT on, O_SYNC on

2 = O_DIRECT on, O_SYNC off

3 = O_DIRECT off, O_SYNC on

4 = O_DIRECT off, O_SYNC off

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 236 Version 7.8 July 2023

r[@buffer_size] for coordinated burst mode response size

w[weight][@buffer_size] for general mode write percentage or transaction
mode response size percentage

w[@buffer_size] for coordinated burst mode request size

f<weight> for forward sequential access percentage

b<weight> or backward sequential access percentage

x<weight> for random access percentage

s<random_seed> 32-bit seed for I/O profile random number generation

o<size> for random offset alignment size to ensure that
random I/Os are issued on boundaries of the indicated
size

T[N] for enabling TCP application transaction mode

T:[session_options] for enabling TCP coordinated burst mode

z:<range1>[, range2[, ...]] for specifying custom access frequency to different
areas of the target device.

Description:

The -% option can be used to specify a mix of read and write operations, a mix of transfer
sizes for read and write operations, and, when running to disk or file targets, I/O access
positioning. This is useful in generating I/O modeling real world applications. Furthermore,
TCP application transaction mode can be enabled to model general request-response-
based application traffic such as HTTP messages between a Web browser and a Web
server, while enabling TCP coordinated burst mode can induce “TCP incast” conditions
often observed in deployments such as a HADOOP implementation. TCP application
transaction mode and coordinated burst mode cannot be used together.

Starting from MLTT 7.6.0, it is possible to have zoned I/O distribution and specify custom
access frequencies to different areas of the target device.

Profile specifications may be specified individually or combined with comma. E.g. the
following 3 options specifications are equivalent:

-%r10@4k,w10@8k,f50,x50,o4k

-%r10@4k,w10@8k -%f50,x50,o4k

-%r10@4k -%w10@8k -%f50 -%x50 -%o4k

General Mode:

Use -%r and -%w to specify what percentage of I/O operations should be reads or writes
(If neither -%r or -%w is specified, then both read and write operations will be used). For

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 237

example, -%r10 -%w90 (or the equivalent -%r10,w90) states “10% read operations,
90% write operations.” The [weight] value is optional for each -%r and -%w specification
and default to value of ‘1’ if not specified. It is recommended to be explicitly set to a desired
value. The [@buffer_size] modifier is optional and can be used to specify the buffer size
used for a -%r or -%w specification. It can be a single value (e.g. @64K) or a MIN-MAX
range of random values (e.g. @4b-64k). Without the optional [@buffer_size] modifier,
either the global buffer size specified by the -b option (if specified) or the default buffer
size of 64KBs is used. The -%r and -%w specifications are accumulative and can be used
multiple times in the command line. The final percentages are determined from the sum of
all <weight> values for all -%r and -%w options given in the command line. It is also
possible to specify multiple read and write multipliers with one -% switch e.g.:
-%[[read_multiplier],[write_multiplier]]:[r|w]<N>[@<size>],...

Use -%f, -%b, and -%x to specify the probability of I/O direction. Note that in sock, I/O
offset and direction are meaningless, but these specifiers are accepted without any effect.

-%f determines the probability of next I/O position to be sequentially forward
adjacent from the previous I/O position.

-%b determines the probability of next I/O position to be sequentially backward
adjacent from the previous I/O position.

-%x determines the probability of next I/O occurring at any random position
within the target coverage area.

The <weight> value is required for each -%f, -%b, and -%x specification. Only one
instance of each of -%f, -%b, and -%x specifications is valid in the command line. The
final I/O access position percentages are determined from the sum of all <weight> values
for all -%f, -%b, and -%x options given in the command line.

Use -%s to specify a 32-bit number used as the seed for I/O profile random number gener-
ation. If -%s given more than once in the command line, the last instance takes effect.

For random access, some target devices yield the best performance if the I/O offset is
aligned to a certain size. Use -%o<size> to enforce random access offset alignment. For
example, -%o4k aligns random access I/O offset to multiples of 4KB.

TCP Application Transaction Mode (sock-only):

Enable TCP application transaction mode with -%T[N], where optional value 'N' denotes
the number of transactions per connection. If 'N' is not given, the number of transactions
per connection is unlimited. If 'N' is specified as a 'MIN-MAX' range, a new random value
between 'MIN' and 'MAX' is used for each new connection.

NOTE
If “-b” specifies a non-uniform buffer size set, then custom -%r/w mix specification is
ignored.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 238 Version 7.8 July 2023

In this mode, sock process acts as an application server (e.g. a Web server), while the
remote sock targets act as clients (e.g. Web browsers). All I/O per TCP connection
between sock and targets is performed in read-write pairs, each pair representing a TCP
application-level transaction (e.g. an HTTP GET request from remote paired with a
response from sock). Use -%r and -%w specifiers to specify the percentage and transfer
size of request-response data. The syntax for -%r and -%w are the same as in the general
mode, however, in the TCP application transaction mode, you must at least one -%r and
at least one -%w specified.

Per transaction pair, -%r represents the client request load while -%w represents the
server response load. Unlike general mode, the read percentage is determined using only
the total weight of -%r specifiers, and the write percentage is determined from only the
total weight of -%w specifiers. At runtime, a read specifier and a write specifier are
randomly chose and paired up for each transaction.

-%f, -%b, -%x, and -%o are ignored. -%s is used for random seed as in the general mode.

TCP Coordinated Burst Mode (sock-only):

Enable TCP coordinated burst mode using -%T:[session_options]. Typically, I/O threads
run independently of each other. In coordinated burst mode, I/O threads are coordinated
such that all threads send their requests to their remote targets at the same time. This can
cause the remote peers to simultaneously send back a large amount of data. This can
cause the so-called “TCP incast” condition where the switch must drop some incoming
packets and end up with severe under-utilization of actually available bandwidth. In coor-
dinated burst mode, the coordinator also waits for all threads to receive their replies from
the remote targets before the next burst signal. The completion of one request-response
data transfer by all threads combined is a coordinated burst.

Use -%r and -%w to specify the request-response data size. The syntax is same as for
general mode; however, [weight] value is ignored. Also, unlike the general mode, the -%r
and -%w specifiers are not accumulative; only the most recently given -%r and -%w spec-
ifiers are used. In this mode, sock acts as the client while the remote targets act as the
servers. Per request-response, -%w represents the request from sock to remote targets,
and -%r represents the response from the remote targets.

If neither -%r nor -%w is specified, write-read coordinated burst transactions are
performed using the buffer size specified by -b.

-%f, -%b, -%x, -%o, and -%s are ignored.

Use -g<delay> to pause the coordinator in between bursts

A sock process can act as a stand-alone coordinator using -%T: without session options,
e.g.:

sock -%T:,w100b,r128k -t16

In stand-alone mode, the sock process does not coordinate with other sock processes.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 239

On the other hand, multiple sock processes from different machines can be in a session
where a master coordinator coordinates the burst for all coordinators in the session. These
coordinators must specify a same session ID, and one must be designated as the master
with the “m” modifier:

Master coordinator sock process with session ID “session1”:
sock -%T:m:session1 …

Slave coordinator sock processes joining “session1”:
sock -%T:session1 …

In the session mode, slave coordinators signal their I/O threads to begin the burst only
when receiving a signal from the designated master coordinator in the same session.
A session is designated by a session ID, which is an arbitrary string chosen by the user.
A coordinator in a session ignores any communication from coordinators in different
sessions. Some notes and restrictions exist for coordinated burst mode:

– Due to the use of broadcast UDP messages, only 1 session controlled sock
process can run per host (you can have as many stand-alone coordinator sock
processes per host, though).

– All coordinators (sock) participating in a same session must be in the same
subnet (again, due to the UDP broadcast usage for control messages.) The
target systems, of course, can be in any subnet as long as they can be reached
by sock

– If you first start the master with "-%T:m:xxx", the master runs its own bursts by
itself until other coordinators start with "-%T:xxx". You can gradually ramp up
the number of slave coordinators, for example, and they'll get picked up by the
master coordinator.

– If you start a slave coordinator first, it waits until the master of the session starts
up.

– Slave coordinators ignore -g settings since they only wait for the "go" signal
from the master.

– If you quit the master coordinator sock process, the slaves will quit as well.

Default:

Unset

Examples:

-b8k -%r10 -%r10@4k -%w20 -%w15@512b -%w45@1k

In this example, since the sum of all weight values is 100, each weight value corresponds
to the exact percentage. Looking at each option:

-b8k specifies the default buffer size of 8KBs

-%r10 specifies “10% reads using the default 8KB buffer size”

-%r10@4k specifies “10% reads using 4KB buffer size”

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 240 Version 7.8 July 2023

In the next example, the sum of all weight values is not 100; therefore, the percentages are
calculated relative to the actual sum.

The following example demonstrates specifying equal distribution for both reads and
writes by not specifying the “r” or “w” operation token. It also demonstrates the split read/
write multiplier.

The following example demonstrates how to specify the I/O access position mix:

In the following example, because the sum of the weight values is not 100, the percentages
are determined relative to the actual sum:

The following example demonstrates the transaction mode:

-%w20 specifies “20% writes using the default 8KB buffer size”

-%w15@512b specifies “15% writes using 512-byte buffer size”

-%w45@1k specifies “45% writes using 1KB buffer size”

-r10 -w30 using the final sum of 40, this specifies “25% reads, 75% writes”

-%1,2:1@1k,3@2k “1@1k,3@2k” is the compact equivalent of
“r1@1k,w1@1k,r3@2k,w3@2k”. Split multiplier “1,2” scales the
read weights by 1 and write weights by 2. Therefore, after applying
the multipliers, the entire specification is the equivalent of
“-%r1@1k,r3@2k -%w2@1k,w6@2k”.

-%f30 -%b70 specifies “30% forward sequential, 70% backward sequential.”

-%f50 -%b70 -%f30 also specifies “30% forward sequential, 70% backward sequential.”
Because only one each of -%f, -%b, and -%x takes effect, the last -
%f30 overrides the first -%f50.

-%f40 -%b100 -%x60 using the final sum of 200, this specifies “20% forward sequential,
50% backward sequential, 30% random access.”

sock -%T20-30 -%r100@30b-500b,w20@4k,w20@8k,w60@100k

In this TCP/IP application transaction mode example, all requests
are between 30 to 500 bytes in size, while 20% of responses are
4KBs, another 20% are 8KBs, and the remaining 60% or responses
are 100KBs in size. The transactions-per-connection (or an
application session) is between 20 to 30 transactions, after which
each I/O thread terminates the connection and establishes a new
one before continuing.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 241

The following examples demonstrate the coordinated burst:

Zoned I/O Distribution

Starting from MLTT 7.6.0, it is possible to customize specific access frequency to different
areas of the target device. Each zone specification may contain one or more range spec-
ifications and apply to all targets specified for a workload. When attempting to assign
different zone specifications to different targets, different workloads or different workload
groups are required.

Usage:

-%z:<range specification 1>[,range specification 2[,...]]

sock -%T:,w100b,r128k -t16

In this coordinated burst mode example, a stand-alone coordinator
coordinates its 16 I/O threads for coordinated bursts of 100 byte
request and 128KB response data.

Master: sock -%T:m:x -b32k -t16 -ftargets.dat

Slave: sock -%T:x -b32k -t16 -ftargets.dat
These two examples are of multi-coordinator session with session
ID “x”.

All threads send 32KB or data and receive 32KB of data. Each thread waits for the next
coordination signal when the send-receive transaction is done. When all threads finish the send-
receive transaction, the coordinator sends the signal for the next burst.

sock -%T:x -b32k -t16 -ftargets.dat -w

This uses the write-only option “-w” to make it a send-only burst.

sock -%T:x -b32k -t16 -ftargets.dat -%w

This is also send-only: -%w without the @buffer_size modifier.

sock -%T:x -b32k -t16 -ftargets.dat -%w@100b -g5

Send only, but using buffer size of 100 bytes (overrides -b) - also
coordinator pause of 5 seconds after the end of each burst ("end of
burst" is when all I/O threads are done with the burst).

sock -%T:x -t16 -ftargets.dat -%w@100b,r@32k

This example uses unequal send-receive buffer sizes of sending
100 bytes then receiving 32K in request-response pairs. It is
probably the most representative case for TCP incast where a
coordinator sends small requests to multiple systems which then
respond with larger data and cause the switch to drop packets.

NOTE
It is possible to use multiple -%z: switches per workload.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 242 Version 7.8 July 2023

Range Specification:

[r|w]<N>@<area specification>

When specifying ranges, you can specify whether it will be read only, write only or both and
then assign it a weight (denoted by the value N).

Every range specification is associated with an operation:

The denoted weight determines what percentage of an operation occurs in an area.

For example the range specification:

-%z:r1@10%, r3@50%

Means that 25% of the reads occur in the first 10% of the device while the other 75% of
the reads occur in the next 50% of the device. This is because the total of the weights
added together is 4. In the first area specified, it is 1/4 which means that 25% of the reads
will occur in the area specified (First 10% of the device). In the second area specified, it is
3/4 which means that 75% of the reads will occur in the area specified (50% of the device
after the first 10%)

Area Specification:

Area specification on the device can be specified with one of the following notations:

“Next X” Notation: <X>[unit]

In this notation, X is an integer value and “unit” is the same size unit recognized
by MLTT for other size or range operations. The very first “Next X” area notation
specified is the “First X” area of the target.

“Span” Notation: <begin>[unit] -[end][unit]

In this notation, a specific area of the device is specified for operation from “begin”
to “end”. The beginning of the range is included for writing while the ending of the
range is excluded for writing.

“Remainder” Notation: Blank

r Signifies that the specified area will be read only.

w Signifies that the specified area will be write only.

None Specified Signifies that the specified area will be read and write.

NOTE
Only the final range specification per “-%z” may specify open-ended “end” range.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 243

If this notation is used, it means that the final unassigned area of the specified
target area will be used. This notation is the equivalent of having an open-ended
“span” notation.

In any of the above notations, if a unit is specified, the default unit used is “B”

In any of the above notations, the actual calculated target offset values shall be truncate-
aligned to the target logical block size.

Rules and Restrictions:

The -%z option shall be accepted if-and-only-if “100% random-access” is specified.
(i.e. specifying “-%z<...>” with a random-access specification that combines “-%f”
and/or “-%b” shall be an error)

The “-%z” option implies a read/write I/O profile mode (meaning, 100% read, 100%
write, or some mix of read and write). If no “-%r/w” option is specified and no 100%
read (-r) or 100% write (-w) option is given, “-%r50,w50” shall be assumed.

The “-%z” option implies shared starting offset (“-X0”). Any “-X” explicitly specified by
the user shall be ignored.

The “-%z” option implies full-device access.

Overlapping zones is not allowed and will result in an error.

Examples:

-%z:r1@10%,r1@50%

50% of the reads shall occur in the first 10% of the specified target area. The other 50% of
the reads shall occur in the next 50% of the specified target area. No operations will occur
in the final 40% of the specified target area.

-%z:r1@10%,r1@50%,r2@40%

-%z:r1@10%,r1@50%,r2@-

-%z:r1@10%,r1@50%,r2@

-%zr1@10%,r1@50%,r2

All of the above examples are functionally equivalent. In these examples, 25% of the reads
occur in the first 10% of the specified target area. The next 25% of the reads occur in the
next 50% of the specified target area. The last 50% of the reads occur in the final 40% of
the specified target area.

-%z:r1@10%,r1@1m-1g,r1@-5g,r1@100g- \

-%z:w1@10%,w1@1m-1g,w1@-5g,w1@100g

NOTE
Only the final range specification per “-%z” may specify this notation.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 244 Version 7.8 July 2023

In the above example, 25% of the reads and writes occur in the first 10% of the specified
target area. The next 25% of the reads and writes occur in between byte offsets 1m and
1g (not including byte offset 1g). 25% of the reads and writes shall occur between byte
offsets 1g and 5g (not including byte offset 5g). The last 25 of the reads and writes shall
occur from byte offset 100g to the end of the specified target area. No reads or writes occur
in the area between 5g and 100g

-%z:1@10%,1@1m-1g,1@-5g,1@100g

The above example is functionally equivalent to the example above it. Omitting the oper-
ation ‘r’ or ‘w’ from the specification token defines equal zones for both read and write oper-
ations.

--ptio SCSI/NVME Pass-through I/O Mode

Usage (for SCSI):

--ptio[=0|1|2|3|4|5|6|7]

Description:

Use direct SCSI commands for read/write. This option is ignored if not running synchro-
nous I/O to physical drive targets. The Read/Write selections are available with and without
Forced Unit Access (FUA) as noted below. The available mode numbers are:

SCSI Passthrough Off Not using direct SCSI command.
READ/WRITE 10 Incorporates Protection Information in the

SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 10 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

READ/WRITE 16 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI types 0,1, and 3.

SCSI UNMAP / ATA TRIM Supports the TRIM command. A more
complete description is provided below.

READ/WRITE 32 Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 245

0 = Off (default) Not using direct SCSI command.
1 = On (READ10/WRITE10) Supports --secure-erase

SCSI commands using Format Unit
T10-PI types 0, 1, and 3.

2 = On (READ10/WRITE10), with FUA Supports --secure-erase
SCSI commands using Format Unit
T10-PI types 0, 1, and 3.

3 = On (READ16/WRITE16) Supports --secure-erase
SCSI commands using Format Unit
T10-PI types 0, 1, and 3.

4 = On (READ16/WRITE16), with FUA Supports --secure-erase
SCSI commands using Format Unit
T10-PI types 0, 1, and 3.

5 = SCSI UNMAP / ATA TRIM Supports the TRIM command. A more
complete description is provided below.

6 = On (READ32/WRITE32) Supports --secure-erase
SCSI commands using Format Unit
T10-PI type 2.

7 = On (READ32/WRITE32), with FUA Supports --secure-erase
SCSI commands using Format Unit
T10-PI type 2.

If '--ptio' is specified without using '0', '1', '2', '3', '4', '5', '6', or '7', then '--ptio=1' is
assumed.

If the target device has one of the protection types enabled in the “--secure-erase Erase
the Target Device and Exit” command, this command interacts with those protection type
selections.

– If the target device has Type 1 or Type 3 PI enabled, you must select one of the
following commands: --ptio=1, --ptio=2, --ptio=3, or --ptio=4

– If the target device has Type 2 PI enabled, you must select one of these
commands: --ptio=6 or --ptio=7

The --ptio=5 command turns on SCSI UNMAP (or ATA TRIM) as a write operation for
normal I/O engine tests. It overrides any -l setting with -l69 (all zeros) and it turns on
the “-u Disable Unique I/O Marks” command. Reads are done using the normal operating
system functions, while writes are replaced with UNMAP or TRIM to the requested offset
using buffer size. The assumption is that most devices will return buffers filled with “0’s” for
reads after TRIM (without any write in-between).

READ/WRITE 32 + FUA
(Forced Unit Access)

Incorporates Protection Information in the
SCSI command when device formated to
T10-PI type 2.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 246 Version 7.8 July 2023

Default:

--ptio=0

Usage (For NVME):

--ptio=<1|2|3|4|5|6|7>

For Linux Only

Description:

Send NVMe pass-through commands.

Listed below are the options for <n>:

Generic metadata transfer will be supported if the LBAF in use has metadata. Extended
LBA and metadata in a separate buffer will be supported. PI information will be
supported if the LBAF in use has PI enabled.

For Windows NVMe targets, this mode will continue to send the specified SCSI READ/
WRITE commands via SCSI-NVMe translation.

--skip Sequential I/O Skip Size

Usage:

--skip=<size>

Description:

In sequential I/O modes, use the --skip option to skip a specified amount of “<size>”
between adjacent I/Os. This may be useful in cases when the operating system coalesces

1,3,6 Sends NVMe Read and Write NVM commands via NVMe
pass-through IOCTL. For ZNS targets, ‘6’ sends Zone
Append Command.

2,4,7 Sends NVMe Read and Write NVM commands with FUA
via NVMe pass-through IOCTL. For ZNS targets, ‘7’
sends Zone Append Command.

5 Sends a NVMe Dataset Management function Dellocate
NVM command via NVMe pass-through IOCTL

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 247

adjacent I/Os which can skew the observed IOPS count. The “<size>” parameter specifi-
cation is the same as for buffer size (“-b<size>”).

Example:

Perform sequential I/O from LBA 0x100000 to LBA 0x900000 (i.e. file size of '0x900000 -
0x100000' or '0x800000' LBA units), 7 LBA units at a time, skipping 1 LBA unit between
each I/O:

pain -x0x100000u -b7u 0x800000u --skip=1u

Default:

'--skip=0'

--cap Limit I/O Throughput

Usage:

--cap=[p|P|t|T][.]<limit>

Description:

Try to limit the I/O throughput to 'limit' bytes-per-second. The optional 'p' or 'P' prefix spec-
ifies the scope of the limit to be the process. The optional 't' or 'T' prefix specifies the scope
of the limit to be per-target. Without the scope prefix, the limit is per-thread. Use the
optional '.' separator to specify 'bits-per-second' rather than the default 'bytes-per-second'.
An optional size unit suffix may be used (e.g. just as for file size and buffer size parame-
ters.) If no unit suffix is given, the default unit of 'm' is assumed for 'megabytes-per-second'
or, if '.' is specified, 'megabits-per-second'.

This option does not cap the actual device speed. It only tries to limit the I/O submission
rate in order to sustain the specified limit over time.

Examples:

Cap the process throughput to 50 megabytes-per-second:pain --cap=p50

Cap the per-target throughput to 50 megabytes-per-second:pain --cap=t50

Cap the per-thread throughput to 50 megabytes-per-second:pain --cap=50

Cap the per-target throughput to 1 gigabits-per-second:sock --cap=t.1g

Cap the per-thread throughput to 1 gigabits-per-second:sock --cap=.1g

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 248 Version 7.8 July 2023

Default:

The default limit is '0' (no cap).

--perf-mode Performance-optimized mode

Usage:

--perf-mode

Description:

Use this option to run in performance-only testing mode to achieve the best I/O throughput.
In this mode, the buffer usage is performance-optimized, and data integrity testing is not
possible. This option automatically enables '-n', '-N', '-u', and '-o' options.

--nvme-io NVMe Commands

Usage:

—nvme-io=<opt>,<opt>,...

For Linux Only

Description:

Use --nvme-io with —ptio=<1,2,3,4,6,7> to further specify command options as a
comma-separated list of 1 or more of the following:

lr Set CDW12.LR=1 (limited retry)
pract Set CDW12.PRINFO.PRACT=1 (for PI)
prchk.guard Set CDW12.PRINFO.PRCHK enable PI Guard Field check
prchk.app Set CDW12.PRINFO.PRCHK enable PI app tag check
prchk.ref Set CDW12.PRINFO.PRCHK enable PI ref tag check
prchk.all Shortcut to enable checking all PI fields

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 249

--random-x-map Random Access Map

Usage:

--random-x-map <-m17|-%x<N>> [-i<N>]

Description:

By default, MLTT random-access I/O does not keep track of accessed LBAs. This results
in previously accessed LBAs being accessed again in full or in part while some LBAs might
never be accessed during a test.The --random-x-map option enables unique LBA
random-access tracking which enables using -i iteration limit and other options, such as
-V, which require knowing if the test has accessed all LBAs within the specified test area.

Rules and Limitations:

– “100% random-access” must be specified. Attempting to use --random-x-map
with a random-access specification (“-m17” or “-%x<N>”) that combines “-%f”
and/or “-%b” will result in an error.

– Specifying both --random-x-map and -%o<N> where <N> is different from the
uniform buffer size for the workload will result in an error.

– Specifying both --random-x-map and zoned I/O distribution (-%z:<...>) will
result in an error.

--io-repeat I/O Repeat Count

Usage:

--io-repeat=<N>

Description:

This switch allows specifying the number of times an I/O is performed at a given offset
(LBA) before performing I/O at the next offset.

NOTE
“--random-x-map” does not enable random-access I/O. It enables unique LBA track-
ing for random-access I/O. Specifying “--random-x-map” for sequential-access I/O
has no impact (i.e. this option is ignored for sequential-access I/O). For “--random-x-
map” to have an effect, the test must also enable random-access mode with options
such as the “-m17” macro or an appropriate “-%x” option. Please refer to “MLTT Basics”
on page 22.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 250 Version 7.8 July 2023

Target Related Switches
The switches described in this section are the target related commands.

– “File Size” on page 250
– “--f Target” on page 251
– “--file-per-thread Create Target Files for each Thread” on page 254
– “--target-partition Target Partition Range” on page 255
– “-o Keep Target Device or File Open” on page 256
– “-O Override Device Base Offset” on page 257
– “-x Starting Offset” on page 258
– “-X Shared Offset Mode - All Threads Issue I/Os to the Same Offsets” on

page 259
– “--full-device Run to Entire Target Device” on page 260
– “--smart S.M.A.R.T Monitoring” on page 260

File Size

Usage:

file_size

Description:

The desired “file” size is specified as a number, with no preceding switch argument. You
can specify the size in bytes or use a numeric value and unit designator:

g = gigabytes
m = megabytes (default)
k = kilobytes
u = LB (logical block) size units, usually 512 bytes

Examples:

1g

100m

512k

The file size must be at least the same as the I/O size, or a multiple of the I/O size.

Maximum file size is as allowed by the operating system.

The file size can apply to an actual file in file system based testing or the extent of linear
space to utilize on a logical or physical drive. Note that file size will be utilized per thread

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 251

(that is, each worker thread in our thread-based tools will utilize the extent specified by the
file size – 8 threads x 100m [-t8 100] would equal 800 megabytes total.) The default file
size varies in each tool.

Default:

The default file size per thread in Pain is 4MB. The default file size for the single worker
thread in Maim is 10MB.

--f Target

Usage:

-f<target>

Description:

Use -f to specify the desired target. The target can be a file, logical drive, or physical drive
that resides in the host system or is externally attached via SCSI, USB, FireWire, LAN,
SAN, and others.

When using sock, the target may specify the hostname or an IP (or IPv6) address of a peer
for TCP/IP network I/O.

When running pain -m9 or pain -m10 virtual memory target modes, the target can specify
one or more NUMA nodes.

For physical targets, the target can specify split write and read device paths which can be
useful when testing multi-pathed devices (such as dual-port NVMe controllers with shared
namespaces).

For physical and logical targets, appending a partition modifier defines a strict test area
boundary within the device. This is useful when assigning different test areas within the
same target device to concurrent workloads or test processes.

Default:

If no target is specified, each worker thread creates a file in the current directory.

NOTE
If the switch is not specified, one file of the specified size is created in the current
directory by each worker thread.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 252 Version 7.8 July 2023

Examples:

Physical: -f\\.\physicaldrive1

Logical: -f\\.\g:

File: -fg:\file1.dat

Linux device: -f/dev/sdc

NUMA node (for pain -m9 and pain -m10) : -f1 (where ‘1’ is the NUMA node number)

TCP/IP peer (sock): -fhostname or -f10.23.1.101 or -f10.23.1.80:10.23.1.101
(where 10.23.1.80 is a specific local IP if there is more than one network interface to
choose from).

When specifying an IPv6 address pair, use ‘-’ to separate the local and remote addresses
(e.g. -ffe80::c62c:3ff:fe08:a66c%en0-fe80::221:9bff:fe50:90ec).
For a link-local IPv6 address pair, the scope ID of the outgoing interface must be appended
to the local address (e.g. “%en0” or “%5”).

The tools also support a multi-target mode, where multiple targets can be accessed in a
single process. The Catapult -t switch option performs this automatically.
See “-t Multi-target mode” on page 296. Multiple targets may also be specified manually
in one of several manners:

• Create a text file called “targets.dat” that contains desired targets, one per line.
Catapult can create this file for you. For example:

catapult -p -t

Then pass this file name, with path if necessary, to pain or maim with the -f switch.
pain -ftargets.dat

• You can also specify multiple targets on the command line, separated by commas.
For example:

pain -f\\.\physicaldrive1,\\.\physicaldrive2

• You can also use a prefix system, where a common prefix is terminated with a semi-
colon, followed by suffixes that are comma separated. For example:

pain -f\\.\physicaldrive;1,2,3

• Generate TCP/IP I/O to 10.23.1.101 and 10.23.1.102 from 10.23.1.80.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 253

sock -f”10.23.1.80:10.23.1.;101,102”

Split write/read channels: -f/dev/nvme0n1:/dev/nvme1n1 (the format is -
f<write_channel>:<read_channel>)

In the above example, /dev/nvme0n1 and /dev/nvme1n1 are Linux block device paths
representing the ports of a dual-port controller with a shared namespace. MLTT writes to
the /dev/nvme0n1 path and reads from the /dev/nvme1n1 path and performs data compar-
ison.

Defining a target partition: -f\\.\physicaldrive1:@10g-200g, -f/dev/
sdc:@10g-100g (format is -f<target>:@<area>)

In the above example, the appended partition specifies an area between byte offsets
10GiB (inclusive) and 200GiB – 1.

If the workload-wide --target-partition is specified, the partition specifier appended to the
target specifier overrides the workload-wide specifier.

If both split write/read channels and partition are specified, only one partition specifier must
be appended at the end: e.g. -f/dev/nvme0n1:/dev/nvme1n1:@10g-100g.

In the following example, first workload performs mapped random-access I/O within the
first 60% of the target while concurrently performing non-uniform buffer size sequential-
access I/O to the remaining 40% of the same target:

pain -%x100 --random-x-map -b4k --full-device -f/dev/nvme0n1:@60%
. -b128k,256k,1m --full-device -f/dev/nvme0n1:@60%-100%

Please refer to “--target-partition Target Partition Range” on page 255 for the partition
area syntax.

NOTE
On Unix systems, the shell interprets ';' as the command separation character; there-
fore, the target name should be quoted. For example, the shell interprets the following:
pain -f/dev/sd;b,c,d

as a sequence of the two commands shown below:
pain -f/dev/sd

b,c,d

To prevent such errors, the target specification must have quotes added as shown:
pain -f"/dev/sd;b,c,d"

CAUTION
Physical and logical drive access is destructive! Existing data WILL be overwritten.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 254 Version 7.8 July 2023

 --file-per-thread Create Target Files for each Thread

Usage:

[-t<N>] [file size] -f<target file> --file-per-thread

Description:

By default, when a regular file is specified as the target, and if the specified thread count
N is greater than 1, all I/O threads run to the same specified “target file” with each
thread assigned its own “file sized” I/O area within the “target file” whose size is “N
x file size”. However, if the --file-per-thread option is also specified, all threads
sharing the same “target file” each instead run to their own “target file.x” where x
is the thread number and each target file is “file sized”. This option is applicable only to
file system targets. If the target is a physical device or a logical volume, --file-per-
thread is ignored.

Default:

This switch option is automatically enabled when no target is specified (even without being
called).

This switch option is disabled by default if an explicit target is given (but can be included
to override default behavior).

Examples:

pain -t2

Each thread creates its own target file of given file size (in this case, no file size is given,
so 4MB default pain is used).

• Thread 1 -> “<HOSTNAME>.0001” 4MB file
• Thread 2 -> “<HOSTNAME>.0002” 4MB file

pain -t2 --file-per-thread

Same as above (--file-per-thread is redundant in this case).

pain -t2 -fmytargetfile

Both threads run to the same 8MB “mytargetfile”, each in its own 4MB area within it.

NOTE
--file-per-thread is the default behavior when “-f<target file>” is not speci-
fied. Without the explicitly specified target, pain/maim uses the default
“-f<HOSTNAME> --file-per-thread” options.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 255

• Thread 1 -> first 4MBs of “mytargetfile”
• Thread 2 -> next 4MBs of “mytargetfile”

pain -t2 -fmytargetfile --file-per-thread

Each thread uses its own target file of 4MBs.

• Thread 1 -> “mytargetfile.0001” 4MB file
• Thread 2 -> “mytargetfile.0002” 4MB file

catapult -f pain -t2

Catapult executes: pain -t2 -ftargetfile.dat

• Thread 1 -> first 4MBs of “targetfile.dat”
• Thread 2 -> next 4MBs of “targetfile.dat”

catapult -f pain -t2 --file-per-thread

Catapult executes: pain -t2 -ftargetfile.dat --file-per-thread

• Thread 1 -> “targetfile.dat.0001” 4MB file

Thread 2 -> “targetfile.dat.0002” 4MB file

--target-partition Target Partition Range

Usage:

--target-partition=<area>

Description:

This option specifies the partition modifier to apply to every target in the Workload. Speci-
fying a partition on a target defines the absolute boundaries of the test area within the
target device, and MLTT enforces that all I/Os are confined within the specified partitioned
area of the target.

The “<area>” specification uses the simplified zoned I/O area syntax (see “-%z:”).

• “First X” notation: first “<size>[unit]” bytes of the target device.
• “Span” notation: “<begin>[unit]-<end>[unit]”

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 256 Version 7.8 July 2023

The optional “[unit]” is the same as it is for the file size parameter: ‘k’ for kilobytes, ‘m’
for megabytes, ‘%’ for percentage of device size, etc. The default unit, if not specified, is
‘m’.

In the “span” notation, the open-ended “<end>” implies “to the rest of the device”.

While this option specifies the partition of all targets of a Workload, the “-f” option can
specify per-target partitions. If both “--target-partition” and per-target partitions are
specified, per-target partition overrides the “--target-partition”. See “-f Target” on
page 182 for examples of specifying per-target partitions.

Examples:

--target-partition=50% Define a partition of first 50% of the device size on all target
devices in the Workload

--target-partition=2g-16g Define a partition in the device range between byte
offsets 2GB (inclusive) and 16GB

--target-partition=75%- Open ended span example – partition is from the 75% of
the device size to the end of the device

--target-partition=50% -f\\.\physicaldrive1:@75% Override example. The
per-target partition specifier of 75% overrides the Workload –target-partition=50%

-o Keep Target Device or File Open

Usage:

-o

Description:

Use -o to disable repeated opening and closing of the file or device. This switch causes
the file or device to be opened once and kept open for the duration of the test. Keeping a
file or device open increases performance.

The -o option is implied for continuous queuing maim modes or if random access is spec-
ified (for example, through a combination of -%f, -%b, -%x).

Default:

By default, the tools open and close the file or device with each FOP.

NOTE
The partition defines the test area boundaries, not the test area itself.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 257

-O Override Device Base Offset

Usage:

-O[0|1|2|3|4|5]

Description:

Use -O to override the MLTT default device base offset setting. The mode definitions are:

0 Override base offset, error out on bad I/O extent
1 Override base offset, adjust bad I/O extent
2 Override base offset, allow bad I/O extent
3 Do not override base offset, error out on bad I/O extent
4 Do not override base offset, adjust bad I/O extent
5 Do not override base offset, allow bad I/O extent

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 258 Version 7.8 July 2023

If -O is specified without an optional mode value, then -O0 is assumed.

This option also sets the policy for checking I/O attempt beyond the device extent.

This switch instructs the tools to start I/Os at the start of the device (that is, sector 0 on a
hard drive). You should always use this switch when running I/O to an existing file on a file
system partition to avoid unnecessary seeking. For example:

-fg:\test.dat -O.

This option is ignored for 'sock' or 'pain/maim' file system targets.

Default:

-O3 where the I/O starts at 1MB default offset, and the I/O settings beyond device size
error out early.

-x Starting Offset

Usage:

-x<offset>

Description:

Use -x to specify the starting offset. This mode allows multiple host systems or multiple
sessions of the tools on a single system to access the same device or file concurrently by
allowing the user to specifying different starting offsets such that the multiple I/O streams
do not overlap.

You can specify the starting offset number in any units including “u”. If no unit suffix is
provided, the default value of “m” (megabytes) is assumed. A number supplied with this
switch will be used to set the base (starting) offset for the file/device in megabytes.

To avoid collisions with other sessions of the tools, you must set the base offset for each
new session beyond the highest offsets of previous sessions. Offset maybe specified with
an optional unit: 'b' for bytes, 'k' for kilobytes, 'm' for megabytes, 'g' for gigabytes. The
offset value must be a multiple of the logical block size of the target device.

CAUTION
Use this switch with extreme caution on physical drives or logical partitions! Overwriting
a drive from sector 0 will erase OS-specific details, such as the drive signature.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 259

Example:

Machine a: pain -t10 10 -x1 (runs 10 threads at 10MB each starting at 1MB offset)

Machine b: pain -t10 10 -x101 (runs 10 threads at 10MB each starting at 101MB
offset)

In this example, the base offset for machine b is set to the lowest possible value that will
not conflict with machine a. (i.e. 10 threads multiplied by a per-thread file size of 10 equals
100MB of space used by machine a. Machine b has to start at a minimum offset of 101MB
to avoid overwriting machine a.)

This option is ignored for sock.

Default:

The default offset, if -x is specified without the optional offset value, is 0MB.

-X Shared Offset Mode - All Threads Issue I/Os to the Same
Offsets

Usage:

-X<offset>

Description:

Use the -X switch to specify shared offset mode. In this mode, all threads issue I/Os to
the same offsets. You can specify the starting offset number in any units including “u”. If no
unit suffix is provided, the default value of “m” (megabytes) is assumed.The offset value
must be a multiple of the logical block size of the target device. A number supplied with this
switch will be used to set the starting offset to use for the file/device in megabytes. This
mode automatically disables data pattern reversals and unique I/O marks to prevent false
data corruptions.

This option is ignored for sock.

Default:

The default offset, if -X is specified without the optional offset value, is 0MB.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 260 Version 7.8 July 2023

--full-device Run to Entire Target Device

Usage:

--full-device

Description:

This is a convenience option to specify full-device coverage if the target is a physical
device or a volume. The testing area size is determined by the device size, starting offset,
and the thread count - i.e. Per-thread testing area is (device size - starting offset) / thread
count.

The transfer size of the very last I/O to the end of the device may be smaller than the buffer
size specified by “-b”.

This option is ignored for sock.

Default:

Enabled for -m17 and -m18, disabled for all other -m modes.

--smart S.M.A.R.T Monitoring

Usage:

--smart -f<targets> [other options]

Description:

Retrieves Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T. - also written
as SMART) attributes and status from target devices and logs them. This is supported for
both ATA and NVMe target devices. See Chapter 5 - SMART Log for more information and
examples.

Default:

Unset

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 261

Data Pattern Related Switches
This switch category contains switches that you use when you specify patterns for your
test.

• “-D Display the Data Pattern” on page 261
• “-e Custom Blink Pattern Modifier/Duplicate Block Count” on page 262
• “-E Custom Blink Pattern Modifier (walking bit variations)/Entropy Strength” on

page 263
• “-F Custom Blink Pattern Modifier” on page 263
• “-I Invert Pattern Mode” on page 264
• “-j Data Scrambling Mode” on page 264
• “-J Data Scrambling Mode Reset Interval” on page 265
• “-l Specify a Data Pattern Number” on page 265
• “-L Number of Times to Repeat the Data Pattern Cycle/Continuous Fill/Dedup %” on

page 266
• “-N Disable Data Pattern Reversals” on page 266
• “-P Modify Data Patterns with a Phase Shift” on page 267
• “-y Create Data Patterns Based on Various Lengths/Random Seed Value” on

page 268
• “-@ Read Data Pattern from a File/Deduplication Unit” on page 268

For more information about data patterns, refer to Chapter 6 “Data Pattern Reference”.

-D Display the Data Pattern

Usage:

-D[*[b]|[bytes]

Description:

Use -D for a visual representation of the selected data pattern on the console. Specifying
this switch alone or with a numeric byte value causes the data pattern to run on the console
in binary format. No I/Os are sent to any device. The byte value is used to indicate the
number of bytes wide that the pattern should take up on the console. Note that because
the data pattern representation is in binary, each byte indicated will take up 8 character
places on a console line. This switch is extremely useful for understanding the signal tran-
sitions induced by a particular data pattern. In addition to real time data pattern display, this
switch can be used for a quick data pattern preview.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 262 Version 7.8 July 2023

If an asterisk (-D*) is used instead of a numeric byte value, a brief excerpt of the selected
data pattern will be displayed on screen in hex format, with no I/O to any devices. This
feature is useful for validating that the data pattern characteristics specified on the tool
command line are as expected. If -D*b is specified, the pattern preview is displayed in
binary format instead of the default hex format. For -D* and -D*b, use -b (buffer size)
option to specify the number of bytes to preview.

Default:

Using -D without a specified byte value will run the data pattern at a length of 8 bytes per
line displayed on the console (the line across the console screen—before carriage return
to the next line).

-e Custom Blink Pattern Modifier/Duplicate Block Count

Usage:

-e<bit_length|duplicate_block_count>

Description:

The -e switch is a modification option for the custom blink pattern variations for -l99 or
the duplicate block count for -l80.

For -l99, this switch sets the 'length' of blinking 'on' bits. This switch can be used in
conjunction with the -L switch to create some interesting patterns across various bus
lengths. Refer to “-e Length of Blinking Bits” on page 262 for a detailed usage example.

For -l80, this switch is used with the -L switch to define deduplication data characteris-
tics. This option is ignored for -L0. Refer to “Deduplication/Compression Pattern (-l80)” on
page 264 for complete information related specifically to -l80.

Default:

Set to '-L' value for '-l99'; set to '-e1' for '-l80'.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 263

-E Custom Blink Pattern Modifier (walking bit variations)/
Entropy Strength

Usage:

-E<hold_cycles|entropy_strength>

Description:

The -E switch is a modification option for the custom blink pattern with walking bit options
(-l99w, -l99o, -l99f) or the compression entropy setting for -l80.

For -l99, the -E switch is a modification option for the custom blink pattern with walking
bit options (-l99w, -l99o, -l99f). Hold cycles indicates the number of times that a
pattern is repeated before the bit is walked. This switch can be useful in testing for stuck
bit faults on bus architectures. There is no default value; you must specify a hold cycle
value. Refer to “-E Set Custom Blink Hold Cycles (before transition for bit-walking varia-
tions)” on page 263 for a detailed usage example.

For -l80, this switch specifies how compressible the payload is. 0 (no entropy, most
compressible) to 100 (most entropy, least compressible). It basically defines the
percentage of original data that is written after compression is applied. For example, -E25
results in data output that is about 25% of the original data size after compression with
typical data compression algorithms. Refer to “Deduplication/Compression Pattern (-l80)”
on page 264 for complete information related specifically to -l80.

Default:

'100' for -l80; unset for other patterns.

-F Custom Blink Pattern Modifier

Usage:

-F

Description:

The -F switch is a modification option for the custom blink pattern variations (-l99). This
switch causes a “flip/flop” transition in the pattern by returning to the initial pattern value in
each cycle. This switch is useful in testing for stuck bits. Refer to “-F Reset custom
blinking pattern to the initial pattern value each cycle” on page 263 for a detailed usage
example.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 264 Version 7.8 July 2023

Default:

This option is disabled by default.

-I Invert Pattern Mode

Usage:

-I

Description:

The -I switch is a modification option for certain data patterns. This switch causes a bit
inversion of the data pattern with each transition cycle. Refer to the MLTT command-line
help for a listing of data patterns that support this option. This switch is used to create some
interesting bit-blink variations over bus architectures. Refer to “-I Invert Pattern Mode” on
page 258 for a detailed usage example of this switch.

Default:

This option is disabled by default.

-j Data Scrambling Mode

Usage:

-j<number>

Description:

Use -j to enable prescrambling of data patterns. Specify the desired scrambling mode. If
-j is not specified, it is assumed that there is no prescrambling or -j0.

0 = No prescrambling
1 = SAS scrambler (reset scrambler every 1024 bytes of data)
2 = SATA scrambler (reset scrambler every 8192 bytes of data)

Use with the -J switch to override the default reset interval.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 265

Default:

This option is disabled by default.

-J Data Scrambling Mode Reset Interval

Usage:

-J<bytes>

Description:

Use -J with the -j switch to specify the scrambler reset interval in bytes. For SAS/SATA
scrambling, this number should correlate to the data payload size. Use this switch only
when you want to override the default scrambler reset values used by the -j switch.

Example:

Specifying pain -j2 -J2048 would run the SATA scramble method, overriding the
default data length of 8192 with 2048.

-l Specify a Data Pattern Number

Usage:

-l<pattern_number>

Description:

Use -l to specify the desired data pattern number. Most likely, you would want to indicate
a specific data pattern for any test involving data or signal integrity. Refer to
Chapter 6 “Data Pattern Reference”” for more details about using this switch and other
related switches.

Default:

The default data pattern is -l17 (16-bit incrementing/decrementing pattern) for pain, maim
or sock.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 266 Version 7.8 July 2023

-L Number of Times to Repeat the Data Pattern Cycle/
Continuous Fill/Dedup %

Usage:

-L<count|fill_type|dedup%>

Description:

Use -L to modify the length or repetition of the selected data pattern cycle. The cycle
length indicates the number of times to repeat each cycle of a data pattern before moving
to the next unit. In general, the unit of data pattern refers to its length in bytes or bits. Refer
to the command-line help for a listing of data patterns that currently support this option.

For pattern -l0 (Read pattern from data file), specify -L2 for continuous fill or -L3 for
continuous fill with reset at each FOP.

Example:

Specifying -L4 as a modifier causes an 8-bit pattern to run each unit (one byte) four times
before moving to the next unit, effectively creating a 32-bit pattern. Specifying -L2 causes
a 64-bit pattern to run each unit (eight bytes) two times, effectively creating a 128-bit
pattern. Refer to “-L Number of Times to Repeat the Data Pattern Cycle” on page 257 for
a detailed usage example.

For pattern -l80, this switch specifies the percentage of written data that can be dedupli-
cated by the target device. The percentage of duplicated data blocks can be specified from
0 to 100 percent. For example, using -l80 -L30, about 70% of generated data will be
unique and about 30% will be filled from a pool of duplicate blocks that can be repeated
(thus be deduplicated by the target device.) Refer to “Deduplication/Compression Pattern
(-l80)” on page 264 for complete information related specifically to -l80.

For all other patterns, repeat each unit of a data pattern 'count' times.

Default:

The default value is -L0 for -l0 and -l80; -L1 for other patterns.

-N Disable Data Pattern Reversals

Usage:

-N

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 267

Description:

Use -N to disable data pattern reversals on those patterns that support reversals. By
default, most data patterns reverse after each FOP (forward, then backward). In general,
reversals should be allowed anytime data comparisons are being performed as a means
of insuring that stale data is not being read. See “Continuously Changing I/O Stream” on
page 255 for more information about data pattern reversals.

Default:

By default, most data patterns reverse after each FOP (forward, then backward).

-P Modify Data Patterns with a Phase Shift

Usage:

-P<unit_shift_interval>

Description:

Use -P to modify supported data patterns with a “phase shift.” This switch works on most
blinking data patterns. Refer to the command-line help for a listing of data patterns that
currently support this option. The effect is one of shifting the data pattern “out of phase” at
the specified unit interval, such that the square wave, created by the blinking on/off bits
reverses. You can specify frequency of the phase shift as the number of units to run before
reversing or a default value is used if you enter -P only.

Example:

pain -l14-P4 would cause a shift every 4 units of this 64-bit based data pattern. Refer to
“-P Modify Data Patterns with a Phase Shift” on page 258 for an in-depth discussion on
the use of this switch and a detailed usage example.

Default:

The default length varies by pattern.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 268 Version 7.8 July 2023

-y Create Data Patterns Based on Various Lengths/Random
Seed Value

Usage:

-y<pattern_value|random_seed_value>

Description:

Use -y to specify a value to repeat in the write buffers and create the data pattern. Use
this switch with several data pattern numbers (such as -l1, -l2,and -l4) to create
patterns based on various lengths.

For data patterns involving random number generation (such as -l35, -l47, -l60, -l62,
and -l80), this option may be used to specify a 32-bit random number seed value.

Refer to Appendix A “Data Pattern Numbers” ,” or the MLTT command-line help for a
listing of data patterns that support this option. Refer to “-y Create Data Patterns Based
on Various Lengths” on page 269 for more information on this switch.

Default:

A default value is assigned that is equivalent to the thread index number.

-@ Read Data Pattern from a File/Deduplication Unit

Usage:

-@<path/file_name|dedup_unit>

Description:

For -l0, this switch identifies the path and file name that contains the data pattern that will
be used by the -l0 data pattern (a special data pattern that uses a user-specified file to fill
the pattern). The file must be greater than or equal in size to the buffer size. The file is read
up to the size indicated by the specified buffer size (-b#). If the file is larger than the buffer
size, it will be continually read to fill the I/O buffers, so that large data patterns may be used
effectively. Refer to “Specified Data Patterns” on page 269 for complete information and
an example related specifically to -l0.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 269

For -l80, this switch specifies the dedup block size. It should be set to whatever the value
the target storage device’s deduplication system uses. The default for MLTT is 8K.

NOTE
You can use a size suffix like 'k', 'b', etc. as usual, but it will not accept the "u" suffix. "k"
is the default suffix (i.e. -@32 is -@32K). This option is ignored for -L0. Refer to “Dedu-
plication/Compression Pattern (-l80)” on page 264 for complete information related spe-
cifically to -l80.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 270 Version 7.8 July 2023

Data Integrity Related Switches
The switches described in this section are the target related commands.

– “-C Comparison Mode” on page 270
– “-n Disable Data Corruption Checking” on page 271
– “-u Disable Unique I/O Marks” on page 271
– “-V Reverify Existing Data to a Specified Data Pattern/Verify Journaled Write

Operations” on page 272
– “--journal Run I/O test with journaling enabled” on page 276
– “--journal-flush-once Journal Only Flushed Once” on page 277
– “--jv-compat” on page 278

This category of switches is used to change the options related to data integrity checking.
By default, the tools implement several measures to ensure that data read compares
exactly with data written.

-C Comparison Mode

Usage:

-C<compare_mode_number>

Description:

Use -C to specify the data comparison mode you want. In general, it is desirable to always
do a byte-for-byte comparison of write and read data, in order to catch any possible data
corruption. However, there may be cases (usually due to system limitations) where the
overhead of full buffer comparisons has a negative effect on I/O throughput to the target.
In these cases, you can set the compare mode to only perform a check on the unique I/O
signature in the data buffer. This substantially reduces processor utilization in the host
system. Refer to Chapter 6 “Data Pattern Reference”” for further discussion of I/O signa-
tures. The data comparison modes are:

0 = Disable data comparison

1 = Full byte-for-byte compare (default)

2 = Compare signatures only (2-3 words every 512 bytes)

3 = Compare session id only (16 bit id at 2nd word every sector, typically every 512 bytes)

4 = Session id compare, followed by write/read/full compare. Use with -A switch with options
3 and 4 to scan for specific session id.

NOTE
To turn off data comparisons completely, use the -n switch. This has the same effect as
using the “0” option.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 271

Default:

By default, the tools will perform a full byte-for-byte comparison of data read against data
written.

-n Disable Data Corruption Checking

Usage:

-n

Description:

Use the -n switch to disable data corruption checking (write and read buffer comparisons.)
This switch is normally used for performance testing. Host system processor utilization is
greatly decreased when data comparisons are disabled.

Default:

Data corruption checking is enabled by default.

-u Disable Unique I/O Marks

Usage:

-u

Description:

Use -u to disable the unique I/O signatures placed in the data buffers by the tools. You
normally use this switch for performance testing. I/O signatures are enabled by default and
occur every 512 bytes in the I/O buffer. The signatures are extremely useful for debugging
I/O errors and catching corruptions due to stale data. Refer to Chapter 6 “Data Pattern
Reference” for further discussion of I/O signatures. Host system processor utilization may
be slightly decreased and I/O throughput may slightly increase when I/O signatures are
disabled.

Default:

I/O signatures are enabled by default.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 272 Version 7.8 July 2023

-V Reverify Existing Data to a Specified Data Pattern/Verify
Journaled Write Operations

Usage:

-V Reverify existing data to a specified data pattern

--journal -V Verify journaled write operations

Reverification of existing data to a specified data pattern

Use -V to instruct the tools to reverify existing data to a specified data pattern. This switch
assumes that the specified file or device contains a previously written copy of the specified
data pattern. You must specify this switch along with the EXACT data pattern and I/O char-
acteristics used to write the data pattern previously. Because of the unique characteristics
built into the data patterns, the data must also have been written with the -i1 switch spec-
ified on the command line (or, preferably, the “-Vw” option). This switch is normally used
as a test of targets which cache large amounts of write data, in order to validate, at a later
time, that the data was successfully committed to disk. You can use this switch to test data
backup or snapshot implementations.

Examples:

Write a data pattern (note that -i1 is specified):
pain -l99 -L16 -i1 -w 100 -fg:\test.dat

Or, with the preferred -Vw option:
pain -l99 -L16 -Vw 100 -fg:\test.dat

Read the pattern back from a backup location and verify data for 1 iteration
pain -l99 -L16 100 -V -fh:\test.dat

Default:

This option is disabled by default.

NOTE
For random-access I/O, “-V” supports only the mapped random-access mode (see “--
random-x-map Random Access Map” on page 249)

NOTE
The data re-verification option (-V) should not be used with data pattern 46 (-l46)
because the buffer memory address is likely to have been re-assigned between test
runs.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 273

Verification of Journaled Write Operations

The verification process looks for the journal log in the current working directory. You can
use --journal<=path/directory> to specify the location of the journal log. To avoid
issues with locating the journal log, the best practice is to always specify a path/directory
for journaling and verification. When you run the journal verification (--journal -V), the
following summary information is output to the screen and the log file at the end of the test:

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 274 Version 7.8 July 2023

JOURNAL VERIFICATION SUMMARY
 TOTAL (both queued and confirmed writes):
 240
 CONFIRMED (confirmed writes):
 227
 VERIFIED (queued or confirmed writes that passed):
 239
 FAILED (confirmed writes with data corruption):
 0
 SKIPPED (skipped verification due to overwrite by newer write(s)):
 0
 UNDEFINED (queued writes that failed verification):
 1

Example:

In addition, the log file also lists the details for each recorded write operation that was veri-
fied. Here are examples of three records:

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:0
 JOURNAL: OFFSET : 4377804800 (0x0000000104F00000)
 JOURNAL: LBA : 8550400 (0x0000000000827800)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0
 JOURNAL: TIMESTAMP : 0x51AC51A7E2B9E010
 JOURNAL: WRITE : QUEUED
 JOURNAL: VERIFY : OK

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:0
 JOURNAL: OFFSET : 4377673728 (0x0000000104EE0000)
 JOURNAL: LBA : 8550144 (0x0000000000827700)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0
 JOURNAL: TIMESTAMP : 0x51AC51A7E2B9E00E
 JOURNAL: WRITE : CONFIRMED
 JOURNAL: VERIFY : OK

JOURNAL: Target:\\.\physicaldrive1 Thread:1 CTX:15
 JOURNAL: OFFSET : 11024896 (0x0000000000A83A00)
 JOURNAL: LBA : 21533 (0x000000000000541D)
 JOURNAL: SIZE : 64KB
 JOURNAL: LOOP : 0
 JOURNAL: TIMESTAMP : 0x51AC55D16454B001
 JOURNAL: WRITE : CONFIRMED
 JOURNAL: VERIFY : SKIP (OVERWRITE @ 0x51AC55D16BF5D000)

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 275

In these examples:

"OFFSET:", "LBA:", and "SIZE:" detail the I/O location and transfer size.

"LOOP:" is the sequential I/O loop count during which the recorded write occurred.

"TIMESTAMP:" is a concatenation of 52-bit microsecond time stamp and 12-bit sequence
number to uniquely identify a recorded write. This number is unique within each I/O context
("CTX:").

"WRITE:" status can be "QUEUED" or "CONFIRMED". Before each write, the record for
the write is set to "QUEUED" state and committed to the journal. When the write operation
completes, the record for the write is set to "CONFIRMED" state and committed to the
journal.

"VERIFY:" status is set during journal verification as each recorded data is read back and
a data integrity check is performed on it.

The status indicators are set based on the following definitions:

OK if "CONFIRMED" or "QUEUED" write passes data integrity check.
FAIL if a "CONFIRMED" write fails data integrity check. This also raises the

regular "Data corruption" error.
SKIP if the pain/maim detects that the I/O location was overwritten by a later

write operation, and data verification is skipped in order to avoid
falsely raising a data corruption error. In addition, the "TIMESTAMP"
corresponding to over-writing I/O is given next to the status.

UNDEFINED if a "QUEUED" write (i.e. queued but not confirmed write operation)
fails data integrity check. Because the write was not confirmed, this is
not flagged as a data corruption error.

Default:

This option is disabled by default.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 276 Version 7.8 July 2023

-Vw Write-once for Reverification

Usage:

-Vw

Description:

This switch is a convenience macro for “-w -i1”. It is intended to be used to write data
that can then be verified with the -V switch in a later command that has the exact same
switches, except with the -Vw switch replaced with the -V switch for verification.

Example:

maim -l80 -t3 -Q7 --full-device -%x100 --random-x-map -
b1k,2k,4k,128k-1m.4k -f\\.\PhysicalDrive2 -Vw

Then for verification, run:

maim -l80 -t3 -Q7 --full-device -%x100 --random-x-map -
b1k,2k,4k,128k-1m.4k -f\\.\PhysicalDrive2 -V -i3

--journal Run I/O test with journaling enabled

Usage:

--journal<=path/directory>

Description:

Use the --journal switch to record a log file of recent write operation characteristics
(buffer size, thread count, queue depth, file size, pattern used, etc.). Then, when a power
loss to the initiator or the target device is simulated during testing, the log file is saved. The
log file preserves the status of the last several write operations. A path and directory can
be specified as a location to save the .log file. Note that you may use relative path or abso-
lute path for the journal directory, however, the specified directory must already exist.

When the power is restored, run the --journal -V switches together to retrieve the saved
log file and verify the last known completed write operations prior to the power loss.
The --journal -V switches ignore all other options (with the exception of "-f"), but to
be safe, specify no other options. However, if a path and directory was identified in the
initial save portion of the process, likewise, the same path and directory must be identified
during the retrieval portion.

Pain/maim restores the recorded command line options and initializes with the recorded
write operation characteristics. Then it reads the journal log file for the recorded write oper-

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 277

ations, reads the data back from the target devices at the recorded LBA by recorded
transfer size, and does the normal data comparison to see if the write data was correctly
committed to the device.

Example:

maim -Q64 -t4 -b8k --journal=/my/journal/directory

For verification mode, specify:
maim -V --journal=/my/journal/directory

If you specify an optional journal directory during journaled I/O, you must specify the same
directory during journal verification mode.

You can specify a raw disk as the journal directory. For example:

On Windows: --journal=\\.\PhysicalDrive1
On Linux: --journal=/dev/sdb

Journal data is written starting at 1MB offset of the specified disks. Using a raw disk can
reduce the journal data update latency and better ensure the journal data integrity.

--journal-flush-once Journal Only Flushed Once

Usage:

--journal-flush-once

Description:

Use --journal-flush-once with --journal to have MLTT not perform the normal
two journal commits per write operation. Instead, the entire in-memory journal data will be
written once at the end of the test. This is often used in instances where instead of
removing power to the entire DUT host, only the DUT is powered-off. By removing the 2-
per-write synchronous journal file commits, the user can perform journaled tests at the
near-maximum performance capability of the DUT.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 278 Version 7.8 July 2023

--jv-compat

Usage:

--jv-compat

Description:

Apply the pre-7.4.0 ambiguity resolution method for journal verification. Please see
Appendix H for further explanation.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 279

Error Related Switches
This section describes switches related to the tools' handling of error conditions during
testing.

• “-H Time to Wait Before Retrying an I/O Operation” on page 279
• “-M I/O Monitoring Mode” on page 280
• “-v Verify/Retry Count” on page 280
• “-! (or -#) Enable Analyzer trigger writes” on page 281
• “--handler Specify Custom Error Handling” on page 283
• “--reopen-on-retry” on page 285

-H Time to Wait Before Retrying an I/O Operation

Usage:

-H<seconds>

Description:

Use the -H switch to specify the number of seconds to wait before retrying an I/O operation
that previously encountered a non-fatal error. Retries, when possible, occur immediately
by default. This switch can be used in conjunction with the -v switch, described in “-v
 Verify/Retry Count” on page 280.

Default:

By default, retries are performed immediately.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 280 Version 7.8 July 2023

-M I/O Monitoring Mode

Usage:

-M<seconds>

Description:

Use the -M switch to enable the I/O monitoring mode. The tools will display a warning when
I/Os are not completed before the specified number of seconds (for example, -M60 would
display a warning after 60 seconds.) By default, warnings will appear when a completion
exceeds the performance sample time (5 seconds is default sample time.) You can specify
a desired timeout or disable monitoring by indicating a timeout of 0 (-M0.) The I/O moni-
toring feature will report both complete I/O halts and individual stuck I/Os. You can also use
this mode to catch I/O disruptions on an analyzer. If you use this switch with the -! or -#
switches, an I/O trigger is sent when a halt or stuck I/O is detected. Note that there is no
guarantee that the trigger I/O will reach the analyzer, as the target may be in an unrespon-
sive state.

Default:

By default, I/O monitoring is enabled and errors are reported after the default performance
sample interval of 5 seconds.

-v Verify/Retry Count

Usage:

-v<retry_count>

Description:

Use the -v switch to retry failed operations and to specify the number of retry attempts.
You can use this switch with the -H switch described earlier in “-H Time to Wait Before
Retrying an I/O Operation” on page 279.

This option is ignored for sock.

Default:

By default, there is no retry on I/O errors (i.e. -v0), but a mandatory 1 retry on data corrup-
tion.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 281

-! (or -#) Enable Analyzer trigger writes

Usage:

-![0|1|2|3|4|5] or -#[0|1|2|3|4|5]

Description:

This is the trigger debug flag. It instructs the tools to send a write I/O to the target device
on critical errors with the idea that an analyzer can be set to trigger on the write data. The
data value to trigger on occurs in the first two words of the data frame.

The options associated with this switch are:

If '-!' is specified without 'mode', '-!1' is assumed.

The application and arguments can be specified in the configuration file as follows:

EXTERNAL_CMD=executable;
EXTERNAL_ARGS=arguments;

Example:

EXTERNAL_CMD=c:\test\myapp.exe;
EXTERNAL_ARGS=arg1 arg2 arg3;

NOTE
-# can be used as an alternative to the -! command to enable the trigger debug flag.

-!0 No trigger
-!1 Writes 0xCACACACA 0xCACACACA for data corruption,

0xCACACACA 0xDEADBEEF for I/O error trigger
-!2 Writes 0xDEADDEAD 0xDEADDEAD for data corruption,

0xDEADDEAD 0xDEADBEEF for I/O error trigger
-!3 Exits on error immediately - no trigger written
-!4 Executes external command specified in 'MedusaTools.cfg
-!5 Writes default 0xCACACACA trigger and exits immediately

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 282 Version 7.8 July 2023

This option can be used to trigger the Xgig Analyzer to start (trigger) or stop capture. The
application and arguments that must be specified in the configuration file MedusaTools.cfg.
For example, to trigger the Analyzer operating in the domain “My Domain (1,1,1)
XGIG01001234”, set the application and arguments as follows:

EXTERNAL_CMD=triggeranalyzer.cmd;
EXTERNAL_ARGS=“My Domain(1,1,1)” XGIG01001234;

Ensure that the batch files, TriggerAnalyzer.cmd and StopAnalyzer.cmd, and the execut-
able, wget.exe, are in the executable path. A mirror for downloading the executable,
wget.exe, can be downloaded from the URL below:

http://wget.addictivecode.org/FrequentlyAskedQuestions.html#download

Now, the trigger can be activated by using the !4 option. For example, to trigger the
Analyzer to capture on activation of the Pain tool,

pain -!4

See also Appendix D in the Xgig Analyzer User Guide.

Default:

Triggering is disabled by default.

NOTE
TriggerAnalyzer.cmd and StopAnalyzer.cmd are batch files that are included with the
Medusa Labs Test Tools installation for Windows. These files are typically installed in
this folder: C:\Program Files\Medusa Labs\Test Tools\bin

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 283

--handler Specify Custom Error Handling

Usage:

--handler=<error[,error[,...]]>:[<spec>[,<spec>[,...]]]

Description:

Specify error handling. Use multiple times to handle a list of errors.Handled 'error' values
(case insensitive):

‘size’ I/O transfer size mismatch
‘corrupt’ Data corruption
‘read’ I/O error during read (reported by the OS)
‘write’ I/O error during write (reported by the OS)
‘open’ OS error while opening the target
‘close’ OS error while closing the target
‘flush’ OS error during flush (sync)
‘timeout’ I/O pending for longer than monitor period (see “-M I/O

Monitoring Mode” on page 280)
‘halt’ No I/O reported for the process during sampling interval
‘all’ All handled errors

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 284 Version 7.8 July 2023

Error handler specs:

Example: pain --handler=read,write:tr,xip,pBAD,v3

On read or write errors, regular trigger to target ('tr') using trigger pattern 'BADBADBAD-
BADBADB' ('pBAD' - NOTE: 'BAD' is repeated to create a 64-bit patter integer), exit the
program at the point of error ('xip') if still failed within 3 retries ('v3').

Example: pain --handler=size,timeout,halt:lw,tr,xf

Treat size error, timeout, and halt events as warnings ('lw'). The 'tr' and 'xf' will be ignored
with these settings because these events would no longer be treated as errors. This option
can be specified multiple times - all '--handler' specifications are combined to form the error
event handling map.

Default:

Error handling is set using '-!'

l<i|w|e> Label it as informational ('i'), warning ('w'), or error ('e') - by default
all error events are labeled as 'error'. The other error handling specs
are ignored unless the error event is labeled as 'error'

t<n|r|x|b> No trigger ('n'), regular trigger to target ('r'), external command ('x'),
or both regular trigger and external command ('b') - if unspecified,
triggering is set by '-!

x<c|f|i|1><w|g>
[p]

On error, continue running ('c'), exit after current FOP ('f'), exit
immediately at the point of error ('i') after the specified number of
retries only if the retry fails, or exit immediately at the point of error
after first retry (‘1’) whether or not the retry was successful - use the
optional 'p' suffix to exit the program rather than just the affected I/
O thread - if unspecified, the exit-on-error is set by '-!'. Starting
from MLTT 7.6.0, it is possible to handle errors for workloads (‘w’)
or workload groups (‘g’).

v<count> Set the retry 'count' (override global '-v')
p<hexstring> Set the trigger pattern to 'hexstring' (up to 16 hexadecimal

characters) - if unspecified, the trigger pattern is set by '-!

CAUTION
If data comparisons are being performed on write or read commands, it is
recommended that you not use the --handler label spec (l<i|w|e> listed above) to
change the label of the write or read commands to either informational ('i') or warning
('w'). This would result in these errors being ignored.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 285

--reopen-on-retry

Usage:

--reopen-on-retry

Description:

Use the --reopen-on-retry switch to close and open a new file descriptor before
retrying a failed I/O. This option is ignored for 'sock'.

Default:

Unset (do not reopen before retry).

NOTE
It is recommended that this switch be used in any test cases that involve path failover in
multi-path I/O configurations. It is possible for the file descriptor to be lost when a
failover occurs and I/O traffic may not recover unless a reopen on the file or device is
performed.

Chapter 4 Using the Command Line Switches
Switches by Category

 Medusa Labs Test Tools Suite User’s Guide
Page 286 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 287

5

Chapter 5 Logging and Output

This chapter describes the log files used in Medusa Labs Test Tools Suite. MLTT provides
detailed logs of performance and error conditions. Topics discussed in this chapter are as
follows:

• “Overview” on page 288
• “Status Log” on page 288
• “Performance Summary Log” on page 289
• “Comma-delimited Performance Log” on page 290
• “Error Log” on page 290
• “I/O Operation History Trace and Payload Data Logging” on page 291
• “NVMe Identify and NVMe Get Log” on page 294
• “SMART Log” on page 297
• “Sample Logs” on page 299

Chapter 5 Logging and Output
Overview

 Medusa Labs Test Tools Suite User’s Guide
Page 288 Version 7.8 July 2023

Overview
The log files are written to the current directory from which the tools are executed. Logs
are named according to the WS_NAME (workstation name) variable. The WS_NAME is
either read from an environment of the same name, or the system’s host name is used, if
the environment variable is not found. When you use Catapult, it supplies the WS_NAME
to each instance of MLTT it launches. The WS_NAME is a combination of the system host
name and the target device name. For example, a host named myhost and a target of
\\physicaldrive2 would create a WS_NAME of myhost_2.

Four log files can be created during a test run:

• General status log (created by default)
• Performance summary log (created by default)
• Comma-delimited performance and error log (created by default)
• Error log (created when critical errors occur, on a per-thread basis. Each worker

thread creates its own error log.)

Status Log
The general status log is named after the WS_NAME, with a .log extension, for example,
mysystem.log. Information from a test run is always appended to the log file, so subse-
quent test runs will not overwrite the file. The status log records the following details about
the test run:

• Start time
• Command line switches—with the settings for each switch, the settings you provided

or the defaults
• Complete parameter and environment values
• Performance samples (the same samples that are displayed on the console screen

during a test run)
• Error messages and counts

Figure 70 on page 300 shows a sample status log.

Chapter 5 Logging and Output
Performance Summary Log

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 289

Performance Summary Log
The performance summary log is named after the WS_NAME with a .prf extension, for
example mysystem.prf. This log file is overwritten with each performance sample. The log
shows overall performance by listing the real-time readout. The performance summary log
contains overall performance details for a test run, including the minimum, maximum, and
average I/O operations (IOPS), the minimum, maximum, and average MB/s, and the
minimum, maximum and average I/O response times. A count of total errors encountered
is also listed. Catapult uses this file to verify test results.

The following shows an example of a performance summary log.

[Test Info]
Command Line = pain 4MB -b512B -i1 -Y1 -M5
I/O Size = 512B
Queue Depth = 1
Test Mode = Read write mix
Start Time = 10/14/2015 11:27:12 AM

[Completion Info]
Elapsed Time = 00:00:07
Samples = 7
I/O Halts = 0
Avg Completion Time in Seconds = 0.000400
Max Completion Time in Seconds = 0.032027
Min Completion Time in Seconds = 0.000225

[I/O Operations]
Total IOs = 17374
Avg IO/Sec = 2482.00
Max IO/Sec = 3178.75
Min IO/Sec = 1924.85

[Megabytes]
Total MB = 8
Avg MB/Sec = 1.21
Max MB/Sec = 1.55
Min MB/Sec = 0.94

[Errors]
Total Errors = 0

The performance summary log (.prf) is created with the same name every time a test case
is run. So, the second and subsequent test cases would overwrite the contents of the
performance summary log. In order to preserve the performance summary log for each
test case, the batch file template, perfbaselinetest.bat, can be used. This batch file can be
is installed with MLTT and can be found in this path: "C:\Program Files\Medusa Labs\Test
Tools\bin". This batch file can be customized to individual needs: it essentially copies the
performance summary log for each test case to a different name to avoid it being over-
written. In particular, the variables DEVICE and TARGET need to be customized.

The list of performance summary logs can be consolidated using the executable,
prfgrab.exe, into a comma delimited file (.csv) that can be imported into Microsoft Excel for

Chapter 5 Logging and Output
Comma-delimited Performance Log

 Medusa Labs Test Tools Suite User’s Guide
Page 290 Version 7.8 July 2023

easy sorting and viewing. This batch file can be is installed with MLTT and can be found in
this path: "C:\Program Files\Medusa Labs\Test Tools\bin". The executable, prfgrab.exe, is
only available for Windows; there is no UNIX equivalent available. However, since .prf files
are common across platforms, .prf files from a UNIX system can be brought into a
Windows system where the prfgrab.exe executable can consolidate them into a .csv file.

Comma-delimited Performance Log
This log contains detailed performance samples and error counters that you can import
into spreadsheet applications for graphing or analysis. This log is named after the
WS_NAME, with a .csv extension, for example, mysystem.csv. The .csv log file is
appended with each test run. The .csv log file has the following 38 column headings for
each performance sample:

Specifying --x-csv will add per-sample period minimum, maximum, and average I/O
completion times. Specifying --x-csv and --latency-histogram will update the per-
sample period latency histogram columns.

Error Log
The error log is named after the thread number where the error occurred, for example,
thread1.bad.

This log contains pertinent details about the error encountered and is essential for debug-
ging of data corruption issues. When a data corruption occurs, the entire bad data is listed
along with the expected data and the offset counts where the differentiation in the compar-
ison (the miscompare) occurred. Any error codes returned by the operating system are
also included and decoded.

1 Sample Number
2 Elapsed Time
3 FOPS
4 Current Avg IOPS
5 Avg IOPS
6 Max IOPS
7 Min IOPS
8 Current Avg MB/s
9 Avg MB/s
10 Max MB/s
11 Min MB/s
12 Avg Completion Time
13 Max Completion Time

14 Min Completion Time
15 I/O Halts
16 I/O Timeouts
17 Write Errors
18 Read Errors
19 Data Corruptions
20 Open Errors
21 Seek Errors
22 Flush Errors
23 Close Errors
24 Remove Errors
25 Size Errors
26 Retry Errors

27 Current % CPU
28 Avg % CPU
29 Max % CPU
30 Min % CPU
31 Current % CPU User Only
32 Avg % CPU User Only
33 Max % CPU User Only
34 Min % CPU User Only
35 Current % CPU Interrupt Only
36 Avg % CPU Interrupt Only
37 Max % CPU Interrupt Only
38 Min % CPU Interrupt Only

Chapter 5 Logging and Output
I/O Operation History Trace and Payload Data Logging

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 291

I/O Operation History Trace and Payload Data Logging
This section goes into more detail about the contents of the I/O history traces and the data
dump files - see --io-trace in Chapter 4 for the command line switches.

Trace Events
Inside each traced event the following attributes are recorded:

Event: SUBMIT, COMPLETE, or ERROR

Operation: READ or WRITE

Time delta: Elapsed time since the last traced events in microseconds

LBA: Logical block address of I/O location

Status Transfer Size or Error Status (if OS error):

SUBMIT Event - The I/O size in logical block count

COMPLETE Event - The returned I/O size in logical block count - i.e. the actual I/O
size of a completed I/O claimed by the OS.

ERROR Event for OS Error - This is an OS error code.

ERROR Event for Data Corruption - The completed transfer size claimed by the OS
in logical block count.

ERROR Event for Transfer Size Mismatch - The completed transfer size claimed by
OS in logical block count.

ERROR Event for MLTT Application-level Precondition Check Failure - This will
always return 0 .

Each traced operation records two events in the form of either a SUMBIT-COMPLETE pair
or a SUMBIT-ERROR pair. Each event captured in the .trace file will be one of the following
pairs below depending on the parameters specified - see --io-trace in Chapter 4 for
more information.

SUBMIT, WRITE - This event is traced before a WRITE operation is submitted to the OS.

NOTE
Due to the ambiguity in trying to interpret the value of this field, if the requested and
returned size are the same for a read operation then the ERROR is likely data corrup-
tion. Cross reference the other MLTT logs - i.e. .bad and .log files - to see the error
details.

Chapter 5 Logging and Output
I/O Operation History Trace and Payload Data Logging

 Medusa Labs Test Tools Suite User’s Guide
Page 292 Version 7.8 July 2023

SUBMIT, READ - This event is traced before a READ operation is submitted to the OS.

Example of SUBMIT, WRITE without data dump or SUBMIT, READ:

SUBMIT, WRITE @ 2019/05/23-14:07:31.292.839
lba : 12288 (0x3000) offset : 6291456
size : 1048576 (1MB, 2048 LBs)

Where each field is:

Example of SUBMIT, WRITE with data dump:

SUBMIT, WRITE @ 2019/05/23-13:13:42.579.532
lba : 24576 (0x6000)
offset : 12582912 size : 1048576 (1MB, 2048 LBs)
dfile : /test/190523131307_t1-25.data
doffset : 3145728 dsize : 1048576
data : FFFFFFFE FFFDFFFC 64640001 ED00000C 00006000
FFF5FFF4 FFF3FFF2 FFF1FFF0

Where each field is:

Event, Operation @
timestamp of event

lba I/O LBA in decimal and hex
offset Byte offset of I/O LBA
size Requested I/O size in bytes and LB count

Event, Operation @
timestamp of event

lba I/O LBA in decimal and hex
offset Byte offset of I/O LBA
size Requested I/O size in bytes and LB count
dfile The corresponding data dump file where

the write data was written
doffset The byte offset into the data dump file

where the write data was written
dsize The byte count of data written to the data

dump file
data The first 32-bytes sample of the written

data

Chapter 5 Logging and Output
I/O Operation History Trace and Payload Data Logging

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 293

COMPLETE, WRITE - This event is traced after MLTT receives a “success” status from
the OS for a previously submitted WRITE operation.

COMPLETE, READ - This event is traced after MLTT receives a “success” status from
the OS for a previously submitted READ operation.

Example of a COMPLETE event:

COMPLETE, WRITE @ 2019/05/23-13:13:42.722.104
lba : 2048 (0x0800)
offset : 1048576 size : 1048576 (1MB, 2048 LBs)

Where each field is:

ERROR, WRITE - This event is traced after MLTT receives a status from the OS for a
previously submitted WRITE operation and the returned status is “error”, an MLTT appli-
cation-level precondition check failed before submitting the WRITE operation, or the
returned status is “success”, but the requested I/O size and the returned I/O size do not
match.

ERROR, READ - This event is traced after MLTT receives a status form the OS for a
previously submitted READ operation and the returned status is “error”, an MLTT appli-
cation-level precondition check failed before submitting the READ operation, the
returned status is “success”, but the requested I/O size and returned I/O size do not
match, or the returned status is “success”, but data corruption was detected.

Example of an data corruption or transfer size mismatch ERROR event, READ or
WRITE:

ERROR, READ @ 2019/05/23-14:49:09.609.616
lba : 2048 (0x0800)
offset : 1048576
size : 1048576 (1MB, 2048 LBs)

NOTE
To examine the entire written data corresponding to this event, open the “dfile” in a hex
viewer application and then examine “dsize” bytes starting from “doffset”.

Event, Operation @
timestamp of event

lba I/O LBA in decimal and hex
offset Byte offset of I/O LBA
size Requested I/O size in bytes and LB count

Chapter 5 Logging and Output
NVMe Identify and NVMe Get Log

 Medusa Labs Test Tools Suite User’s Guide
Page 294 Version 7.8 July 2023

Where each field it:

Example of an OS error “ERROR” event, READ or WRITE:

ERROR, READ @ 2019/05/23-15:20:21.161.245
lba : 20480 (0x5000)
offset : 10485760
error : 5

Where each field is:

NVMe Identify and NVMe Get Log
This sections contains sample output and logs generated by MLTT specifically for NVMe
devices.

NVMe Identify
When running any command to an NVMe drive, MLTT will automatically output the NVMe
controller and namespace identifications of the DUT to the console (if being run from the
command line) and the .log file output. Below is an example of a DUT’s output.
NVMe Admin Identify: Controller (CNS=1, win32Status=0, CQE.DW0=0, CQE.DW3.SF.SCT=0, CQE.DW3.SF.SC=0)
 VID: 32902 (0x8086)
 SSVID: 32902 (0x8086)
 SN: "PHHH852204AS128A"
 MN: "INTEL SSDPEKKA128G8 "
 FR: "005D"
 RAB: 6 (0x06)
 IEEE: 6083300 (0x5CD2E4): "5C-D2-E4"
 CMIC: 0 (0x00): single NVM port, single controller, PCI Function or Fabric
 MDTS: 6 (0x06)
 CNTLID: 1 (0x0001)

Event, Operation @
timestamp of event

lba I/O LBA in decimal and hex
offset Byte offset of I/O LBA
size Requested I/O size in bytes and LB count

Event, Operation @
timestamp of event

lba I/O LBA in decimal and hex
offset Byte offset of I/O LBA
size Requested I/O size in bytes and LB count

Chapter 5 Logging and Output
NVMe Identify and NVMe Get Log

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 295

 VER: 66304 (0x00010300): "1.3.0"
 RTD3R: 500000 (0x0007A120)
 RTD3E: 2000000 (0x001E8480)
 OAES: 512 (0x00000200): Firmware Activation Notices
 OACS: 23 (0x0017): Security Send and Receive, Format NVM, Firmware Commit and Image Download, Device
Self-test
 ACL: 4 (0x04)
 AERL: 7 (0x07)
 FRMW: 20 (0x14): first slot read-write, slot count 2, firmware activation without reset
 LPA: 15 (0x0F): SMART/Health Information per namespace, Commands Supported and Effects, extended data
for the Get Log Page, Telemetry Host-Initiated and Controller-Initiated
 ELPE: 255 (0xFF)
 NPSS: 4 (0x04)
 AVSCC: 0 (0x00): vendor-specific format
 APSTA: 1 (0x01): autonomous power state transition
 WCTEMP: 348 (0x015C)
 CCTEMP: 353 (0x0161)
 MTFA: 50 (0x0032)
 EDSTT: 5 (0x0005)
 DSTO: 1 (0x01): one per NVM subsytem at a time
 FWUG: 0 (0x00)
 HCTMA: 1 (0x0001): supported
 MNTMT: 303 (0x012F)
 MXTMT: 348 (0x015C)
 SANICAP: 3 (0x00000003): crypto erase, block erase
 SQES: 102 (0x66): minimum 6, maximum 6
 CQES: 68 (0x44): minimum 4, maximum 4
 NN: 1 (0x00000001)
 ONCS: 95 (0x005F): Compare, Write Uncorrectable, Dataset Management, Write Zeroes, Save and Select
Features, Timestamp
 FNA:4 (0x04): format specified namespace, secure erase specified namespace, cryptographic erase
 VWC: 1 (0x01): present
 AWUN: 0 (0x0000)
 AWUPF: 0 (0x0000)
 NVSCC: 0 (0x00): vendor-specific format
 MNAN: 0 (0x00000000)
 SUBNQN: "nqn.2017-12.org.nvmexpress:uuid:11111111-2222-3333-4444-555555555555"
 PSD0: MP 900, MXPS 0 (0.01W), RRT 0, RRL 0, RWT 0, RWL 0
 PSD1: MP 460, MXPS 0 (0.01W), RRT 1, RRL 1, RWT 1, RWL 1
 PSD2: MP 380, MXPS 0 (0.01W), RRT 2, RRL 2, RWT 2, RWL 2
 PSD3: MP 450, MXPS 1 (0.0001W), NOPS, ANLAT 2000, EXLAT 2000, RRT 3, RRL 3, RWT 3, RWL 3

 NVMe Admin Identify: Namespace (CNS=0, win32Status=0, CQE.DW0=0, CQE.DW3.SF.SCT=0, CQE.DW3.SF.SC=0)
 NSZE: 250069680 (0x000000000EE7C2B0)
 NCAP: 250069680 (0x000000000EE7C2B0)
 NUSE: 250069680 (0x000000000EE7C2B0)
 NLBAF: 0 (0x00)
 FLBAS: 0 (0x00): LBA Format 0
 NMIC: 0 (0x00): attach to single controller
 FPI: 128 (0x80): supported, %remaining 0
 DLFEAT: 1 (0x01): deallocated logical block all bytes set to 0x00, PI Guard field of deallocated
logical block is 0xFFFF
 NAWUN: 0 (0x0000)
 NAWUPF: 0 (0x0000)
 NACWU: 0 (0x0000)
 NGUID: 0x0000000001000000E4D25CC1456A5001 ("00000000-0100-0000-e4d2-5cc1456a5001")
 LBAF0: MS 0 (0x0000), LBADS 9 (0x09), RP 0 (0x00) Best performance

This is the output found from the nvme-cli for the commands nvme id-ns and nvme
id-ctrl in Linux.

NVMe Get Log
This section contains example output of the NVMe Get Log feature. Multiple get logs may
be specified by putting a “,”(comma) between them and MLTT will section off each get log
by its log id. To retrieve a get log, specify its log id in decimal, mnemonic, or hex value.
Specific CDW10/11/12/13/15 options and general options can be specified or toggled on
by specifying their name and, optionally, the value wanted. When using multiple options
for a single get log, separate them with a “.”(period). These get logs are similar to their

Chapter 5 Logging and Output
NVMe Identify and NVMe Get Log

 Medusa Labs Test Tools Suite User’s Guide
Page 296 Version 7.8 July 2023

nvme cli equivalent with exception of some slightly differing values. To view the get logs,
look in the .log file generated after running the command or in the output displayed in the
console if running from the command line.

Example: “pain --nvme-get-log=error.rae.numd:10,cse.uuid:1 -f/dev/
nvme0n1”

 NVMe Get Log Page: LID=1 (0x01) Error Information, LSP=0 (0x00), RAE=1 (0x01), LSID=0 (0x0000), NUMD=10
(0x0000000A), LPO=0 (0x0000000000000000), uuidIndex=0 (0x00)
 0 valid error information entries

 NVMe Get Log Page: LID=5 (0x05) Commands Supported And Effects, LSP=0 (0x00), RAE=0 (0x00), LSID=0
(0x0000), NUMD=1023 (0x000003FF), LPO=0 (0x0000000000000000), uuidIndex=1 (0x01)
 ADM 0 (0x00) Delete I/O Submission Queue: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 1 (0x01) Create I/O Submission Queue: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 2 (0x02) Get Log Page: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 4 (0x04) Delete I/O Completion Queue: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 5 (0x05) Create I/O Completion Queue: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 6 (0x06) Identify: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 8 (0x08) Abort: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 9 (0x09) Set Features: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 10 (0x0A) Get Features: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 12 (0x0C) Asynchronous Event Request: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 16 (0x10) Firmware Commit: 17 (0x00000011): CSUPP, CCC, CSE 0 (no restriction)
 ADM 17 (0x11) Firmware Image Download: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 20 (0x14) Device Self-test: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 128 (0x80) Format NVM: 65543 (0x00010007): CSUPP, LBCC, NCC, CSE 1 (restriction on same
namespace)
 ADM 129 (0x81) Security Send: 131075 (0x00020003): CSUPP, LBCC, CSE 2 (restriction on any namespace)
 ADM 130 (0x82) Security Receive: 131075 (0x00020003): CSUPP, LBCC, CSE 2 (restriction on any
namespace)
 ADM 132 (0x84) Sanitize: 131075 (0x00020003): CSUPP, LBCC, CSE 2 (restriction on any namespace)
 ADM 192 (0xC0) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 226 (0xE2) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 228 (0xE4) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 229 (0xE5) Vendor specific: 3 (0x00000003): CSUPP, LBCC, CSE 0 (no restriction)
 ADM 230 (0xE6) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 233 (0xE9) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 234 (0xEA) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 ADM 250 (0xFA) Vendor specific: 1 (0x00000001): CSUPP, CSE 0 (no restriction)

 NVM 0 (0x00) Flush: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 NVM 1 (0x01) Write: 3 (0x00000003): CSUPP, LBCC, CSE 0 (no restriction)
 NVM 2 (0x02) Read: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 NVM 4 (0x04) Write Uncorrectable: 3 (0x00000003): CSUPP, LBCC, CSE 0 (no restriction)
 NVM 5 (0x05) Compare: 1 (0x00000001): CSUPP, CSE 0 (no restriction)
 NVM 8 (0x08) Write Zeroes: 3 (0x00000003): CSUPP, LBCC, CSE 0 (no restriction)
 NVM 9 (0x09) Dataset Management: 65539 (0x00010003): CSUPP, LBCC, CSE 1 (restriction on same
namespace)

Example: pain --nvme-get-log=smart.dumpraw -f/dev/nvme0n1

Since dumpraw was specified for the SMART get log, which has a log id of 2, a .bin file will
be generated in the working directory of where the command was run. The naming
convention for the file is lid_<log id>_<device name>.bin. For this example the file
was named lid_2_nvme0n1.bin.
NVMe Get Log Page: LID=2 (0x02) SMART / Health Information, LSP=0 (0x00), RAE=0 (0x00), LSID=0 (0x0000),
NUMD=127 (0x0000007F), LPO=0 (0x0000000000000000), uuidIndex=0 (0x00)
 Critical Warning: 0 (0x00)
 Composite Temperature: 315 (0x013B)
 Available Spare: 100 (0x64)
 Available Spare Threshold: 10 (0x0A)
 Percentage Used: 0 (0x00)
 Endurance Group Critical Warning Summary: 0 (0x00)
 Data Units Read: 15711052 (0x00000000000000000000000000EFBB4C)
 Data Units Written: 13512723 (0x00000000000000000000000000CE3013)
 Host Read Commands: 152011717 (0x000000000000000000000000090F83C5)
 Host Write Commands: 105618180 (0x000000000000000000000000064B9B04)
 Controller Busy Time: 164 (0x000000000000000000000000000000A4)
 Power Cycles: 11 (0x0000000000000000000000000000000B)

Chapter 5 Logging and Output
SMART Log

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 297

 Power On Hours: 1065 (0x00000000000000000000000000000429)
 Unsafe Shutdowns: 6 (0x00000000000000000000000000000006)
 Media and Data Integrity Errors: 2 (0x00000000000000000000000000000002)
 Number of Error Information Log Entries: 2 (0x00000000000000000000000000000002)
 Warning Composite Temperature Time: 0 (0x00000000)
 Critical Composite Temperature Time: 0 (0x00000000)
 Temperature Sensor 1: 0 (0x00000000)
 Temperature Sensor 2: 0 (0x00000000)
 Temperature Sensor 3: 0 (0x00000000)
 Temperature Sensor 4: 0 (0x00000000)
 Temperature Sensor 5: 0 (0x00000000)
 Temperature Sensor 6: 0 (0x00000000)
 Temperature Sensor 7: 0 (0x00000000)
 Temperature Sensor 8: 0 (0x00000000)
 Thermal Management Temperature 1 Transition Count: 0 (0x00000000)
 Thermal Management Temperature 2 Transition Count: 0 (0x00000000)
 Total Time For Thermal Management Temperature 1: 0 (0x00000000)
 Total Time For Thermal Management Temperature 2: 0 (0x00000000)

SMART Log
MLTT supports the retrieval of the SMART logs by specifying the MLTT switch --smart
to either an ATA or NVMe drive. The .log file generated at the end of the test contains the
retrieved SMART attributes and data in CSV format for ATA devices or in a list of fields for
NVMe devices. The following examples are the outputs of .log files for each device
supported.

For an ATA device:

pain --smart -f\\.\physicaldrive1

SMART: Target 1: '\\.\physicaldrive1' - OK
 ATTR (HEX), VALUE, FLAG BITS (HEX), VENDOR SPECIFIC DATA, DESC (from Wikipedia)
 5 (05), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Reallocated Sectors Count
 9 (09), 100, 0000000000110010 (0032), 64 C3 25 00 00 00 00 00, Power-On Hours (POH)
 12 (0C), 100, 0000000000110010 (0032), 64 D3 02 00 00 00 00 00, Power Cycle Count
 170 (AA), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, Available Reserved Space
 171 (AB), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SSD Program Fail Count
 172 (AC), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SSD Erase Fail Count
 174 (AE), 100, 0000000000110010 (0032), 64 C7 02 00 00 00 00 00, Unexpected power loss count
 175 (AF), 100, 0000000000110011 (0033), 64 F7 02 B6 0E 2C 00 00, Power Loss Protection Failure
 183 (B7), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, SATA Downshift Error Count or
Runtime Bad Block
 184 (B8), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, End-to-End error / IOEDC
 187 (BB), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Reported Uncorrectable Errors
 190 (BE), 75, 0000000000100010 (0022), 40 19 00 15 2C 00 00 00, Airflow Temperature
 192 (C0), 100, 0000000000110010 (0032), 64 C7 02 00 00 00 00 00, Power-off Retract Count
 194 (C2), 100, 0000000000100010 (0022), 64 19 00 00 00 00 00 00, Temperature resp
 197 (C5), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Current Pending Sector Count
 199 (C7), 100, 0000000000111110 (003E), 64 00 00 00 00 00 00 00, UltraDMA CRC Error Count
 225 (E1), 100, 0000000000110010 (0032), 64 CD 21 8C 00 00 00 00, Load/Unload Cycle Count
 226 (E2), 100, 0000000000110010 (0032), 64 FF FF 00 00 00 00 00, Load 'In'-time
 227 (E3), 100, 0000000000110010 (0032), 64 FF FF FF FF 00 00 00, Torque Amplification Count
 228 (E4), 100, 0000000000110010 (0032), 64 FF FF 00 00 00 00 00, Power-Off Retract Cycle
 232 (E8), 100, 0000000000110011 (0033), 64 00 00 00 00 00 00 00, Available Reserved Space
 233 (E9), 97, 0000000000110010 (0032), 61 00 00 00 00 00 00 00, Media Wearout Indicator
 234 (EA), 100, 0000000000110010 (0032), 64 00 00 00 00 00 00 00, Average erase count AND
Maximum Erase Count
 241 (F1), 100, 0000000000110010 (0032), 64 CD 21 8C 00 00 00 00, Total LBAs Written
 242 (F2), 100, 0000000000110010 (0032), 64 13 0B AE 00 00 00 00, Total LBAs Read

Chapter 5 Logging and Output
SMART Log

 Medusa Labs Test Tools Suite User’s Guide
Page 298 Version 7.8 July 2023

The five column headings in the CSV file are:

For a NVMe device:

pain --smart -f/dev/nvme0n1

SMART: Target 1: "/dev/nvme0n1" - OK
Critical Warning: 0 (0x00)
 Composite Temperature: 315 (0x013B)
 Available Spare: 100 (0x64)
 Available Spare Threshold: 10 (0x0A)
 Percentage Used: 0 (0x00)
 Endurance Group Critical Warning Summary: 0 (0x00)
 Data Units Read: 15715065 (0x00000000000000000000000000EFCAF9)
 Data Units Written: 13515975 (0x00000000000000000000000000CE3CC7)
 Host Read Commands: 152054646 (0x00000000000000000000000009102B76)
 Host Write Commands: 105643588 (0x000000000000000000000000064BFE44)
 Controller Busy Time: 164 (0x000000000000000000000000000000A4)
 Power Cycles: 11 (0x0000000000000000000000000000000B)
 Power On Hours: 1066 (0x0000000000000000000000000000042A)
 Unsafe Shutdowns: 6 (0x00000000000000000000000000000006)
 Media and Data Integrity Errors: 2 (0x00000000000000000000000000000002)
 Number of Error Information Log Entries: 2 (0x00000000000000000000000000000002)
 Warning Composite Temperature Time: 0 (0x00000000)
 Critical Composite Temperature Time: 0 (0x00000000)
 Temperature Sensor 1: 0 (0x00000000)
 Temperature Sensor 2: 0 (0x00000000)
 Temperature Sensor 3: 0 (0x00000000)
 Temperature Sensor 4: 0 (0x00000000)
 Temperature Sensor 5: 0 (0x00000000)
 Temperature Sensor 6: 0 (0x00000000)
 Temperature Sensor 7: 0 (0x00000000)
 Temperature Sensor 8: 0 (0x00000000)
 Thermal Management Temperature 1 Transition Count: 0 (0x00000000)
 Thermal Management Temperature 2 Transition Count: 0 (0x00000000)
 Total Time For Thermal Management Temperature 1: 0 (0x00000000)
 Total Time For Thermal Management Temperature 2: 0 (0x00000000)

This output is similar to the output from the nvme cli command nvme smart-log
<device>.

ATTR (HEX The SMART attribute ID (the hexadecimal equivalent in
shown in parentheses).

VALUE The current raw decimal value of the attribute. Whether or
not the condition represented by the attribute ID is in good or
bad shape depends on whether or not this value is within the
vendor-specific threshold value. There is no standard way to
retrieve the threshold value itself as MLTT does not have
access to the threshold value.

FLAG BITS (HEX) The 16-bit flags for the attribute retrieved from the drive (the
hexadecimal equivalent in shown in parentheses).

VENDOR SPECIFC DATA The 8-bytes of vendor-specific data for the attribute retrieved
from the drive and displayed in hexadecimal.

DESC (from Wikipedia) These descriptions are not defined by the standard, and
many attribute IDs are vendor-specific

Chapter 5 Logging and Output
Sample Logs

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 299

Sample Logs
This section contains sample logs generated by MLTT.

Sample Error Log
Figure 69 shows an annotated error log. To help you to evaluate the results, lines from one
value to another show how the same information is presented in different formats.

Figure 69 Thread.bad Annotated Error Log

Chapter 5 Logging and Output
Sample Logs

 Medusa Labs Test Tools Suite User’s Guide
Page 300 Version 7.8 July 2023

Sample Status Log
Figure 70, Figure 71, and Figure 72 show a sample status log.

Figure 70 Status Log (Page 1 of 3)

Chapter 5 Logging and Output
Sample Logs

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 301

Figure 71 Status Log (Page 2 of 3)

Chapter 5 Logging and Output
Sample Logs

 Medusa Labs Test Tools Suite User’s Guide
Page 302 Version 7.8 July 2023

Figure 72 Status Log (Page 3 of 3)

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 303

6

Chapter 6 Data Pattern Reference

This chapter describes the data patterns and their use. Topics discussed in this chapter
are as follows:

• “Overview” on page 304
• “Customizing Data Patterns” on page 306
• “Specified Data Patterns” on page 319

Chapter 6 Data Pattern Reference
Overview

 Medusa Labs Test Tools Suite User’s Guide
Page 304 Version 7.8 July 2023

Overview
The data pattern library built into the Medusa Labs Test Tools (MLTT) provides the basis
for applying focused signal stress across a wide variety of architectures. There are several
characteristics in our approach to data patterns which make them extremely effective.

Designed For Signal Aggravation
Some of the data patterns are industry standards which have been used for years in
various I/O tools and traffic generators. Medusa Labs has also developed a number of
patterns based on our test experiences. The data pattern library contains signal aggra-
vating patterns suitable to most major I/O signal paths such as PCI, SCSI, Fibre Channel,
and Ethernet. Rather than running random or empty data streams to the device under test,
MLTT provides a means of stressing signal lines in a targeted, precise manner. This
approach greatly increases the chance of identifying signal related defects in a timely
manner.

Customized Patterns
You can customize the majority of the patterns to certain degrees for experimentation
during a test effort. It is not uncommon to find issues with a slight modification of a pattern
that a “stock” pattern failed to detect. You can set up scripted test runs to perform gradual
variations on variables such as signal hold time on a bus. Additionally, you can customize
some data patterns to suit testing on bus architectures of varying widths. This makes it
easy to create relevant data patterns with the same MLTT as new hardware emerges.

Static Data Patterns versus Dynamic Data Patterns
Most MLTT data patterns are static which means that data patterns are generated once
into the write buffer(s) of each I/O thread during initialization. Throughout testing, the same
buffer(s) – therefore, same payload content that was generated once at the beginning – is
written out to the target.

Data signatures embedded at the beginning of every logical block does add a little bit of
dynamic variability per each write as signatures are updated every write. Even the random”
data pattern, “-l35”, is static, meaning the data repeats every “queue_depth x buffer_size”
bytes.

However, a few data patterns are dynamic; for example, “-l32”, “-l33”, “-l80”. For these data
patterns, the write buffer(s) are filled with new content before each write. For these data
patterns, application-level latency is introduced between each write.

Chapter 6 Data Pattern Reference
Overview

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 305

Continuously Changing I/O Stream
A common deficiency in data integrity checking is that the data patterns utilized are static
(that is, the same pattern is written repeatedly to the same target area.) This approach
does not uncover data corruptions as a result of stale data being returned from the target.
The Medusa Labs Test Tools overcome this problem by continually modifying the data
stream, when possible, with each successive write. The methods that implement this do
not result in any excessive overhead. Most of our data patterns are modified during run
time in two ways.

1 Pattern Reversals – Most patterns in our library have a corresponding bit-for-bit
reversal value. A “reverse” pattern is generally defined as byte-by-byte reversal in
order of the normal “forward” pattern. Basically, it’s another pattern based on the
selected pattern. This only impacts sequential-access mode. For every sequential
FOP, pain/maim alternates between forward and reverse pattern buffers to write out
to the target. I.e. write the forward pattern for first FOP; write the reverse pattern for
next FOP; write the forward pattern for the next FOP; etc.
It can be explicitly disabled using the “-N” as described in “-N Disable Data Pattern
Reversals” on page 228. Note that it also has an impact on the overall buffer space
allocation (see “Memory Utilization” on page 13.
During a test, the data pattern is written out “forward” in one write pass and
“reversed” in the next pass, continuously.

Example (pattern number -l11):

Forward Pattern:

0000FFFF
0000FFFF
0000FFFF
0000FFFF

Reverse Pattern:

FFFF0000
FFFF0000
FFFF0000
FFFF0000

2 I/O Signing – All of our data patterns have a unique signature added to the data at an
interval of 512 bytes by default. This signature provides additional insurance that the
data written is constantly changing. Additionally, these signatures serve as an
important resource in debug efforts when a failure is encountered. The signatures
are extremely useful in analyzing data captured by a protocol analyzer. See
Appendix K “I/O Signatures” for more information about I/O signatures.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 306 Version 7.8 July 2023

Customizing Data Patterns
Each data pattern in MLTT has a default form that is used when you use the
-lpattern_number switch alone. This section covers the available switches that you
can use to customize certain data patterns. Note that not every data pattern can be altered
with the switches discussed here. Refer to the command line help for the currently
supported data patterns for each of these options.

• “Using Pattern Modifiers” on page 307
“-L Number of Times to Repeat the Data Pattern Cycle” on page 307
“-I Invert Pattern Mode” on page 308
“-P Modify Data Patterns with a Phase Shift” on page 308

• “Custom Blink Pattern (-l99)” on page 311
“-e Length of Blinking Bits” on page 312
“-E Set Custom Blink Hold Cycles (before transition for bit-walking variations)”
on page 313
“-F Reset custom blinking pattern to the initial pattern value each cycle” on
page 313

• “Deduplication/Compression Pattern (-l80)” on page 314
“-E Entropy Strength” on page 316
“-L Deduplication Percentage” on page 317
“-@ Deduplication Unit” on page 317
“-e Duplicate Block Count” on page 318
“-y Random Seed Value” on page 318

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 307

Using Pattern Modifiers

-L Number of Times to Repeat the Data Pattern Cycle

Usage:

-Lcycle_length

Use the -Lcycle_length switch to modify the length or repetition of the selected data
pattern’s cycle. This switch is only supported with certain data patterns. Refer to the
command-line help for current pattern support. The cycle length indicates the number of
times to repeat each unit of a data pattern, before moving to the next unit. In general, the
unit of data pattern refers to its length in bytes or bits.

Examples:

The following example is a data pattern comprised of random byte values.
Here, the -L4 modifier switch causes each byte to be replicated four times.

8-bit pattern: pain -l35 -L4

data: 0xCDCDCDCD
0x59595959
0x83838383
0x7B7B7B7B
…etc.

The following example is a data pattern comprised of a 16-bit incrementing value.
Here, the -L8 modifier switch causes each 16-bit value to be replicated eight times.

16-bit pattern: pain -l17 -L8

data: 0x00000000
0x00000000
0x00000000
0x00000000
0x00010001
0x00010001
0x00010001
0x00010001
…etc.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related to all data patterns except the -l0 and -l80 patterns.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 308 Version 7.8 July 2023

-I Invert Pattern Mode

The -I switch causes a bit inversion of the data pattern with each transition cycle.
Refer to the MLTT command-line help for a listing of data patterns that support this option.
This switch is useful for creating patterns for stressing signal lines on bus architectures.

Example:

The following example is a data pattern comprised of walking bytes, at 4-byte intervals.
The -I switch is used to invert each walking value.

32-bit pattern: pain -l10 -I

data: 0x00000000
0xFFFFFFFF
0x01010101
0xFEFEFEFE
0x02020202
0xFDFDFDFD
…etc.

-P Modify Data Patterns with a Phase Shift

Use the -P switch to modify supported data patterns with a “phase shift.” This switch
works on select data patterns of a bus blinking nature. The effect is one of shifting the data
pattern “out of phase” at the specified unit interval such that the square wave created by
the blinking on/off bits reverses. See Figure 73. This is accomplished by holding the last
unit value at the specified shift point one additional time before transitioning – i.e. a value
of 0x00 would repeat once before transitioning to 0xFF. Refer to the MLTT command-line
help for a listing of data patterns that support this option.

Figure 73 Data Pattern Phase Shift

The unit size varies by pattern and can be viewed by using the pattern preview switch.
The unit size is indicated in bold in the command output below.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 309

Example:

You can specify the frequency of the phase shift as the number of units to run before
reversing or a default value is used if you enter –P only.

Using the –l14 pattern as an example the base pattern is as follows:

pain –l14

0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
...

pain -l14 -D*
...
Previewing pattern '14': Noise pattern #7 - 64-bit blinking bits

Properties:

Unit size:
Period:

Phase shift:
Reverse:
Invert:

8 bytes (64-bits)
2 units (16 bytes)
allowed
allowed
not allowed

Generation parameters:

Cycle repeat (-L):
Phase shift (-P):

Invert (-I):
Disable reversal (-N):

Scramble mode (-j):
Preview length (-b):

1 units
not specified
not applicable
no
none
256 bytes

Forward buffer:

0000: 0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 FFFFFFFFFFFFFFFF
0020: 0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 FFFFFFFFFFFFFFFF

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 310 Version 7.8 July 2023

The –P switch may be used to shift the pattern out of phase as shown below.

pain –l14 –P4 (shift every 4 units)

pain –l14 –P3 (shift every 3 units)

Pattern Units
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
...

1
2
3
4

(Shift)
1
2
3
4

(Shift)
1
2

Pattern Units
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
0xFFFFFFFFFFFFFFFF
0x0000000000000000
0xFFFFFFFFFFFFFFFF
...

1
2
3

(Shift)
1
2
3

(Shift)
1
2

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 311

Custom Blink Pattern (-l99)
Blinking bit patterns are a standard test data stream for bus and serial architectures. You
can use a special data pattern, indicated by -l99 to create a customized blink according
to specified parameters. Specify the blink parameters with an optional walking bit argu-
ment on the data pattern switch itself and several additional switches.

You can specify the base data pattern switch as follows:

-l99 = blink only, no walking bit
-l99w = adds bit walk to both “off” and “on” bit cycles)
-l99o = adds bit walk to “off” bit cycle only,
-l99f = adds bit walk to “on” bit cycle only.

The base data pattern is dependent on the -Lcycle_length parameter, which is used
to indicate the length of the blink in bits.

Examples:

8-bit blink: pain -l99 -L8

data: 0x00FF00FF
0x00FF00FF
…etc.

32-bit blink with full walk: pain -l99w -L32

data: 0x00000000
0xFFFFFFFF
0x80000000
0x7FFFFFFF
0x40000000
0xBFFFFFFF
…etc.

32-bit blink with “on” walk: pain -l99o -L32

data: 0x00000000
0xFFFFFFFF
0x80000000
0xFFFFFFFF
0x40000000
0xFFFFFFFF
…etc.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 312 Version 7.8 July 2023

32-bit blink with “off” walk: pain -l99f -L32

data: 0x00000000
0xFFFFFFFF
0x00000000
0x7FFFFFFF
0x00000000
0xBFFFFFFF
…etc.

You can customize the blinking pattern further by using the -ebit_length,
-Ehold_cycles, and -F switches.

-e Length of Blinking Bits

Usage:

-ebit_length

This switch allows you to specify different bit lengths for the “on” bits. Use this switch in
conjunction with the -L switch, which serves the special purpose of controlling the length
of the “off” bits when used together with the -e switch.

Examples:

No bit walk: pain -l99 -L28 -e4

data: 0x0000000F
0x0000000F
…etc.

With bit walk: pain -l99w -L8 -e24

data: 0x00FFFFFF
0x807FFFFF
0x40BFFFFF
…etc.

NOTE
This switch is used with multiple patterns. The description provided here provides
information related specifically to the -l99 Custom Blink Pattern.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 313

-E Set Custom Blink Hold Cycles (before transition for
bit-walking variations)

Usage:

-Ehold_cycles

This switch allows you to specify a blink value to repeat for the number of hold cycles
indicated, before walking a bit. This switch is valid with the data pattern switches -l99w,
-l99o, and -l99f.

Example:

The following command line results in a 16-bit blinking data pattern that walks a bit every
2 cycles:

pain -l99w -L16 -E2

data: 0x0000FFFF
0x0000FFFF
0x80007FFF
0x80007FFF
…etc.

-F Reset custom blinking pattern to the initial pattern value
each cycle

Usage:

-F

This switch causes a “flip/flop” variation to occur within the blinking data pattern. By “flip/
flop,” we mean that the pattern starts at an initial value, inverts (blinks) the value, returns
to the initial value, then walks a bit and repeats the sequence. This switch is intended to
be used with the data pattern switches -l99w, -l99o, and -l99f.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related specifically to the -l99 Custom Blink Pattern.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 314 Version 7.8 July 2023

Example:

pain -l99w -L32 -F

data: 0x00000000
0xFFFFFFFF
0x00000000
0x80000000
0x7FFFFFFF
0x80000000
…etc.

Deduplication/Compression Pattern (-l80)
The custom deduplication/compression pattern, indicated by -l80, is fundamentally a
sequence of random bytes with adjustable parameters to test the target device's compres-
sion
function or deduplication (dedup) function, or both functions together.

• When -E option value is set to a number less than 100, -l80 outputs a sequence of
random values mixed with strips of consecutive 0s that the target device can
compress.

• When -L options value is set to a number greater than 0, -l80 outputs a sequence
of random values with a mix of duplicate blocks inserted in the output which the
target device can deduplicate.

The default state of -l80, with -E100 and -L0, makes each output of the -l80 pattern
extremely difficult to compress and deduplicate. As with the other random patterns,
use -y to set the seed to change the random value sequence.

Compression-only Testing

With the -l80 pattern, the keys to testing only the compression function of the target
device is to adjust how much of the output data can be compressed with -E option while
deduplicaton is prevented with the -L0 setting. Due to the performance-versus-resource
trade-off of the -l80 pattern algorithm, there is no guarantee that the generated sequence
of random values are not duplicated in the output data over time.

• If the target device does not have the deduplication function enabled, then the
potential occurrences of uncontrolled duplicate blocks do not interfere with
compression-only testing.

• If the target device has the deduplication function enabled, then steps must be taken
to minimize unintended deduplication during I/O.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 315

To minimize unintended deduplication, do not disable the unique data signature that MLTT
embeds in the output data by default. Furthermore, use -Um to append a timestamp to the
data signature. The best option to test only the compression function is to disable the target
device's deduplication function if possible.

Deduplication-only Testing

With the -l80 pattern, use -L to specify how much of the output data can be deduplicated
while compression is prevented with the -E0 setting. The -@ option must be set to match
the target system's deduplication unit size. When -L is greater than 0, the -l80 generator
keeps a pool of blocks, each one the size of deduplication unit size. Each block in this pool
is filled with a unique sequence of random values. Each time -l80 needs to insert a
duplicate block in the output data, one of the blocks from this pool is duplicated into the
output buffer.

Use -e to set the number of blocks in this pool. The number of blocks is 1, by default. This
number can be increased in order to add complexity to the data. Increasing the number of
blocks increases the amount of unique data segments that are used as duplicated blocks.
Increasing the -e value makes it more difficult for a deduplication engine to track
duplicated data.

The possibility of unintended deduplication still exists (as explained in <Link>“Compres-
sion-only Testing”.) To make sure that only the blocks drawn from the duplicate block set
are subject to deduplication and to minimize unintended deduplication while keep the
testing more deterministic (i.e. keep the amount of deduplication close to the -L setting,)
do not disable the unique data signature that MLTT embeds in the output data by default.
Furthermore, use -Um to append a timestamp to the data signature. To make sure the
blocks drawn from the duplicate pool can be recognized as duplicates, they are never
marked with data
signature.

If the target device also has compression function enabled, then keeping the final
deduplication amount close to specified by -L value becomes very difficult because, even
at -E100, -l80 cannot generate an output sequence that is absolutely uncompressible.

Dealing with this scenario is dependent on the specific operation detail of the target device.
For example, in a scenario where compression occurs before deduplication, if a duplicate
block is reduced in size (even by 1 byte), there is no longer a guarantee that block will be
recognized as a duplicate. Offsetting this compression requires increasing the -@ value
using a trial-and-error method. The best option to test only the deduplication function is to
disable data compression in the I/O path to the target device if possible.

Deduplication and Compression Testing

It is possible to generate the output data with both -E and -L settings applied such that
the resulting output is both compressible and subject to deduplication. How deterministic
such testing can be made is dependent on the specific operation details of the target

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 316 Version 7.8 July 2023

device. The same concerns described in “Deduplication-only Testing” on page 315 when
compression function is enabled also apply here, where testing of both functions together
is desired.

In a scenario where compression occurs before deduplication, the goal is to create a data
output which, after the desired amount of compression set by -E is applied, the resulting
compressed data can be deduplicated by the desired -L setting amount. In theory, the
effective dedup unit size must be increased to offset the compression amount. For
example, if the target device has a dedup unit size of 8KB, and if -E25 is used (i.e.
compress to 25% of the original size), then a reasonable starting effective -@ setting is 8K
/ 0.25 = 32KB. That is, use a proportionally larger duplicate block so that, after
compression, the resulting compressed block becomes closer in size to the actual target
device's dedup unit size. Nevertheless, further tuning using a trial-and-error method is
required because -E cannot precisely control the actual compression amount.

-E Entropy Strength

Usage:

-E<entropy_strength>

This switch specifies how compressible the payload is.
0 (no entropy, most compressible) to 100 (most entropy, least compressible).
It basically defines the percentage of original data that is written after compression is
applied.
The default value is -E100.

Example:

pain -l80 -E25

With this example, the output data should compress to about 25% of the original size.

NOTE
This switch is used with multiple patterns. The description provided here provides
information related specifically to the -l80 Deduplication/Compression Pattern.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 317

-L Deduplication Percentage

Usage:

-L<dedup_%>

This switch specifies how much of the original data can be deduplicated. The percentage
of duplicated data blocks can be specified from 0 to 100 percent. The default value is -L0.

Example:

pain -l80 -L30

With this example, about 70% of generated data will be unique and about 30% will be filled
from a pool of duplicate blocks that can repeated (thus be deduplicated by the target
device.)

-@ Deduplication Unit

Usage:

-@<dedup_unit>

This switch specifies the dedup block size. It should be set to whatever the value the target
storage device’s deduplication system uses. The default for MLTT is 8K. Note that you can
use a size suffix like 'k', 'b', etc. as usual, but it will not accept the "u" suffix. "k" is the default
suffix (i.e. -@32 is -@32K). This option is ignored for -L0.

NOTE
This switch is used with multiple patterns. The description provided here provides
information related specifically to the -l80 Deduplication/Compression Pattern.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related specifically to the -l80 Deduplication/Compression Pattern.

Chapter 6 Data Pattern Reference
Customizing Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 318 Version 7.8 July 2023

-e Duplicate Block Count

Usage:

-e<duplicate_block_count>

This switch sets the number of unique blocks in the duplicate block pool to draw from.
Using the -L30 example, about 30% of the data will be duplicated from a block in this pool.
From the second time a block from this pool is written out, it can be deduplicated. This
option is ignored for -L0. The default is -e1.

-y Random Seed Value

Usage:

-y<random_seed_value>

This option is used to specify a 32-bit random number seed value to the -l80 Deduplica-
tion/Compression Pattern.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related specifically to the -l80 Deduplication/Compression Pattern.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related specifically to the -l80 Deduplication/Compression Pattern.

Chapter 6 Data Pattern Reference
Specified Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 319

Specified Data Patterns
In addition to the supplied base data patterns, it is possible to specify a particular pattern
with command-line switches.

-y Create Data Patterns Based on Various Lengths

Usage:

-ypattern_value

Use the -y switch to specify a hex value to repeat in the write buffers and create the data
pattern. You can use this switch with several data pattern numbers (-l) to create patterns
based on various lengths. You can use this switch with the following data pattern numbers:

-l1
-l2
-l4

Example:

pain -l4 -y0x55AA55AA
data: 0x55AA55AA
0x55AA55AA
…etc.

-l0, -@file_name Read Data Pattern from a File

Usage:

-@<path/file_name>

The -l0 data pattern is a special data pattern number that identifies that the data pattern
is to be read in from an existing file. Use the -@ switch to identify the path and file name
that contains the data pattern that will be used. The file must be greater than or equal in
size to the buffer size. The file is read up to the size indicated by the specified buffer size
(-b#). If the file is larger than the buffer size, it will be continually read to fill the I/O buffers,
so that large data patterns may be used effectively.

NOTE
This switch is used with multiple patterns. The description provided here provides infor-
mation related specifically to the -l0 special data pattern switch.

Chapter 6 Data Pattern Reference
Specified Data Patterns

 Medusa Labs Test Tools Suite User’s Guide
Page 320 Version 7.8 July 2023

In cases of testing on remote system, a local copy of the pattern file must already exist in
the path specified by "-@<path/filename>". Additionally, note that the Windows and Linux
operating systems use different slash characters in their paths ("\" vs. "/"), so when testing
to remote systems, Window and Linux systems will need separate commands with the
appropriate slash characters in the "-@<path/filename>".

Example:

pain -b512k -l0 -@c:\data\pattern.dat

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 321

7

Chapter 7 Catapult Test Tool Automation

Catapult is a target discovery tool included with the test tool suite that acts as a shell for
the I/O tools. You use Catapult to discover targets available to the host system and pass
these targets to the other test tools for I/O testing. Catapult also has features that facilitate
test scripting and automation.

Topics discussed in this chapter are as follows:

• “Basic Usage” on page 322
• “Catapult Switches” on page 327
• “Scripting” on page 352

Chapter 7 Catapult Test Tool Automation
Basic Usage

 Medusa Labs Test Tools Suite User’s Guide
Page 322 Version 7.8 July 2023

Basic Usage
Catapult discovers available local or remote drives for file system, logical, or physical
access. Available drives can be listed without starting an I/O test by using the following
switches:

Drive Listing Examples
This section shows the following three drive listing examples:

• A listing of physical drives discovered on a Windows system
• A listing of physical drives discovered on a Linux system
• A file system drive discovery on a Windows system

File System list: catapult -f
Logical drive list: catapult -l
Physical drive list: catapult -p
Remote drive list:

catapult -r
returns a list of all MLTT test stations on subnet

catapult -r<hostname or IP address>

used with -f,- l, or -p returns a list of targets con-
nected to the remote system

Chapter 7 Catapult Test Tool Automation
Basic Usage

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 323

Catapult Physical Drive Discovery on Windows Example

C:\> catapult -p
Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Searching for physical drives...

Available physical drives:

Indx Drive NameSCSI ID INQUIRY DATAExclusions

 \\.\PhysicalDrive0 0:0:0:0 ST330630A 3.21AP
 \\.\PhysicalDrive1 2:0:0:0 MAXTOR ATLASU320_18_SCAB430 A S
 \\.\PhysicalDrive2 2:0:1:0 MAXTOR ATLASU320_18_SCAB430
 \\.\PhysicalDrive3 4:0:0:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive4 4:0:1:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive5 4:0:2:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive6 4:0:3:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive7 4:0:4:0 SEAGATE ST39103FC 0004
 \\.\PhysicalDrive8 4:0:5:0 SEAGATE ST39103FC 0004

NOTE
In order to run to physical devices, you must be logged in with administrator access.

Chapter 7 Catapult Test Tool Automation
Basic Usage

 Medusa Labs Test Tools Suite User’s Guide
Page 324 Version 7.8 July 2023

Physical Drive Discovery on Linux

catapult -p

FOUND: Bootdev=/dev/sda

Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Indx Device Name SCSI ID Inquiry Data Exclusions

00 /dev/hda Not Scsi VMware Virtual IDE Hard Drive
01 /dev/hdb Not Scsi VMware Virtual IDE Hard Drive
02 /dev/sda 0:0:0:0 VMware, VMware Virtual S 1.0 PS
03 /dev/sdb 0:0:1:0 VMware, VMware Virtual S 1.0
04 /dev/sdc 0:0:2:0 VMware, VMware Virtual S 1.0
05 /dev/sdd 0:0:3:0 VMware, VMware Virtual S 1.0
06 /dev/sde 0:0:4:0 VMware, VMware Virtual S 1.0
07 /dev/sdf 0:0:5:0 VMware, VMware Virtual S 1.0
08 /dev/sdg 0:0:6:0 VMware, VMware Virtual S 1.0

NOTE
In order to run to physical devices, you must be logged in with root access.

Chapter 7 Catapult Test Tool Automation
Basic Usage

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 325

File System Drive Discovery on Windows

C:\> catapult -f
Medusa Labs Test Tools 2.5.0
Catapult Version 1.3.5 Copyright (c)2004-2006, JDSU Inc.
All rights reserved.
Build date: Sep 12 2007 15:46:55

Available file systems:

Indx Drive FileSys Size(MB) Label/MountExclusions

 C:\ NTFS 32171 (unlabeled disk) A PS
 D:\ NTFS 47829 (unlabeled disk)

The output for file system and logical drives is the same on Windows platforms, but I/O test
access is different. Logical access utilizes destructive “raw” partition access. File system
access is restricted to data files on a file system partition.

To run I/O to discovered targets, the desired I/O tool and its switches are passed to Cata-
pult on the command line, immediately following switches used for Catapult.

NOTE
When you use Catapult to start I/O tests, do NOT specify a target (-f switch) as a Test
Tool argument. Catapult will supply this switch to each Test Tool instance for you.

CAUTION
It is important to understand that by default, ALL drives listed WILL be included in I/O
tests unless they are excluded due to a reason stated in the listing output. You must use
the drive include or exclude switches discussed in the following sections if you want to
test only certain drives.

CAUTION
Logical and physical drive access is destructive! Any existing data on the drives WILL
be destroyed by I/O tests!

Chapter 7 Catapult Test Tool Automation
Basic Usage

 Medusa Labs Test Tools Suite User’s Guide
Page 326 Version 7.8 July 2023

Catapult Command Example:

The following command launches an instance of Pain on each discovered physical drive.

catapult -p pain -t10 -b128k -o

By default, Catapult runs tests on all eligible drives of the specified type (physical, logical,
or file system). Target access can be limited with the inclusion/exclusion switches
described in “Catapult Switches” on page 327.

In order to keep log files for each target separate, Catapult creates a new directory for each
tool instance in the current working directory. The new directory name is derived from the
system or host name and the target device (for example, winhost_1 for \\.\physi-
caldrive1, winhost_F for \\.\F, etc.) Each session of the I/O tools is launched from
its respective directory so that each session’s log files are stored in a uniquely identified
working directory.

NOTE
Catapult will launch an instance of the specified test tool to all eligible drives that are
detected. To prevent overwriting critical data, the test tool performs several checks to
verify drive eligibility. I/O testing is skipped on drives that do not pass the checks. Cata-
pult skips drives with active (bootable) partitions, drives with no volume label, and the
drive where the operating system is installed. On Windows platforms, drives A:- C: are
excluded and logical drive access requires that a drive letter be assigned.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 327

Catapult Switches
This section contains a complete listing of the Catapult command line switches in alpha-
betical order. You can combine multiple switches, but you must enter all Catapult switches
before you enter the I/O tool name and its switches.

• “-a Auto-mode” on page 328
• “-b Log retrieval” on page 328
• “-c Clean Directories” on page 329
• “-d Delay Test Start” on page 330
• “-e Increment Data Pattern” on page 330
• “-f File system access” on page 331
• “-g Change directory prefix” on page 332
• “-h online help” on page 333
• “-i Include drive” on page 333 (also -i.str_Include drive based on inquiry data)
• “-j Prescramble write output data” on page 334
• “-J Limit inquiry ioctls” on page 335
• “-k Kill tool processes” on page 335
• “-l Logical drive access” on page 336
• “-m Minimize tool windows” on page 337
• “-n Enable prompts” on page 338
• “-now Run all tests with no windows” on page 338
• “-o Override device exclusions” on page 339
• “--off Offline disk” on page 340
• “--on Online disk” on page 341
• “-p Physical drive access” on page 341
• “-q Removes excluded drives” on page 342
• “-r remote access” on page 343
• “--restart-service Restarts the Medusa agent” on page 344
• “-s Set tool starting offset” on page 345
• “-t Multi-target mode” on page 346
• “-v Verify mode” on page 347
• “-w Watch mode” on page 348
• “-x Exclude drive” on page 349 (also -x.str_Exclude drive based on inquire data)
• “-y Specify grace period” on page 350
• “-z Debug mode” on page 351

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 328 Version 7.8 July 2023

-a Auto-mode

Usage:

-aseconds

Description:

Use the -a switch to run tests for the duration specified in seconds. Use this switch
primarily in scripted test runs. The test tool runs for the specified number of seconds, after
which Catapult terminates all instances of the tool. Catapult will remain running during the
I/O test. If Catapult is stopped (for example, by using Ctrl+C), Medusa Labs Test Tools
(MLTT) will not be terminated when the time duration expires.

Example:

The following example runs an instance of Pain to each detected physical drive for a period
of 300 seconds.

catapult -a300 -p pain -t10 -b128k -o

Default:

There is no default value for seconds to run; you must supply a value.

-b Log retrieval

Usage:

-b -rserver

Description:

Use the -b switch to retrieve logs from the servers that you specify with the -r switch. This
will retrieve only the specified and/or used subdirectories from the default testing location
on the remote system. If the local system already has some of the directories or logs, you
will be prompted to overwrite existing data. To force the overwrite without a prompt, use -
b!.

Example:

The following example finds the logs on the remote server.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 329

catapult -b -rserver

Default:

There is no default log retrieval. You must specify servers with the -r switch, along with
the -b switch.

-c Clean Directories

Usage:

-c

Description:

Use the -c switch to clear out the working directories used in tool sessions created by
Catapult. You must specify a drive type switch (-f, -l, or -p) along with the -c switch. Cata-
pult removes ALL files in the working directories before launching the specified test tool.
Use this switch a single time prior to running a scripted test.

Example:

The following example deletes all files in the working directories before running an
instance of Pain to each detected physical drive.

catapult -c -p pain -t10 -b128k -o

You can also clear log files without running a test tool as shown in the following example:

catapult -c -p

Default:

There are no additional arguments. The contents of working directories for the specified
drive type (file system, logical, or physical) are cleared.

CAUTION
Do not include this switch during a scripted run. Removing log files makes it impossible
to determine test success or failure. Make sure that you have backed up any log files
that you want to keep before using this switch!

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 330 Version 7.8 July 2023

-d Delay Test Start

Usage:

-dseconds

Description:

Use the -d switch to create a delay between tool sessions created by Catapult. By default,
each tool instance is started simultaneously. For example, 10 detected drives would result
in 10 instances of Pain being started at the same time. Depending on variables such as
drive count, thread count, and buffer size, you might want to use this switch to create a
ramp-up period to lessen the initial “shock” to the host system or target. When using multi-
target mode (catapult -t), this will not delay between startups within the multi-target tests
themselves, but will pause between tests if multiple hosts are specified.

Example:

The following example runs an instance of Pain with a 10 second delay between each
launch to detected file system drives.

catapult -d10 -f pain -t10 -b128k -o

Default:

There is no default value for seconds; you must supply a value.

-e Increment Data Pattern

Usage:

-e

Description:

Use the -e switch as a scripting aid to increment data pattern numbers. This switch is
supported on Windows platforms only. Use this switch within a batch file that steps through
various data pattern variations. Catapult reads the environment variable PATTERN and
creates a batch file (incdat.bat) that can be called from a script to increment the value of
the variable by 1.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 331

Example (Windows batch file):

The following batch file example runs an instance of Pain for 60 seconds to detected phys-
ical drives with varied parameters on each run. The data pattern is incremented with each
loop through the batch file.

set PATTERN=10
:TOP
catapult -a60 -p pain -t10 -b16k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b32k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b64k -o -l%PATTERN%
catapult -a60 -p pain -t10 -b128k -o -l%PATTERN%
catapult -e
REM incdat.bat is created by catapult -e
Call incdat.bat
if '%PATTERN%' == '20' set PATTERN=10
goto TOP

Default:

This switch increments the environment variable PATTERN by 1.

-f File system access

Usage:

-f

Description:

Use the -f switch to have Catapult scan for targets with file systems. When you use this
switch without an argument, Catapult simply lists detected targets. When you specify a test
tool, Catapult launches the tool on the detected targets. The tools will create data files for
I/O traffic.

The only non-destructive mode for the tools, this will run your specified tool to a file named
targetfile.dat in the topmost directory of the target you specify. Note that if there is already
a file named targetfile.dat, it will be overwritten.

When Catapult detects targets, some devices may be excluded for the following reasons:

A: Active (possibly a boot device)
G: No signature or Bad/unlabeled VTOC
I: Inquiry failed
M: No media or insufficient memory
P: Partitions found on device (Windows physical disks only)

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 332 Version 7.8 July 2023

S: System device (where the OS is installed)
U: Excluded by use of inclusion/exclusion options
V: Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z: Device or path to device is inaccessible

Example:

When you execute the following switch, it lists all detected file system drives.

catapult -f

The following example runs an instance of Pain to all detected file system drives.

catapult -f pain

Default:

There is no default access method. You must specify a file system, logical, or physical
access switch.

-g Change directory prefix

Usage:

-gdirectory_prefix

Description:

Use the -g to change the prefix of the directories used by the tools. Catapult uses the
system host name for the directory prefix by default.

It will either prepend the directory with the prefix or it will create a folder.

Example:

catapult -p -gtest1 pain will prepend test1 to the folder
catapult -p -gc:\test1 will create a folder called test1 to put the files in.

NOTE
This switch may only be ran to a system that has a file system other than the OS file
system.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 333

Default:

Catapult will use the system host name for a working directory prefix.

-h online help

Usage:

-h [-option]

Description:

Use the -h switch to display online help.

You can also use the -h switch to display online help for a specific option

Example:

catapult -h

This example would show online help for Catapult.

catapult -h -t

This example would show online help for Catapult’s -t option.

-i Include drive

Usage:

-iinclude_list

Description:

Use the -i switch to explicitly include drives for I/O testing. Drives not listed with this switch
are excluded from testing. List drives by number for physical access and by letter for file
system access on Windows platforms. On UNIX platforms, a number is listed next to each

NOTE
-? can be used as an alternative to using the -h command to display the online help.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 334 Version 7.8 July 2023

detected drive. List individual drives in comma-delimited format. You can indicate ranges
by using a dash (-).

Use the '.' function to specify drives to include by inquiry, excluding all other targets.

-i.<str> would specify drives to include by inquiry, excludes all other targets.

Examples:

The following example runs an instance of Pain to the specified physical drives.

catapult -i1,2,3,5-10 -p pain

The following example runs an instance of Pain to the specified file system drives.

catapult -if,g,h-k,z -f pain

Multiple hosts definitions can be specified by separating them with a semi-colon
(for example: -ihost1:2,4,5;host2:a-d,f). If no host is given, the list will be applied to all
included hosts.

An example of inclusion/exclusion based on inquiry would be: If the user wishes to include/
exclude devices based on specific information returned during and inquiry (i.e. manufac-
turer or model number), this information is placed after the dot; as in

catapult -p -i.Seagate

would include any drives that returned the string "Seagate" in their inquiry response.

Default:

All drives are included by default. You must include or exclude the switches to customize
the list of drives accessed in testing.

-j Prescramble write output data

Usage:

-j<mode_number>

NOTE
If you are running with a network of mixed systems (linux/windows), including only
devices by letters will exclude ALL linux devices. Make sure you know which devices
you are including and excluding. Inclusion does not override the tools normal exclusion
options.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 335

Description:

Use the -j option to prescramble the write output data. The available mode numbers are:

Default:

The timeout is -j0.

-J Limit inquiry ioctls

Usage:

-J<interval>

Description:

Set the data scramble reset 'interval' to specified number of bytes if '-j1' or '-j2' is
specified.

Default:

If used in conjunction with -j1 then -J1024 is the default value; if used in conjunction
with -j2, then -J8192 is the default value.

-k Kill tool processes

Usage:

-k [-r hosts tool]

Description:

Use the -k switch to have Catapult send a kill signal to ALL running MLTT processes. This
switch will cause ALL running tests to stop immediately and exit ALL MLTT processes.

0 No pre-scramble (default)
1 SAS scramble
2 SATA scramble

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 336 Version 7.8 July 2023

You can also use the -k switch to kill ALL MLTT processes running on specific hosts.

Using catapult -k -r without specifying a host will stop all tests on all systems on the
subnet.

Example:

catapult -k

catapult -k -r<hostname or IP address>

Default:

This switch when used alone will kill ALL running MLTT processes.

-l Logical drive access

Usage:

-l

Description:

Use the -l switch to cause Catapult to scan for logical (partitioned) drives.

This switch is primarily for tests against targets such as an operating system RAID set. A
common usage would be to utilize a striped set of drives (RAID 0), accessed as a raw parti-
tion, for HBA performance testing. When you use this switch without an argument, Cata-
pult simply lists detected targets. When you specify a test tool, Catapult launches the tool
on the detected targets.

When Catapult detects targets, some devices may be excluded for the following reasons:

A: Active (possibly a boot device)
G: No signature (Windows physical devices only)
I: Inquiry failed

CAUTION
Logical drive access is destructive! Any existing data on the partition WILL be destroyed
by I/O tests!

NOTE
In order to run to logical devices, you must be logged in with administrator (Windows) or
root (Unix) access.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 337

M: No media or insufficient memory
P: Partitions found on device (Windows physical disks only)
S: System device (where the OS is installed)
U: Excluded by use of inclusion/exclusion options
V: Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z: Device or path to device is inaccessible

Example:

The following example lists all detected logical drives.

catapult -l

The following example runs an instance of Pain to all detected logical drives.

catapult -l pain

Default:

There is no default access method; you must specify a file system, logical, or physical
access switch.

-m Minimize tool windows

Usage:

-m

Description:

Use the -m switch to have Catapult create instances of launched MLTT in minimized
windows. This is useful when working with other applications, such as a performance
monitoring utility.

Example:

The following example runs an instance of Pain to all detected physical drives, with each
Pain window minimized.

catapult -m -p pain

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 338 Version 7.8 July 2023

Default:

By default, tool instances created by Catapult appear in open windows.

-n Enable prompts

Usage:

-n

Description:

Use the -n switch to indicate that Catapult should prompt the user if error logs (*.bad files)
from a previous test are discovered in the tool working directories. Catapult will run a check
for error logs before starting the I/O tool. This switch can be useful in scripted tests to
prevent the script from continuing after the I/O tool encounters critical errors.

Example:

The following example runs an instance of Pain to all detected physical drives with this
prompting if error logs are discovered.

catapult -n -p pain

If error logs are found, you will be prompted for the action to take:

Found existing error log: C:\test\VMW2KAS_1\VMW2KAS_1.bad
Delete log? ((Y)es/(N)o/Yes(A)ll/N(o)All):

Default:

By default, Catapult does not check for error logs.

-now Run all tests with no windows

Usage:

-now

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 339

Description:

Use the -now switch to run all tests with no windows (i.e. in the current console). The output
can be piped to scripts, but if multiple systems are specified with '-r', the output will be
jumbled. This option turns on '-t' multi-target option.

Example:

The following example will run the tests without displaying them in the console window.

catapult -now -p

Default:

No default is specified. Catapult will attempt to create new console or terminal windows for
the test processes.

-o Override device exclusions

Usage:

-o[option]

Description:

 Allows testing on volumes that have been automatically excluded. Using this option
without include/exclude options will run to all attached devices except for devices marked
as system(S). Specific overrides can be done by letter, i.e. to run to active devices but still
keep other exclusions, use -oa. Note that the system exclusion can not be overridden.

Here is the list of the exclusion options that can be overridden selectively. Devices may be
excluded with the following exclusion options:

A Active (possibly a boot device).

G No signature or Bad/unlabeled VTOC.

I Inquiry failed.

M No media or insufficient memory.

CAUTION
This switch should be used with extreme caution! You can accidentally lose data. We
highly recommend that you allow Catapult to perform drive signature checking. Use
Windows Disk Management to assign drive signatures to unsigned drives.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 340 Version 7.8 July 2023

P Partitions found on device (physical disks only). Also, a file system found on device
without partition (Linux physical disks only).

S System device (where the OS is installed).

U Excluded by use of inclusion/exclusion options.

V Device belongs to a volume group.

W Device is flagged as swap space or in a volume group that is.

Z Device or path to device is either inaccessible or read-only.

Example:

The following example runs an instance of Pain to all detected physical drives with the
drive signature check disabled.

catapult -o -p pain

Default:

By default, Catapult checks physical drives for a valid drive signature on Windows plat-
forms.

--off Offline disk

Description:

In Windows Server 2008 or later, use the --off option to set drives to the 'offline' state.
The tools cannot run on drives that are offline. This allows selected drives to be excluded
from running in a test.

Example:

The following example sets all physical drives to Offline.

catapult -p --off

The following example sets the 2nd and 3rd physical drives to Offline.

catapult -p -i2,3 --off

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 341

--on Online disk

Usage:

--on <-p>

Description:

In Windows Server 2008 or later, use the --on option to set drives to the 'online' state
when the drives are in 'offline' state. The Tools cannot run on drives that are offline.

Example:

The following example sets all physical drives to Online.

catapult -p --on

The following example sets the 2nd and 3rd physical drives to Online.

catapult -p -i2,3 --on

-p Physical drive access

Usage:

-p

Description:

Use the -p switch to have Catapult scan for physical drives.

This is the most common test access method used in hardware tests, as it bypasses as
many layers of the operating system as possible. On Linux platforms, block devices will be
automatically bound to “raw” devices by Catapult. When you use this switch without an

CAUTION
Physical drive access is destructive! Any existing data on the drive WILL be destroyed,
including partition headers and volume boot records. Physical drive access should not
be run on disks whose partitions you wish to keep.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 342 Version 7.8 July 2023

argument, Catapult simply lists detected targets. When a test tool is specified, Catapult
launches the tool on the detected targets.

 When Catapult detects targets, some devices may be excluded for the following reasons:

A: Active (possibly a boot device)
G: No signature (Windows physical devices only)
I: Inquiry failed
M: No media or insufficient memory
P: Partitions found on device (Windows physical disks only)
S: System device (where the OS is installed)
U: Excluded by use of inclusion/exclusion options
V: Device belongs to a volume group
W: Device is flagged as swap space or in a volume group that is flagged as swap space
Z: Device or path to device is inaccessible

Example:

The following example lists all detected physical drives.

catapult -p

The following example runs an instance of Pain to all detected physical drives.

catapult -p pain

Default:

There is no default access method; you must specify a file system, logical, or physical
access switch.

-q Removes excluded drives

Description:

Use the -q option to hide the excluded drives from being listed.

 Example:

This example will list all physical drives but hide those that have device exclusion

NOTE
In order to run to physical devices, you must be logged in with administrator (Windows)
or root (Unix) access.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 343

Catapult -p -q

-r remote access

Usage:

-r[host]

Description:

Use the -r switch to have Catapult scan for remote systems running MLTT.

This switch allows Catapult to start and stop tests on remote systems. MLTT must be previ-
ously installed on the remote systems. When you use this switch without an argument,
Catapult simply lists all detected remote systems on the current subnet. When used with
a basic switch (-f, -l, -p) Catapult lists the remote targets for those categories. In
order to run a test, you must specify one or more system names. You can specify system
names or IP addresses as a comma delimited list. You can also use the asterisk (*) as a
wildcard character to specify systems names. When a test tool is specified, Catapult
launches the tool on the detected remote targets. The -i and -x switches may used to
include or exclude specific remote targets on specified systems.

Running catapult -r does not create a host.dat file. This file must be created by the user,
and it also needs to be in the current working directory. This file will contain a list of IP
addresses for the discovered host systems running MLTT. This file can be used in later test
sessions to start remote tests by running catapult -r[path]hosts.dat. You can also
use wildcards to customize the file creation. For example:

catapult -rde* would create a hosts.dat file with host names starting with 'de.'
catapult -r10.10.0.* would create a hosts.dat file with hosts whose IP
addresses start with 10.10.0.

A hosts.dat file may be created manually by creating a text file with one host name or
IP address per line. Putting in extra information or not using ASCII text will result in that
host line being ignored.

Results from the -r Catapult scan are stored in log files saved in the MLTT installation
directory on the remote systems in the sub-directory named “catapult_tests.”

• For Windows systems the path is:
c:\program files\JDSU\medusa labs\test tools\catapult_tests\

• For Unix systems the path is:
/opt/medusa_labs/test_tools/catapult_tests/

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 344 Version 7.8 July 2023

Use the -b switch to copy the remote files to a local system.

When using wildcards with some UNIX shells, you have to enclose the wild-carded system
names in quotes, for example, catapult -r ‘sys*’

Example:

The following example lists all detected remote systems.

catapult -r

The following example lists all detected remote physical drives on the specified server.

catapult -p -rserver_name

The following example runs an instance of Pain to all detected remote physical drives.

catapult -p -rserver_name pain

The following example runs an instance of Pain to the specified drives on the specified
servers.

catapult -p -rserver1,server2 -iserver1:1,2 -iserver2:1 pain

The following example shows the use of the wildcard character to run an instance of Pain
to all drives that begin with the name “medusa” or the IP address of 10.22.0 on the speci-
fied servers.

catapult -p -rmedusa*,10.22.0* pain

Default:

There is no default access method; you must specify a remote file system, logical, or phys-
ical access switch.

--restart-service Restarts the Medusa agent

Description:

Use the --restart-service switch to restart the Medusa agent. If you use this to restart
the agent, it will interrupt process monitoring functions, so do not use this switch while you
are running tests. This should be used as an option during a troubleshooting process if a

NOTE
In order to run to physical devices remotely, you must be logged in to the remote system
with administrator (Windows) or root (Unix) access.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 345

particular system is showing problems, such as communicating with local or remote MLTT
installations or if the GUI does not start up properly, etc.

Example:

The following example restarts the Medusa agent.

catapult --restart-service

-s Set tool starting offset

Usage:

-soffset_amount

Description:

Use the -s switch to have Catapult pass a starting offset parameter (-x) to each instance
of MLTT. The starting offset value for each launched instance of MLTT is incremented by
the offset value (in megabytes (MB)) provided with this switch. You can use this switch to
debug test configurations involving multiple initiator systems on a common set of targets.
The offset amount must be a value that is greater than the number of worker threads run
by the tools times the file size. For example, with 10 threads and a 10 MB file size, the
offset amount needs to be at least 100 MB. “-x Starting Offset” on page 219 for more infor-
mation about the MLTT -x switch.

Example:

The following example runs an instance of Pain to all detected physical drives. Each
instance of Pain has the -x switch appended to the command line. The offset value of the
-x switch is incremented by 10 with each successive instance of Pain. With each Pain
instance passed, a -x switch is incremented by 10.

catapult -s10 -p pain -t4 1

The launched instances of Pain have the following command lines:

CAUTION
If the --restart-service switch is used, tests that are currently running will be
interrupted.

NOTE
-s<offset> ignores any user-supplied units and only uses MB as the units.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 346 Version 7.8 July 2023

pain -t4 1 -x0
pain -t4 1 -x10
pain -t4 1 -x20
…etc.

Default:

There is no default value for the offset amount; you must specify a value.

-t Multi-target mode

Usage:

-t (Use with -f, -l, or -p to set target type.)

Description:

The -t switch is used to indicate that Pain or Maim will run to multiple targets in a single
process. By default, the I/O tools will run a single process per target. A new working direc-
tory with the identifier “MultiTarget” in the directory name will be created for the I/O tests to
run in. This switch will change the log output format of the tools. The main tool performance
output will display aggregate throughput for all targets in use. The general log file (*.log)
will contain both aggregate numbers and individual target numbers for each performance
sample. This switch essentially creates a list of targets in a file called “targets.dat” and
passes this file as the argument for the I/O tool’s -f switch. If a test tool is not specified on
the Catapult command line, the targets.dat file will be created without starting any I/O tests.

Example:

The following example runs a single instance of Pain with all detected physical drives as
targets.

catapult -p -t pain -t4 -b4k -o 1

Default:

Use the -t switch to override Catapult’s default behavior of running a tool process per
target. The target type (-f, -l, or -p) must be specified as well.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 347

-v Verify mode

Usage:

-v<option>

The -v switch can be used to perform a quick verification of a test run. This switch takes a
number of other arguments that you can use as criteria for a pass/fail check of a test run.
Catapult uses the performance summary log (*.prf) file created by MLTT for this check.
Because this file is recreated by each test run, this check must be performed immediately
after each test run that you want to check. If a verification check fails, Catapult will display
a prompt and wait for user intervention. However, if you would like to run a verification on
existing log files (post processing method), the -vp argument will scan any existing *.csv
files instead of the *.prf files. The *.csv files are continuously appended to and can encom-
pass multiple test runs.

Verification of tests can be performed using these options:

For help on any of the specific options listed above, simply set the option you need help
on and the -h option (for example: -h -va).

Example:

The following example will verify the performance logs in the working directories used for
physical drive tests.

catapult -p -vm5 -va10.5 -vi0 -ve

The verification will report a failure and prompt the user if:

• The minimum MB/s for the test run was below 5 MB/s.

-va<##> Sets a minimum average MB/s for verification.
-vb<##> Sets a minimum average IO/s for verification.
-vc Checks tests for data corruption errors.
-ve Checks tests for any errors not detected by other options.
-vi<##> Sets a maximum number of IO halts to check for.
-vl Outputs verification information to a file vlog.log.
-vm<##> Sets a minimum MB/s for verification.
-vn<##> Sets a minimum IO/s for verification.
-vp Processes all tests that are found in .csv files.
-vq Print only summary information.
-vv Print verbose information for tests with errors.
-vvv Print very verbose information for all tests.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 348 Version 7.8 July 2023

• The average MB/s for the test run was below 10.5MB/s
• One or more I/O halts occurred.
• Any error conditions occurred.

Default:

There are no default verification checks. The checks must be specified with additional
options.

-w Watch mode

Usage:

-wwait_seconds

Description:

Use the -w switch primarily in conjunction with the auto mode (-a) switch. When you
include this switch, Catapult monitors the test tool working directories for the creation of
any error logs. If it detects error logs, Catapult terminates all instances of the running test
tool after the specified wait seconds have elapsed. We recommend that you specify a
reasonable number of wait seconds to allow for any tool instances that might be dumping
error details to a file to complete. Under some circumstances, you might want a more
immediate test termination. This switch is useful for cases where you are using a protocol
analyzer to capture an error condition and want to avoid overrunning a capture buffer.

Example:

The following example runs an instance of Pain to all detected physical drives for 10
minutes. Catapult watches the working directories for the appearance of any error logs. If
error logs are detected, Catapult waits for 30 seconds to allow time for error logs to be
completed; then all instances of Pain are terminated.

catapult -w30 -a600 -p pain

Default:

The default value for the seconds to wait is 1. We recommend a higher value under normal
test circumstances.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 349

-x Exclude drive

Usage:

-x[exclude_list]

Description:

-x[exclude_list] provides a list of devices to exclude from testing. Exclusion can either be
done:

• As a single list. For example:
-x2,4,6-11

• As a list specifying a host and targets separated by a colon. For example:
-xlocalhost:2,4,6-11

Multiple hosts definitions can be specified by separating them with a semi-colon (for
example:

-xhost1:2,4,5;host2:2-5,8

If no host is given, the list will be applied to all included hosts.

Use the -x switch to explicitly exclude drives from I/O testing. All drives that you list with
this switch are excluded from testing. All other detected drives are included in testing. List
the drives by number for physical access and letter for file system access on Windows plat-
forms. On UNIX platforms, a number is listed next to each detected drive. List individual
drives in a comma-delimited format. You can indicate ranges by using a dash (-).

Use the '.' function to specify drives to exclude by inquiry, including all other targets.

-x.<str> would specify drives to exclude by inquiry, includes all other targets.

Examples:

The following example runs an instance of Pain to detected physical drives and excludes
the specified drives following the -x switch.

catapult -x1,2,3,5-10 -p pain

The following example runs an instance of Pain to detected file system drives and excludes
the specified drives following the -x switch.

NOTE
If you are running with a network of mixed systems (linux/windows), excluding only
devices by letters will include ALL linux devices. Make sure you know which devices you
are including and excluding. Devices not listed in the -x option and not excluded by the
tools normally will be the devices tested.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
Page 350 Version 7.8 July 2023

catapult -xf,g,h-k,z -f pain

An example of inclusion/exclusion based on inquiry would be: If the user wishes to include/
exclude devices based on specific information returned during and inquiry (i.e. manufac-
turer or model number), this information is placed after the dot; as in

catapult -p -x.Seagate

This example will exclude any drives that returned the string "Seagate" in their inquiry
response.

Default:

All drives are included by default. You must use the include or exclude switches to
customize the list of drives accessed in testing.

-y Specify grace period

Description:

Use the -y option to modify the grace period used in a timed test. Grace period is the time
that time catapult gives the test process (pain or maim) to exit on its own after the test is
done. After that time period, if the test process still has not exited, catapult will try to forcibly
terminate the test process.

 Example:

In the following example, the "-a300" command tells catapult to launch the pain test
process to run for 300 seconds. Pain should run for 300 seconds and exit gracefully. After
300 seconds, catapult waits for 10 seconds ("-y10") for the pain process to exit. If pain
process still has not exited after the specified 10 seconds, catapult will try to terminate the
process.

catapult -a300 -y10 -p pain -t10 -b128k -o

Default:

By default, the grace period is 20 seconds.

Chapter 7 Catapult Test Tool Automation
Catapult Switches

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 351

-z Debug mode

Usage:

-z

Description:

Use the -z switch to instruct Catapult to create a debug log file (catapult.dbg) in the
current working directory. This mode is typically only used when working with Technical
Support to troubleshoot target discovery issues.

Example:

The following example runs an instance of Pain to all detected physical drives and creates
a debug file.

catapult -z -p pain

Default:

Debug mode is disabled by default.

Chapter 7 Catapult Test Tool Automation
Scripting

 Medusa Labs Test Tools Suite User’s Guide
Page 352 Version 7.8 July 2023

Scripting
The command line interface of MLTT is very conducive to scripted test runs. Catapult facil-
itates the creation of scripts that provide a broad range of test coverage in just a few lines.
The following examples show Catapult scripts for Windows batch files.

Example 1 (Windows batch file)
The following example is a Windows batch file that will launch I/O tests using Pain on phys-
ical drives that have not been excluded. The duration of each test variation is set to 600
seconds. Different data patterns are run with various block sizes for the duration period.
The data pattern number is incremented up one number by Catapult after a complete pass
through all block sizes. When data pattern number 31 is reached, the test cycle is ended.

Refer to “-e Increment Data Pattern” on page 330 for more information about the
PATTERN environment variable.

REM Data pattern / block size variations
set PATTERN=1
:START
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b4k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b8k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b16k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b32k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b64k
catapult -p -a600 pain -o -l%PATTERN% -t8 -! 1 -b128k
catapult -e
REM incdat.bat is created by catapult -e
call incdat.bat
if '%PATTERN%'=='31' goto STOP
goto START
:STOP

NOTE
It is important to take the time following a scripted test run to examine the log files gen-
erated for any errors or anomalies.

Chapter 7 Catapult Test Tool Automation
Scripting

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 353

Example 2 (Windows batch file)
The following example is a Windows batch file that will launch I/O tests using Pain on phys-
ical drives that have not been excluded. The duration of each test variation is set to 600
seconds. Variations of the Custom Blink Pattern (-l99) are used to induce signal stress on
a 64 bit PCI bus. See “Custom Blink Pattern (-l99)” on page 261.

REM 64 bit blinking bus variations
:START
catapult -p -a600 pain -o -l99 -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99w -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99o -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99f -L64 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e4 -L60 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e8 -L56 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e16 -L48 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e48 -L16 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e56 -L8 -t8 -! 1 -b128k
catapult -p -a600 pain -o -l99 -e60 -L4 -t8 -! 1 -b128k
:STOP

Chapter 7 Catapult Test Tool Automation
Scripting

 Medusa Labs Test Tools Suite User’s Guide
Page 354 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 355

A

Appendix A Data Pattern Numbers

This appendix lists the data pattern numbers and the description of each data pattern as
they are listed in the Pain and Maim help.

Appendix A Data Pattern Numbers

 Medusa Labs Test Tools Suite User’s Guide
Page 356 Version 7.8 July 2023

Table 15 Data Pattern Numbers and Descriptions

Number Description
0 pattern read from file

1 Repeating 8-bit value (use '-y<value>' to specify the 8-bit pattern 'value')

2 Repeating 16-bit value (use '-y<value>' to specify the 16-bit pattern 'value')

3 32-bit value - Fixed pattern - 1st FOP 0xFFFFFFFF, 2nd:0x00000000

4 Repeating 32-bit value (use '-y<value>' to specify the 32-bit pattern 'value')

5 Noise pattern #1 - 32-bit checkerboard

6 Noise pattern #2 - 32-bit blinking bus

7 Noise pattern #3 - walking/XOR bits

8 8-bit incrementing/decrementing pattern

9 8-bit double inc/dec pattern

10 8-bit quad inc/dec pattern

11 Noise pattern #4 - SCSI blinking bits

12 Noise pattern #5 - SCSI alternating parity tester

13 Noise pattern #6 - checkerboard

14 Noise pattern #7 - 64-bit blinking bits

15 Noise pattern #8 - 64-bit walking/XOR bits

16 16-bit incrementing pattern

17 16-bit inc/dec pattern

18 FC LF noise pattern #1 - alternating low freq. jitter

19 FC LF noise pattern #2 - low freq. jitter

20 FC LF noise pattern #3 - low freq. jitter

21 FC LT noise pattern #1 - alternating low transition density

22 FC LT noise pattern #2 - low transition density

23 FC LT noise pattern #3 - low transition density

24 FC HT noise pattern #1 - high transition density

25 FC CJTPAT noise pattern - all transition

26 FC CSPAT noise pattern - supply noise test

27 FC JTPAT noise pattern #1 - receive jitter tolerance

28 64-bit Alternating Blinking Bits

29 64-bit Incrementing bits (per byte)

30 Ethernet network noise pattern

31 16-bit checkerboard

32 32-bit incrementing pattern, repeats per FOP

33 32-bit continuous increment pattern, repeats every 4GB

34 10G continuous jitter pattern

Appendix A Data Pattern Numbers

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 357

35 Random pattern
(use '-y<seed>' to specify an optional random 'seed' between '0' and '0xFFFFFFFF')

36 Chipset noise pattern #1 - modified l18

37 FC Low Frequency Transitions

38 FC neutral noise pattern #1

39 FC neutral noise pattern #2

40 FC blink pattern #1

41 64-bit incrementing pattern

42 16-bit alternating blink pattern

43 FC ISI killer pattern

44 FC 1KJPAT

45 Walking flip/flop bytes

46 Data pattern set to buffer memory addresses.
This data pattern should not be used with the data re-verification option (-V), since
the buffer memory address are likely to have been re-assigned between test runs.

47 Scrambler pattern 1
(use '-y<seed>' to specify an optional random 'seed' between '0' and '0xFFFFFFFF')

48 Scrambler pattern 2

49 Scrambler pattern 3

50 FC blink pattern #2

51 FC blink pattern #3

52 FC blink pattern #4

53 FC blink pattern #5

54 SATA Composite-bit Pattern

55 SATA Low Transition Density Pattern

56 SATA High Transition Density Pattern

57 SATA Low Frequency Spectral Content Pattern

58 SATA Simultaneous Switching Outputs Pattern

59 SATA Lone-Bit Pattern

60 FC random neutral pattern
(use '-y<seed>' to specify an optional random 'seed' between '0' and '0xFFFFFFFF')

61 SAS CJTPAT

62 FC random neutral pattern with inversion
(use '-y<seed>' to specify an optional random 'seed' between '0' and '0xFFFFFFFF')

63 FC JSPAT

64 FC JTSPAT

69 Fixed pattern of 0

70 Data pattern set to I/O LBA

71 Data pattern set to I/O byte offset

Table 15 Data Pattern Numbers and Descriptions

Number Description

Appendix A Data Pattern Numbers

 Medusa Labs Test Tools Suite User’s Guide
Page 358 Version 7.8 July 2023

80 Compressible random pattern
(use '-y<seed>' to specify an optional random 'seed' between '0' and '0xFFFFFFFF').
Use this pattern to test compression and/or dedup.
Use
'-E' for compression entropy (0 to 100, default 100),
'-L' for dedup % (0 to 100, default 0),
'-e' for number of duplicate blocks (default 1), and
'-@' to specify the dedup unit size (default 8KB).

94 PCI parity alternating pattern

96 16-bit Alternating 0xAAAA, 0x5555

99 Custom Blink
 -l99 No walking bit
 -l99w Walk both '1' and '0' bits
 -l99o Walk '0' bits only
 -l99f Walk '1' bits only
Use '-L' for bit length, '-e' for length of '1' bits, '-E' for blink hold cycles, and '-F' to reset
each cycle

Table 15 Data Pattern Numbers and Descriptions

Number Description

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 359

B

Appendix B Test Guidelines and Examples

This appendix shows examples of Medusa Labs Test Tools (MLTT) used in common test
scenarios.The topics discussed in this appendix are as follows:

• “A Word About Hardware Configurations” on page 360
• “Maximum Bandwidth Stress Testing” on page 360
• “Performance Testing” on page 361
• “Data Integrity Testing” on page 364
• “Backup or Snapshot Testing” on page 364
• “Maximum Queue Testing” on page 365
• “Full Coverage Target Testing” on page 365

Appendix B Test Guidelines and Examples
A Word About Hardware Configurations

 Medusa Labs Test Tools Suite User’s Guide
Page 360 Version 7.8 July 2023

A Word About Hardware Configurations
The hardware required to drive data rates at the maximum bandwidth (wire speed) varies
with the architecture that is being tested. For example, in the case of PCIe, the available
data will vary with the PCIe version. PCIe 1.0 can support up to 250 MB/s (per lane), PCIe
2.0 can support up to 500 MB/s (per lane), PCIe 3.0 can support up to 984.6 MB/s (per
lane), and PCIe 4.0 can support up to 1969.2 MB/s (per lane). It is important to consider
the bandwidth capabilities of the device under test and evaluate each component of the
configuration to identify any weak links.

Generally speaking, when testing for maximum bandwidth we suggest you have the
fastest initiator system possible—that is, the processor, host bus, PCI, etc. A large memory
capacity is also crucial to efficiently handle large I/O buffers.

Maximum Bandwidth Stress Testing
This section contains some guidelines for testing a device at the maximum bandwidth
supported, for verification of capability, signal integrity testing, and/or data integrity.

In order transfer the maximum amount of data with the fewest interrupts in the host system,
we recommend using large block sizes whenever possible. A system with a fast host bus
and ample memory should be able to efficiently use block sizes of 512k or more. On target
devices with caching capabilities, it is desirable to keep the file size small.

On enterprise class multi-processor systems, Pain is a good choice for driving wire speed
traffic. Because each thread uses its own file or device offset, a large block I/O size with a
file size equal to the block size is often a good choice when testing for bandwidth with Pain.
This allows the best full duplex opportunities with threaded I/O.

Examples Using Pain:
Fastest possible, no data comparison:

pain -f\\.\physicaldrive1 -o -t8 -b512k 512k -u -n

where:

-o = Hold target open (performance gain)
-t8 = Create 8 worker threads
-b512k = 512KB block (buffer size)
512k = 512KB file size or offset size used by each thread
-u = Disable I/O signatures (slight performance gain)
-n = Disable data compares (great performance gain)

Appendix B Test Guidelines and Examples
Performance Testing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 361

The following command line is the same as the prior example, with full data comparison
added. Fastest possible with data comparison:

pain -f\\.\physicaldrive1 -o -t8 -b512k 512k

The Maim tool also has good full duplex capabilities in certain modes, using a single
worker thread. Maim uses a single file and, for best results, we recommend that the file
size be equal in size to the block size times the queue depth.

Examples Using Maim:
Fastest possible, no data comparison:

maim -f\\.\physicaldrive1 -m16 -o -Q16 -b512k 8 -u -n

where:

-m16 = Static queue depth (higher full duplex opportunity)
-o = Hold target open (performance gain)
-Q16 = Queue depth of 16 I/Os of specified buffer size
-b512k = 512KB block (buffer size)
8 = 8MB file size or offset size (total used by single worker thread)
-u = Disable I/O signatures (slight performance gain)
-n = Disable data compares (great performance gain)

The following command line is the same as the prior example, with full data comparison
added. Fastest possible with data comparison:

maim -f\\.\physicaldrive1 -m16 -o -Q16 -b512k 8

Performance Testing
The approach to performance testing is similar to maximum bandwidth testing. Again,
large blocks to small files at fairly low queue depths typically bring out the highest
throughput levels. For IOPS tests, the queue depth will probably need to be raised as block
size is lowered. Maim might get better results than Pain in some cases, as the queue depth
can be raised considerably, without the overhead of high thread numbers.

Depending on the specific device or system to be tested, there are certain other variations
you might want to use. For example, when testing a storage device it is interesting to run
performance tests with file sizes that fit within device cache and some that overrun the
cache size. This methodology gives a broader picture of the device’s capabilities. As
another example, when testing an intermediary device such as a switch, it is desirable to
run performance tests that include various initiators to target configurations. These include
one-to-one, one-to-many, many-to-one, and many-to-many.

Appendix B Test Guidelines and Examples
Performance Testing

 Medusa Labs Test Tools Suite User’s Guide
Page 362 Version 7.8 July 2023

For performance tests, data comparisons and I/O signatures should always be disabled. It
is best to test with a variety of block sizes, to identify any problem areas.

High Bandwidth Example:
pain -f\\.\physicaldrive1 -o -t8 -b512k 512k -u -n

where:

-o = Hold target open (performance gain)
-t8 = Create 8 worker threads
-b512k = 512KB block (buffer size)
512k = 512KB file size or offset size used by each thread
-u = Disable I/O signatures (slight performance gain)
-n = Disable data compares (great performance gain)

High IOPS Example:
The following command line is the same as the prior example, with a smaller (512 byte)
block and file size.

pain -f\\.\physicaldrive1 -o -t128 -b512 512 -u -n

The following command line uses maim as an IOPS test example, with a higher queue
depth and static queue depth.

maim -f\\.\physicaldrive1 -o -t4 -Q256 -b512 512 -u -n -m16

The above examples are full-duplex-style tests. It is always a good idea to run half duplex
tests (write only and read only.) To do this, use the -w or -r switches with command lines
similar to those given in the examples.

When testing devices that support data compression, it is interesting to test performance
with both compressible and non-compressible patterns (ex. All zeros with -l69 and
random data with -l35, respectively.)

General Guideline:
When performance testing, especially with NVMe drives, use asynchronous I/O (maim)
and keep increasing the thread and queue depth count until maximum performance is
achieved. To do this, start with one thread and increase the queue depth by 1 until perfor-
mance is maximized. Then repeat the process; keeping queue depth the same and this
time increasing the thread count.

Appendix B Test Guidelines and Examples
Performance Testing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 363

Alternatively, MLTT can find the optimal performance of a drive with the “Determine Perfor-
mance” tool. To use this tool, right click on a drive and select the “Determine Performance”
option.

Appendix B Test Guidelines and Examples
Data Integrity Testing

 Medusa Labs Test Tools Suite User’s Guide
Page 364 Version 7.8 July 2023

Data Integrity Testing
Data integrity testing should be as comprehensive as time allows. Ideally, a wide variety of
block sizes, file sizes, and data patterns should be utilized. Larger file sizes are often used
to get longer streams of write or read traffic. Data patterns that are particularly aggravating
to the architecture under test should be emphasized (ex. Fibre Channel, Parallel SCSI,
PCI, etc.)

Many data corruption issues are discovered in association with fault injection tests. Data
integrity testing should be an interactive process on devices with fault tolerant features.

Data integrity testing is also a good candidate for scripted testing. Typically, once a partic-
ular catalyst is introduced, data corruptions will manifest quickly in a test. Using scripts of
short test sequences of continuously changing I/O parameters and data patterns, it is
possible to achieve broad coverage in a relatively short time frame. See “Scripting” for
more information on setting up scripted tests.

Whenever possible, you should use protocol analyzers for data integrity testing. You can
set the analyzer to trigger on a special value with MLTT -! or -# switches. Even when
analyzers are not available, you should use the -! or -# switches, as they also cause a
complete dump of the write and read buffers contents to files. This is extremely useful
when debugging a corruption.

Examples:

Pain with a standard PCI aggravating pattern:

pain -f\\.\physicaldrive1 -o -t10 -b512k 10 -l14 -!

Maim with a standard Fibre Channel aggravating pattern:

maim -f\\.\physicaldrive1 -o -Q8 -b512k 100 -l25 -!

Backup or Snapshot Testing
MLTT has a data verification mode that works well for situations involving the validation of
backup or snapshot implementations. You use the -V switch for this purpose; it is available
in both Pain and Maim. This switch verifies the data in a file or on a device against a spec-
ified data pattern. The data can exist in a different location than where it was originally
written.

Appendix B Test Guidelines and Examples
Data Integrity Testing

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 365

In order for this switch to work, you must specify the exact data arguments used to create
the data. The data should be created in a single write pass without I/O signatures. (See
Appendix K “I/O Signatures” ” for more information about this topic.)

Example:

One write pass of a pattern, with no signatures:

maim -Q16 -b128k -l17 -L4 -u -w 100 -i1 -fg:\data1\test.dat

Verification of pattern in file at another location:

maim -Q16 -b128k -l17 -L4 -u 100 -V -fh:\data2\test.dat

Maximum Queue Testing
A good target test case is its handling of a queue full condition. The point at which this can
happen varies by target, but in general, most targets will handle no more than 256 concur-
rent requests. Maim’s asynchronous I/O dispatching is an excellent method for testing
queue full conditions.

Example:

The following command line launches Maim with a queue depth burst of 257 I/Os. Note
that the file size specified must be large enough to contain the indicated block size times
the queue depth.

maim -f\\.\physicaldrive1 -o -b64k 20 -Q257

Full Coverage Target Testing
Maim has a full coverage I/O mode that you can use in tests that cover the full capacity of
a target’s storage space. This mode runs across the entire device, with writes and reads
operating in sections of the device equal to the file size at a time.

Example:

The following command lines run write and read commands, with data comparison, across
the entire drive in 50MB sections at a time.

maim -f\\.\physicaldrive1 -O -b64k 50 -Q16 -m18

maim -f\\.\physicaldrive1 -O -b64k 50 -Q16 --full-device

Appendix B Test Guidelines and Examples
Data Integrity Testing

 Medusa Labs Test Tools Suite User’s Guide
Page 366 Version 7.8 July 2023

The following command line runs a write command followed by immediate read-back with
data comparison to random locations within the entire drive:

maim -f\\.\physicaldrive1 -O -b64k -Q16 -m17

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 367

C

Appendix C Debug Example

This appendix contains a sample debug of a data corruption scenario. The topics
discussed in this appendix are as follows:

• “Overview” on page 368
• “Default Trigger Value” on page 369
• “Locating the Trigger Data Frame in TraceView” on page 370
• “Finding the Write and Read Operations” on page 372
• “Error Log Created” on page 373
• “Finding the Corrupt Data Frame” on page 375
• “Using I/O Signatures” on page 378
• “Using the FindLBA Utility” on page 379

Appendix C Debug Example
Overview

 Medusa Labs Test Tools Suite User’s Guide
Page 368 Version 7.8 July 2023

Overview
In this example, the debug output of Medusa Labs Test Tools (MLTT), in conjunction with
a protocol analyzer, can quickly isolate the device that caused a data corruption to occur.
For this scenario, we use a simple Fibre Channel configuration, with a VIAVI Xgig Analyzer
between the HBA and a switch.

Figure 74 Fibre Channel Debug Test Configuration

In this configuration, a basic Pain stress test is run on a Windows initiator to a physical
drive on the target device. The analyzer is set to trigger on a special value sent by MLTT
when the -! or -# switch is used. The trace buffer should be set to allow sufficient room
for capture of relevant traffic preceding a trigger. Typically, a 90/10 split (10% post fill after
trigger) is sufficient. It may be desirable to capture a smaller frame payload in some cases,
but it is generally best to capture full payload when data integrity testing is performed.

Appendix C Debug Example
Default Trigger Value

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 369

Default Trigger Value
The default trigger value for a data corruption error is 0xCACACACA. The analyzer is set to
look for this value at the start of a data frame payload. See Figure 75.

Figure 75 Setting the Default Trigger Value on the Analyzer

When a data corruption is detected by MLTT, the trigger I/O is immediately sent and this
should be detected by the analyzer. It should be noted, however, that there are cases
where the trigger I/O may be unsuccessful due to complete lack of response from a target
or a device driver problem.

TRIGGER.OUT marks - for CACA trigger
If -! used, the trigger will be 0xcacacaca in p/l word 0 and 1.

If -!2 used, the trigger will be 0xdeaddead in p/l word 0 and 1.

Other values as follows:

Word Values Conditions

2 - 7 LBA Information Only if -f specified on command line. Is only valid/useful if Physical
Drive. If logical drive (stripe), divide by #drives and add 0x20. If -f not
provided on command line, will be set to 0xCACA

2 - Corrupted LBA

3 - Starting LBA

Appendix C Debug Example
Locating the Trigger Data Frame in TraceView

 Medusa Labs Test Tools Suite User’s Guide
Page 370 Version 7.8 July 2023

Note that all values will be stored in AABBCCDD format (big-endian) for all platforms.

Locating the Trigger Data Frame in TraceView
To locate the corruption problem in the trace, start by finding the trigger data frame. See
Figure 76.

4 - Ending LBA

5 - Starting offset (bytes)

6 - Ending offset (bytes)

7 - Base offset (bytes)

8 Program Name First four characters

9 WS_NAME Last four characters

10 Flags DD = thread_num

Intel = DDCCBBAA CC = 01 if buffer reversed, 00 if forwards

Sparc = AABBCCDD BB = 00 if I/Os forward, 01 if backwards

AA = Data pattern (-l value) - in HEX

11 Loop count

12 Buffer Size

13 Completed I/Os

14 Block# / Error Type AA = Error Type (as identified in the following list)

02 (2) STARTUP_ERROR
03 (3) MALLOC_ERROR
04 (4) LOG_ERROR
05 (5) SEEK_ERROR
06 (6) RETRY_ERROR
07 (7) SIZE_ERROR
08 (8) OPEN_ERROR
09 (9) FLUSH_ERROR
0A (10) CLOSE_ERROR
0B (11) READ_ERROR

0C (12) WRITE_ERROR
0D (13) CORRUPT_ERROR
0E (14) INITIAL_ERROR
0F (15) REMOVE_ERROR
10 (16) UNKNOWN_ERROR
11 (17) TIMEOUT_ERROR
12 (18) LICENSE_ERROR
13 (19) IOCTL_ERROR
14 (20) HALT_ERROR

Intel = DDCCBBAA BBCCDD = Block Number

Sparc = AABBCCDD

15 Index info

Intel = DDCCBBAA

SPARC = AABBCCDD Maim - AABB is pending I/Os, CCDD is I/O Index

Word Values Conditions

Appendix C Debug Example
Locating the Trigger Data Frame in TraceView

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 371

Figure 76 Locating the Trigger Data Frame in TraceView

Appendix C Debug Example
Finding the Write and Read Operations

 Medusa Labs Test Tools Suite User’s Guide
Page 372 Version 7.8 July 2023

Finding the Write and Read Operations
Once the trigger data is located, the write and read operations which resulted in the data
corruption can be found in the preceding trace data. When test configurations involve
multiple targets, it may be desirable to filter the trace view such that exchanges between
the initiator and the target in question are displayed. In this example, the target destination
ID (D_id) is used to build a pair of filters that isolate this ID as both source and destination.
This allows for viewing of all bidirectional traffic between the initiator and this target.

Figure 77 Setting Filters to Isolate IDs

Appendix C Debug Example
Error Log Created

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 373

Error Log Created
MLTT creates an error log with the extension “.bad” when a critical error is encountered.
This log is named after the thread that encountered the error. The log file contains infor-
mation when data corruptions are discovered, including a side by side listing of expected
and miscompared data. A summary section includes relevant details about the corruption
as shown in the following sample error log.

Sample Error Log

Miscompare: Offset: 0X008010, Wrote: 40130000, Read: 00000000 - returning error!
Writing trigger to offset: 0X0F0000, LBA: 0X000780
Dumping r/w buffers to: MEDUSA-00160000.3w and MEDUSA -00160000.3r...
04/15/04 15:18:22: Data corruption! Elapsed time: 00:00:01:01
Miscompare at 0X160000 bytes read in loop 312!
Device: \\.\physicaldrive1
Offset: Returned: Expected:
--
0X168010: 00000000 = 40130000 = @
0X168014: 00000000 = 400B400A = @ @

ERR: --
ERR: Session ID: 0X000DD4 / 3540
ERR: Loop count: 312
ERR: Elapsed time: 00:00:01:01
ERR: File name: \\.\physicaldrive1
ERR: Starting Offset: 0X900000 / 9437184
ERR: Ending Offset: 0XD00000 / 13631488
ERR: Base Offset: 0X100000 / 1048576 (already included)
ERR: * Note LBA values are valid only for physical device access.
ERR: Corrupt LBA: 0X005300
ERR: Physical LBA Range: 0X004800 to 0X006800
ERR: Data pattern: 17 / 16-bit inc/dec pattern
ERR: Pattern Cycle length: 1
ERR: Pattern Direction: Up/Even
ERR: I/O Direction: Backward
ERR: Write Buffer address: 0X1300000 / 19922944
ERR: Read Buffer address: 0X1310000 / 19988480
ERR: I/O Size: 0X010000 / 65536
ERR: Block number: 0X000017 / 23
ERR: Block start: 0X160000 / 1441792
ERR: Error start: 0X168010 / 1474576
ERR: Error end: 0X168018 / 1474584
ERR: Error length: 0X000008 / 8
ERR: --

Retrying read on corruption...

Retry didn't show corruption!

Because this example is using a physical drive as the target, the corrupt LBA reported in
the error log is accurate and can be used to locate the write and read commands in the
trace. Note that the corrupt LBA refers to the start of the I/O request and not necessarily
the start of the data corruption within the I/O data.

Appendix C Debug Example
Error Log Created

 Medusa Labs Test Tools Suite User’s Guide
Page 374 Version 7.8 July 2023

In this example, the corrupt LBA is 0x005300:

ERR: Corrupt LBA: 0X005300

The last command to this LBA on the target in question is located in a backward search
from the trigger point. See Figure 78.

Figure 78 Backward Search for Last Command to the LBA

The trigger I/O was sent immediately upon discovery of the data corruption and the last
command to the corrupt LBA before the trigger was the read command. When we find the
read command, we can trace the read data to find the point where the miscompare begins.
We can determine the location of the corrupt data in the data transfer from the error log by
looking at the block start and error start addresses:

ERR: Block start: 0X160000 / 1441792
ERR: Error start: 0X168010 / 1474576

Subtracting the error start from the block start provides the offset of the miscompare from
the start of the read data transfer:

 0X168010
-0X160000
 0X008010 = 32784 bytes

Appendix C Debug Example
Finding the Corrupt Data Frame

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 375

Finding the Corrupt Data Frame
Since this example is over Fibre Channel, we will divide the byte offset by the size of the
frame data payload (2048 in this case) in order to locate the data frame in question.

32784 / 2048 = 16 (frame number)

This data frame is located in the trace (frame 16 would be SEQ_Cnt 0x10). See Figure 79.

Figure 79 Data Frame in TraceView

In this data frame, we find the corrupted data listed in the error log – two words of zeroes
instead of the expected data.

Offset: Returned: Expected:
--
0X168010: 00000000 = 40130000 = @
0X168014: 00000000 = 400B400A = @ @

It is possible that the data in the trace could read correctly, indicating the corruption origi-
nated from something inside the initiator system (such as the HBA or PCI bridge) rather
than the target.

Appendix C Debug Example
Finding the Corrupt Data Frame

 Medusa Labs Test Tools Suite User’s Guide
Page 376 Version 7.8 July 2023

Searching back for the corrupt LBA past the read command will take us back to the write
command, where the expected data can be verified. See Figure 80.

Figure 80 Verifying the Expected Data

It is entirely possible for the write data to be corrupted, if the corruption is due to a compo-
nent in the initiator system. This would be classified as a “write corruption.” In this example,
the error log shows that we are dealing with a read corruption:

Retrying read on corruption...
Retry didn't show corruption!

MLTT will always attempt a read retry when a corruption is discovered. This provides an
important data point by determining whether the corruption is persistent (committed to the
media) or transient (possibly the result of a cache error on a target.) In this example, it
would appear that the target is the culprit, given that incorrect data was returned in a valid
data frame with no CRC errors. It is also possible, although less likely, that the switch
between the analyzer and the target caused the error. To be certain, you would want to
move the analyzer to the connection between the switch and the target.

In this example, due to the nature of our configuration and the Fibre Channel protocol, we
were able to easily locate the relevant commands with the LBA. It often becomes neces-
sary to use another search method when the LBA provided by the error logs is not valid
because of a file system or logical volume configuration. Also, some protocols, such as
iSCSI can be difficult to debug due to commands being embedded in packets.

Appendix C Debug Example
Finding the Corrupt Data Frame

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 377

In such cases, it may be necessary to search for the unique I/O signature in the block in
question. Using the block and error starting addresses from the error log, it is possible to
locate the I/O signature closest to the corruption. (Refer to Appendix K “I/O Signatures”
for more information) In our current example, we know that the error occurred at offset
0X8010 into the I/O.

ERR: Block start: 0X160000 / 1441792
ERR: Error start: 0X168010 / 1474576

 0X168010
-0X160000
 0X008010

Using a hex editor, the write or read buffer data can be opened and this offset may be
located as shown in the “Locating the Offset” example. MLTT automatically dumps the
write and read buffers to files with the -! or -# switches are used. The file names are
provided in the error log.

Locating the Offset

Miscompare: Offset: 0X008010, Wrote: 40130000, Read: 00000000 - returning error!
Writing trigger to offset: 0X0F0000, LBA: 0X000780
Dumping r/w buffers to: MEDUSA-00160000.3w and MEDUSA -00160000.3r...

Appendix C Debug Example
Using I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
Page 378 Version 7.8 July 2023

Using I/O Signatures
The I/O signatures occur every sector size, which is typically 512 bytes or 0x200 hex. The
signatures are three words in length and are placed at a two word offset into each sector
area. In this example, the nearest signature is at 0x8008 in the buffer files.

0X008000 00 40 01 40 Sector Start
0X008004 02 40 03 40
0X008008 0D D4 00 03 Signature Start
0X00800C 01 38 00 40
0X008010 00 00 13 40 Signature End
0X008014 0A 40 0B 40
0X008018 0C 40 0D 40
0X00801C 0E 40 0F 40
0X008020 10 40 11 40
0X008024 12 40 13 40

This signature can be used to set up a search filter in a trace viewer application. See
Figure 81.

Figure 81 Using I/O Signature for a Search Filter in TraceView

Appendix C Debug Example
Using the FindLBA Utility

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 379

Using the FindLBA Utility
FindLBA is useful in cases where the logical block address (LBA) reported in the I/O tool
error logs is not accurate because the tools are not directly referencing areas of the phys-
ical media. You can use FindLBA in conjunction with a protocol analyzer to identify the
actual LBA corresponding to a file offset reported by the test tools. FindLBA sends a “ping”
of consecutive reads to a specified offset, which you can identify in a protocol trace.
FindLBA is most useful when you need help finding I/O commands that resulted in data
corruption in a protocol trace capture.

The following examples show how the FindLBA utility can be used.

Example 1
The thread1.bad log file from a test case that showed data corruption has the lines:

ERR: Error length: 0x0200 / 512”, “Miscompare: Offset: 0x00000000000FF800

and

ERR: Starting offset: 0x100000 / 1048576

This means that there are 0x200 bytes of corrupted data 0x100000 + 0xFF800 or
0x1FF800 bytes into the file. On a Microsoft Windows system, you can run the command:

findlba -f\\.\PhysicalDrive2 -o0x1ff800

The Xgig trace will show SCSI Reads to that LBA on the storage where the data was
detected as corrupt. You can then use the trace to find the actual LBAs that were reported
as corrupt.

Example 2
You want to send a 16,384 byte Read to LBA 0x1000 on a disk drive formatted for 512
bytes per sector. The Offset is 0x200 bytes/sector times LBA 0x1000. The buffer size is
0x4000.

On a Microsoft Windows system, the command is:

findlba -f\\.\PhysicalDrive2 -o0x200000 -b0x4000

NOTE
When entering the offset in the FindLBAcommand, enter the offset in bytes only. Find-
LBA does not support common modifiers, such as k, M, etc.

Appendix C Debug Example
Using the FindLBA Utility

 Medusa Labs Test Tools Suite User’s Guide
Page 380 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 381

D

Appendix D I/O Signatures

This appendix describes MLTT’s format and use of I/O signatures. By default MLTT, adds
a unique mark or signature to each I/O. This signature is placed in the selected data
pattern at every sector interval in the I/O buffer. There are two purposes for this signature.

The first purpose is it is a vital component of data integrity checking in MLTT. A constantly
changing data stream is needed for catching cases of out-of-order write completions or
stale data corruptions. Stale data corruptions occur when data from an old write operation
is returned after a new write operation and read back with data comparison to the same
LBA. If the exact same data (without a unique I/O signature) was used for every write oper-
ation, it would be impossible to detect if the read data returned is from the immediately
preceding write.

The second reason is due to I/O signatures being utilized in debugging issues discovered
with MLTT. The information embedded in the signature correlates with log files from a test
run to determine the initiator, target, I/O position within a file, LBA, and other information
needed for debugging.

MLTT embeds a signature at the beginning of every logical block. The size is device
dependent, so if the device’s logical block size is 512 bytes, the MLTT will embed a signa-
ture every 512 bytes. The signature used by MLTT has the following format.

Offset Data
0x0008: AAAABBBB
0x000C: CCDDDDDD
0x0010: EEEEEEEE

where:

AAAA = Session ID (A unique ID created from the initiator and target names.)
BBBB = Thread number (Pain) or I/O Index number (Maim)
CC = Loop count (Based on file operations (FOPS))
DDDDDD = Block number
EEEEEEEE = LBA (Only accurate on physical devices.)

Appendix D I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
Page 382 Version 7.8 July 2023

Offsets
Below provides more information about what is stored at each offset.

Offset 0: Payload data (i.e. data pattern) (8 bytes)

This 8 bytes of data pattern content

Offset 8: Session ID (2 bytes)

By default, the 2 byte session ID is the last 2 ASCII characters of the target name.

· E.g. Windows “[file://./PhysicalDrive1]\\.\PhysicalDrive1” -> session ID “e1”,
ASCII hex code 65 31

· E.g. Linux “/dev/sdb” -> session ID “db”, ASCII hex code 64 62

In some instances of running to multiple disks, data corruption can occur in the form
of data being returned from the wrong drive. To verify this, check the data signatures
in MLTT to see what the intended target is.

Offset 10: Thread number (2 bytes)

This is the process-global I/O thread number of the thread that wrote this data. This
information is useful for ensuring that the returned data is not from another thread’s I/
O area.

Offset 12: Loop number (1 byte)

This is the sequential loop number of the current write.

This is one way to determine if the returned data is stale - i.e. data from a previous
loop or a previous test run - when doing sequential access test.

NOTE:
Loop count is incremented at the completion of one sequential pass of the test area.
There is no such concept for random access I/O and, as a result, loop count will always
be 0 when doing random access I/Os this is always 0.

NOTE:
Loop count is 0-based meaning that the first loop is loop #0.

Appendix D I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 383

Offset 13: Block number (3 bytes)

A block is a unit of a buffer-sized area within a thread’s I/O area. E.g., for “-b64k”, a
block is a 64KB of area within a thread’s test area corresponding to 1 I/O request. The
block number is an ordinal of buffer-sized blocks in sequence from the start of the
thread’s I/O area to the end.

· Thread_io_area_size / buffer_size + 1

For random-access I/O, the block number has no meaning.

Offset 16: LBA (4 bytes)

 Least-significant 4 bytes of LBA corresponding to this logical block.

Offset 20: Optional 1-second resolution timestamp (4 bytes)

If the timestamp option is specified (“-U”), the ANSI C “current time” timestamp is
embedded.

Offset 24: Optional milliseconds (2 bytes)

If “-Um” is specified, in addition to the 4 byte 1-second resolution timestamp, additional
milliseconds are appended

Remaining bytes in this logical block are data pattern content.

 Example of I/O Signature:
Shown below is th hexdump of written data from “maim -Q2 -b1k 4K -i3 -l1 -y0x77 -x1m -
f\\.\physicaldrive1”

· 4 1K “blocks” written to 4KB test area (8 logical blocks)

· Fill with “0x77”

· Starting offset 1MB

· 3 sequential loops (“FOPS” – “file operations”)
00100000 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 01 |wwwwwwwwe1......|
00100010 00 00 08 00 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100020 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100200 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 01 |wwwwwwwwe1......|

Appendix D I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
Page 384 Version 7.8 July 2023

00100210 00 00 08 01 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100220 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100400 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 02 |wwwwwwwwe1......|
00100410 00 00 08 02 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100420 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100600 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 02 |wwwwwwwwe1......|
00100610 00 00 08 03 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100620 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100800 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 03 |wwwwwwwwe1......|
00100810 00 00 08 04 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100820 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100a00 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 03 |wwwwwwwwe1......|
00100a10 00 00 08 05 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100a20 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100c00 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 04 |wwwwwwwwe1......|
00100c10 00 00 08 06 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100c20 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00100e00 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 04 |wwwwwwwwe1......|
00100e10 00 00 08 07 77 77 77 77 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100e20 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*
00101000

· Session ID: 65 31 (“e1” from “physicaldrive1”

· Thread number: 00 01

· Loop number: 02 (i.e. “3rd loop” due to “-i3”)

· Blocks (1KB each spanning 2 LBs)

Block #1: 00 00 01

Block #2: 00 00 02

Block #3: 00 00 03

Block #4: 00 00 04

LBA of each signature:

00 00 08 00

00 00 08 01

00 00 08 02

00 00 08 03

00 00 08 04

00 00 08 05

00 00 08 06

00 00 08 07

Appendix D I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 385

With “-U”, 4 byte timestamp is added after the LBA part:
00100000 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 01 |wwwwwwwwe1......|
00100010 00 00 08 00 5b d2 20 01 77 77 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100020 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*

With “-Um”, 2 bytes of milliseconds are appended to timestamp:
00100000 77 77 77 77 77 77 77 77 65 31 00 01 02 00 00 01 |wwwwwwwwe1......|
00100010 00 00 08 00 5b d2 20 f6 03 05 77 77 77 77 77 77 |....wwwwwwwwwwww|
00100020 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77 |wwwwwwwwwwwwwwww|
*

Appendix D I/O Signatures

 Medusa Labs Test Tools Suite User’s Guide
Page 386 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 387

E

Appendix E Exit Codes

This appendix shows return codes at exit that you can use in custom batch files or shell
scripts and provides the exit code descriptions listed in numerical order. The topics
discussed in this appendix are as follows:

• “Using Exit Codes” on page 388
• “Exit Code Descriptions” on page 389

Appendix E Exit Codes
Using Exit Codes

 Medusa Labs Test Tools Suite User’s Guide
Page 388 Version 7.8 July 2023

Using Exit Codes
The Medusa Labs Test Tools (MLTT) return codes at exit that you can use in custom batch
files or shell scripts to take action when an error occurs during a scripted run.

The following example shows an exit code in a script:

echo off
REM Run pain for 5 minutes
pain -o -l35 -t4 -d300
REM Check exit code, 2 or higher means there was an error
If ERRORLEVEL 2 goto ERROR
echo Success! Exit code: %ERRORLEVEL%
goto END
:ERROR
echo Error! Exit code: %ERRORLEVEL%
:END

The exit codes used by MLTT are listed below.

0 SUCCESS
1 LOOP_DONE
2 STARTUP_ERROR
3 MALLOC_ERROR
4 LOG_ERROR
5 SEEK_ERROR
6 RETRY_ERROR
7 SIZE_ERROR
8 OPEN_ERROR
9 FLUSH_ERROR
10 CLOSE_ERROR
11 READ_ERROR
12 WRITE_ERROR
13 CORRUPT_ERROR
14 INITIAL_ERROR
15 REMOVE_ERROR
16 UNKNOWN_ERROR
17 TIMEOUT_ERROR
18 LICENSE_ERROR
19 IOCTL_ERROR
20 HALT_ERROR

Each exit code is described in the following section.

Appendix E Exit Codes
Exit Code Descriptions

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 389

Exit Code Descriptions
The exit code descriptions are listed in numerical order.

SUCCESS (0)
This value is used as a generic non-error exit code. It is normally only returned when the
Test Tool exits from a display of the on-line help.

LOOP_DONE (1)
This value indicates a normal exit from a test that was limited by iteration count (-i switch)
or duration (-d switch.)

STARTUP_ERROR (2)
This value indicates an error was encountered during the processing of environment vari-
ables or command line switches.

MALLOC_ERROR (3)
This value indicates there was an error encountered in a memory allocation attempt.

LOG_ERROR (4)
This value indicates an error was encountered while accessing one of the log files.

SEEK_ERROR (5)
This value indicates a seek operation on a target device or file has failed.

RETRY_ERROR (6)
This value indicates an I/O operation has failed and attempts to retry the operation were
unsuccessful.

SIZE_ERROR (7)
This value indicates an I/O operation has failed due to an unexpected number of bytes
returned or an unexpected end of file was reached. For example, this error would occur if
a read of 64KB returned only 62KB.

OPEN_ERROR (8)
This value indicates an error occurred on an attempt to open a target device or file during
a test run.

FLUSH_ERROR (9)
This value indicates an error occurred on an attempt to flush data from a write operation
from cache to the target device or file.

CLOSE_ERROR (10)
This value indicates that an attempt to close an open handle to a target device or file has
failed.

READ_ERROR (11)
This value indicates a read operation on a target device or file has failed.

WRITE_ERROR (12)
This value indicates a write operation on a target device or file has failed.

Appendix E Exit Codes
Exit Code Descriptions

 Medusa Labs Test Tools Suite User’s Guide
Page 390 Version 7.8 July 2023

CORRUPT_ERROR (13)
This value indicates data corruption has been detected on a target device or file.

INITIAL_ERROR (14)
This value indicates the initial open of a target device or file has failed.

REMOVE_ERROR (15)
This value is not currently used in MLTT. Device open, read, or write errors due to device
removal will be reported specifically.

UNKNOWN_ERROR (16)
This value indicates an error has occurred that is not classifiable as any other specific
defined error condition.

TIMEOUT_ERROR (17)
This value indicates that one or more individual I/O operations have not completed within
the monitoring time period (5 seconds by default.)

LICENSE_ERROR (18)
This value indicates an error has occurred during a security check against the Test Tool’s
license. This may be because a license has expired or the license file could not be located.

IOCTL_ERROR (19)
This value indicates an error has occurred during an IOCTL operation. Some MLTT use
low level IOCTL calls for various operations on target devices.

HALT_ERROR (20)
This value indicates that ALL I/O traffic has ceased during the monitoring time period (5
seconds by default.)

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 391

F

Appendix F Architecture Bandwidths

Listed in this appendix are all of the architecture that are supported by Medusa Labs Test
Tools Suite. Bandwidth capabilities are also listed below each architecture.

PCI
32bit/33 MHz - 132 MB/sec

64bit/33 MHz - 264 MB/sec

64bit/66 MHz - 528 MB/sec

PCI-X
64bit/100 MHz - 792 MB/sec

64bit/133 MHz - 1 GB/sec

PCI-Express
Theoretical Bandwidth, Full-Duplex (Gb/s)

Link Width X1 X2 X4 X8 X16

Generation 1 0.5 1.0 2.0 4.0 8.0

Generation 2 1.0 2.0 4.0 8.0 16.0

Generation 3 2.0 3.9 7.9 15.8 31.6

Appendix F Architecture Bandwidths
Fibre Channel (Full Duplex)

 Medusa Labs Test Tools Suite User’s Guide
Page 392 Version 7.8 July 2023

Fibre Channel (Full Duplex)
1Gb - 200 MB/sec

2Gb - 400 MB/sec

4Gb - 800 MB/sec

8Gb - 1600 MB/sec

16Gb - 3200 MB/sec

Fast Ethernet (Full Duplex)
25 MB/sec

Gigabit Ethernet (Full Duplex)
250 MB/sec

10Gb - 2500 MB/s

SAS
1.5Gb - 150 MB/s

3.0Gb - 300 MB/s

6.0Gb - 600 MB/s

NVMe
PCIe Gen 3.0 - 8.0 GT/s per lane

PCIe Gen 4.0 - 16.0 GT/s per lane

NOTE
NVMe bandwidths are dependent on the underlying transport - i.e. PCIe.

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 393

G

Appendix G Sock Test Tool

This appendix provides information about the Sock Test Tool. The topics discussed in this
appendix are as follows:

• “Sock Notes” on page 394
• “Sock Transaction Mode” on page 396

Appendix G Sock Test Tool
Sock Notes

 Medusa Labs Test Tools Suite User’s Guide
Page 394 Version 7.8 July 2023

Sock Notes
“Sock” for TCP and UDP I/O generation shares the same I/O engine and application logic
with “pain” and “maim” because it was implemented by adding the “socket” endpoint type
beneath the existing I/O engine and adding the peer-to-peer association logic (“open”)
above the application logic. This allowed sock to inherit almost all the existing features:
e.g. data patterns and comparison, multiple threads (a thread per connection), common
logging and event and error handling, etc,

On the other hand, this also means that sock has inherited the file (or disk) I/O paradigm
as well which can seem awkward since TCP and UDP I/O generation is done only on the
wire with no persistent backing store.

• “File size”. This is obviously virtual and imaginary. This sets an imaginary I/O area of
given size per thread. The imaginary lay out of this I/O area is as described for pain/
maim.
– “Sequential FOP”. Even though “file size” I/O area is virtual, “FOP” has the same

meaning as with pain/maim.
- Serves to determine the “-i” limit for exit condition
- Serves to determine the “forward” pattern and “reverse” pattern switch point

– “Sequential-access”. Without actual backing store, this is a virtual concept within
the file size I/O area.

– “Random-access”. Without actual backing store, this is a virtual concept within
the file size I/O area.

• “Buffer size, -b”. Think of this as the application-level message boundary.
– A application-level message of “buffer size” length will be packetized by the TCP

I/O stack in a manner that is invisible to “sock”.
– “IOPS” (I/Os per second). Each transfer of “buffer size” length of data is counted

as “1 I/O”. There’s no deterministic way to associate a sock “IOPS” with, say,
“TCP packets per second” (although, if you keep the buffer size sufficiently
small, 1 buffer size transfer can correspond to 1 TCP or UDP packet).

– For UDP, the datagram format limits the maximum datagram size due to the 16-
bit size field (header + payload = 65535 bytes or less). Sock imposes a
maximum buffer size of 63.5KB for UDP traffic.

– “Logical Block size”. Sock uses the arbitrary 512 bytes as the imaginary logical
block size, and, as with pain/maim, all sizes, including “-b” buffer size, must be
an exact multiple of this logical block size. However, “sock transaction” mode
allows a more arbitrary buffer size (see “Sock Transaction Mode” on page 396).

The default read-write mode for sock is always immediate “echo” (or “read-back”) of buffer-
sized amount of data. E.g.

sock -b32k

1 Sock: send 32KB of data to peer

Appendix G Sock Test Tool
Sock Notes

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 395

2 Peer: wait until it receives all 32KB of data from sock; upon completion, echo (send
back) the received 32KB of data to sock.

3 Sock: wait until it receives all 32KB of data from peer; upon completion, perform data
comparison

The application-level message boundary is enforced by both sock and the peer. The buffer
size (“-b32k” in this example) is agreed upon by both sides during the initialization
process. I.e. the peer will not initiate the echo until all 32KB of data is received from sock.

When using in read-only or write-only mode, where the traffic per connection is only in 1
direction, there’s really no application-level message boundary being enforced because
the end effect is that one side is simply sending as quickly as it can while the other side is
consuming as quickly as it can.

When using the I/O profile mode to specify a randomized mix of read and writes
(“-%r/w”), sock enforces the per-read and per-write buffer-sized message boundary.
However, the remote peer side is constantly putting data on the wire and simultaneously
consuming (receiving) data from the wire. This is due to the implementation detail that only
sock is aware of the randomized read/write sequence while the remote peer is not. There-
fore, the remote peer assumes that there may be data from sock to consume any given
moment, and it also assumes sock may be blocked on data to consume any given
moment. The peer is in constantly simultaneous send loop and receive loop in order to
avoid a deadlock.

In CLI, sock is invoked as follows:

• TCP: “sock” or “sock -m30”
• UDP: “sock -m31”
• ASIDE: “pain -m30” and “pain -m31” also works (synchronous I/O – “pain” –

using socket endpoints).

NOTE
In sock, there’s no “initial write-once pass” variety of read-only mode.

Appendix G Sock Test Tool
Sock Transaction Mode

 Medusa Labs Test Tools Suite User’s Guide
Page 396 Version 7.8 July 2023

In the GUI, sock is invoked as a “Socket” configuration type:

Sock Transaction Mode
Sock has a “transaction mode” which is an I/O profile mode that is unique to it – and prob-
ably one of the least used and understood features. It is designed to simulate a typical
application-level transaction loads. A prominent application-level transaction example is
the HTTP “GET” request sent from a Web browser to a Web server, and the Web server
sending back the response with data requested in the URL (e.g. an HTML document). A
SQL query sent from a database client and the data returned by the SQL server is another
example. This 1 pair of “request-response” is 1 application-level transaction. In transaction
mode, sock acts as the server while remote peers act as clients.

In the CLI, the sock transaction mode is invoked with “sock -%T”, and the per-transaction
payload is specified using the “-%r” (request) and “-%w” (response) specifiers.

In the GUI, you create a “TCP App Simulation” configuration.

Figure 82 TCP App Simulation Menu

Appendix G Sock Test Tool
Sock Transaction Mode

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 397

Creating transaction profile involves specifying at least 1 request size, and at least 1
response size, and, optionally, number of transactions per connection.

• Enable transaction mode with “-%T”.
Optionally, specify the session length. “-%T4” says “4 transactions per connection”
(i.e. every 4 transactions, the connection will be closed and a new connection will be
opened for next 4 transactions). A random range can be specified. E.g “-%T4-6” – a
random session length will be chosen from values between 4 and 6 (inclusive). If no
value is specified here, same connection per thread will be used for all transactions
until the end of the test.

• Request size specification: “-%r” (sock, the server, receives requests from remote
peers – the clients).
A simple example is “-%r100@100b”, which specifies “all requests are 100 bytes in
length”.
Another example is “-%r50@100b,r50@1k-2k”, which states “50% of the requests
are 100 bytes in length, the other 50% of the requests can be between 1k and 2k in
length”.
Currently, the sock transaction mode is the only I/O mode in MLTT that allows an
arbitrary buffer size that is not a multiple of “logical block size”. The transaction mode
uses the first 8 bytes of payload data for house-keeping message between sock and
peers; therefore, the minimum buffer size you can use for request or response is
8 bytes.

• Response size specification: “-%w” (sent from sock to remote peers)

Similarly, you specify the probability weight and the size. E.g. “-%w100@32k-64k” (all
responses are between 32K and 64k in length).

Recall that for normal “-%r” and “-%w” profile specification, the sum of all “-%r” and “-%w”
probability weights are used to determine the probability of each spec. However, in
transaction mode, the sum of only the “-%r” weights are used to calculate the request
probabilities, while the sum of only the “-%w” weights are used to calculate the response
probabilities.

Looking at an example of loading a front page of “http://www.bogus-acme.net/” using a
Web browser. It might follow a work flow like this:

• Browser: request via HTTP GET “index.html”
• Server: send “index.html”
• Browser: parses in stream the HTML document which contains about 16 embedded

images

NOTE
Typically, the client initiates the TCP connection to the server in real world applications.
However, sock’s inherent design is for sock to initiate the connection to the peer, and
this transaction mode was built on top of that design. Therefore, in sock transaction
mode, you end up with the “server” initiating connection to the “client”.

Appendix G Sock Test Tool
Sock Transaction Mode

 Medusa Labs Test Tools Suite User’s Guide
Page 398 Version 7.8 July 2023

• Browser: opens 3 more connections (so 4 connections total with the original
connection). With HTTP keep-alive and pipe-lining per connection to reduce
connection latency, the browser fetches 4 images per connection (each requiring a
pair of HTTP GET and response transactions). The images are 16KB to 64KBs in
length. Each GET request is about 100 to 200 bytes in lengths.

If the HTTP GET-response statistics were gathered using the browser debug mode or the
HTTP server logs. The simplest transaction mode simulation profile might look like this to
simulate a repeated fetch of the front page and the embedded images:

sock -t4 -%T4 -%r100@100b-200b -%w100@16k-64k

The 4 threads (“-t4”) creates 4 concurrent connections (transaction pipelines), “-%T4”
reflects about 4 resources that were fetched per connection during the course of loading
the page and embedded resources (images). Each thread will do the following:

• Open connection.
• Wait for a request from peer (client), 100 bytes to 200 bytes in length.
• When all of the request is received, randomly pick a buffer size between 16K and

64K and send the response -> 1 transaction done.
• Repeat for 3 more transactions.
• Close connection
• Open connection
• Do next 4 transactions.
• Close connection.
• etc …

Or, let’s say you break down the transaction details more.

• First GET message was 100 bytes.
• “index.html” document returned was 8KB.
• The 16 GET messages to fetch the images were 150-200 bytes each.
• 4 images were 16KBs each.
• 4 images were 32KBs each.
• 8 images were 64KBs each.

With that, you fine tune the profile as:

sock -t4 -%T4 -%r1@100b,r16@150b-200b -%w1@8k,w4@16k,w4@32k,w8@64k

I.e.

• “-%r1@100b” – first 100 byte GET request
• “-%r16@150b-200b”– the 16 GET requests per image, 150 bytes to 200 bytes each
• “-%w1@8k” – the 8KB “index.html”
• “-%w4@16k” – the 4 images, 16KB each

Appendix G Sock Test Tool
Sock Transaction Mode

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 399

• “-%w4@32k” – the 4 images, 32KB each
• “-%w8@64K” – the 8 images, 64KB each

The corresponding work flow per thread (connection):

• Sock: open connection
• Peer: randomly picks a request size, 100B or a random value between 150B to 200B,

according to the probability specified with “-%r”. Send request.
• Sock: receive request. Randomly pick a response size, 8k, 16k, 32k, or 64k,

according to the probability specified with “-%w”. Send response -> 1 transaction
done.

• etc …

Additional Information
• This is not an emulation. Sock does not actually implement a given protocol (e.g.

HTTP). It also does not try to emulate whatever initialization or hand-shake sequence
a particular application-level protocol might define.

• It is a simulation of load. Profiles can be devised using statistical analysis of actual
application-level transaction logs.
If you want to synthesize a profile using packet-level capture, be sure to aggregate all
packets belonging to each application-level request, and do the same for each
application-level response, rather than looking at packets independently.

• Note how requests and responses are picked randomly – the sock transaction mode
does not try to match a specific request to a specific response as a pair.

• Instead of IOPS, “sock -%T” shows TPS (transactions per second) for request-
response pairs.

Appendix G Sock Test Tool
Sock Transaction Mode

 Medusa Labs Test Tools Suite User’s Guide
Page 400 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 401

H

Appendix H

Journal Verification

This section discusses the limitations of MLTT’s journal verification mode implementation.
Due to these limitations, when using the journal verification feature for the intended use-
case of testing sudden power-loss scenarios, the state of the write operations recorded in
the journal could be ambiguous. A recorded state in the journal of write operations that was
dispatched to the device near the moment of power-loss does not necessarily show if the
write operation succeeded or failed. This section explores in detail the nuances of these
ambiguities and other pitfalls to consider.

Limitations
When MLTT runs I/O to a target with journal recording enabled, each write operation to the
target goes through the following steps:

1. Write in the journal file the details of the write operation that is about to be submitted
to the target. A record for a single write operation contains:

a. I/O offset (LBA)

b. I/O size (“transfer size”)

c. Microsecond timestamp of I/O submission

d. Write state “QUEUED”

2. Submit the I/O request to the OS

3. Wait for the OS to return an I/O completion status for the submitted I/O request

4. Write the updated state in the corresponding record in the journal file - i.e. the record
created and set to “QUEUED” state and written to the journal file in step #1.

Appendix H
Limitations

 Medusa Labs Test Tools Suite User’s Guide
Page 402 Version 7.8 July 2023

a. Write state “SUCCESS” if the I/O completion status returned by the OS indi-
cates that the write was successful

b. Write state “FAIL” if the I/O completion status returned by the OS indicates that
the write had failed

The diagrams shown below illustrate the four steps within the context of the separate
layers of the DUT host: MLTT (application layer), the OS, I/O stack, and the I/O devices
(the test target and the data disk).

When power is suddenly removed from the DUT during any of the four steps, the state of
the write operation, as recorded in the journal, is no longer guaranteed.

This is due to the fact that the journal record updates are disk write operations themselves.
As shown in the four steps above, keeping track of a write operation to the target requires
two writes to the journal file. One write is used before the write operation to the target to
put the record in “QUEUED” state, and another write to the journal file, after the target I/O
completion, that sets the completion status to “SUCCESS” or “FAIL”. The write operation
to the target and the two corresponding writes to the journal file are not executed as one
atomic operation. The three writes executed as three separate, serial write requests made
to the OS.

When the power-loss interrupt occurs, the write status recorded in the journal does not
indicate the precise moment at which the interrupt occurred. Furthermore, the write oper-

Appendix H
Write State Ambiguities

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 403

ations to the journal are just as susceptible to being interrupted as the write operations to
the target device.

Write State Ambiguities
Described below are some possible implications of a recorded write state when MLTT
examines it after rebooting the DUT host following the power-loss interrupt.

If the recorded write state for an attempted write operation to the target is in a “SUCCESS”
state, then MLTT is certain that the previous process had completed all four steps of a jour-
naled write operation to the target and the journal file. However, if the record is in a
“QUEUED” state, it does not necessarily mean that the write operation to the target had
not occurred. Furthermore, if the record is in a “FAIL” state, it does not necessarily mean
that the write operation to the target had failed. Therefore, any recorded write state that is
not “SUCCESS” is ambiguous. In other words, a “QUEUED” or a “FAIL” state does not indi-
cate whether or not the write operation had actually occurred on the target device.

QUEUED State Ambiguities
If the record for an attempted write to the target device is in a “QUEUED” state, the only
certainty is that MLTT had successfully updated the journal file and marked the record as
a “QUEUED” state in step #1. However, any one of the following could have happened
after step #1 depending on when the power-loss interrupt occurred:

A. Power-loss interrupt occurred right after step #1, before MLTT could transition to step
2 to submit the write command and payload data to the OS

B. MLTT transitioned to step #2 and successfully submitted the write request to the OS;
however, power-loss interrupt occurred before the OS submitted the write command
to the device

C. The OS submitted the write command to the device; however, power-loss interrupt
occurred before the device could successfully transfer the payload data to the
medium

D. The device successfully processed the write command and transferred the payload
data to the medium - i.e. a successful write had occurred; however, power-loss inter-
rupt occurred before the device could return the “SUCCESS” status to the OS

E. The device encountered an error – e.g. a media error; however, power-loss interrupt
occurred before the device could return the “FAIL” status to the OS

F. The device passed the “SUCCESS” or “FAIL” status to the OS; however, power-loss
interrupt occurred before the OS could transition to step #3 to return the status to
MLTT

Appendix H
Ambiguity Resolution

 Medusa Labs Test Tools Suite User’s Guide
Page 404 Version 7.8 July 2023

G. MLTT got the “SUCCESS” or “FAIL” status from the OS in step 3; however, power-
loss interrupt occurred before MLTT could transition to step 4 to update the record in
the journal file with the “SUCCESS” or “FAIL” status.

The attempted write command whose record in the journal file is in a “QUEUED” state
could have never reached the device, or could have transferred successfully - i.e. would
have been in “SUCCESS” state if there was no power-loss interrupt, or could have failed
processing at the device - i.e. would have been in a “FAIL” state if there was no power-loss
interrupt.

FAIL State Ambiguities
Under normal operating circumstances, there should be no ambiguity when a write attempt
results in a “FAIL” status. However, if the write attempt was interrupted via power-loss, then
the “FAIL” status does not necessarily indicate that the write command processing on the
device had failed to transfer the data to the medium. As previously stated in the “QUEUED”
state ambiguities explanation, the power-loss interrupt can occur after the successful
transfer of data to the medium but before the device can return the “SUCCESS” status to
the OS.

Any of the following scenarios listed below could happen in the event of a “FAIL” state
depending on the timing of the power-less interrupt:

A. Power-loss interrupt occurs just as the device is about to return the “SUCCESS” or
“FAIL” status to OS.

B. OS detects that the device has gone off line and passes a “FAIL” status back to MLTT
as described in step #3

C. MLTT updates the record for the attempted write with “FAIL” status in the journal file.

In the event of a power-loss interruption, the “FAIL” status in the journal file is a result of
the OS indicating that the device lost connection even though the write command may
have actually succeeded.

Ambiguity Resolution
The ambiguities described above have an impact on how to interpret the data comparison
results during the MLTT journal verification process executed after restoring power to the
DUT.

Appendix H
Ambiguity Resolution

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 405

7.2.0
The first implementation of journal verification included in MLTT 7.2.0 handled the record
states as follows:

A. “SUCCESS” status - There is absolutely no ambiguity with this state. The OS had
returned the “SUCCESS” status, and MLTT had recorded the status in the journal file
for the write command. If the data comparison detects mis-compare for this write,
MLTT raises the “Data Corruption” error.

B. “FAIL” status - MLTT 7.2.0 did not consider the ambiguities of this status. Because
the OS returned the “FAIL” status for the write, MLTT 7.2.0 treated this as if no data
had transferred to the medium and did not perform data verification on these writes.

C. “QUEUED” status - MLTT 7.2.0 attempted no ambiguity resolution on writes in this
state. Data comparison was performed on these writes. If verification was
successful, it was counted as “OK”. However, if the verification failed, instead of
raising a “Data Corruption” error it was reported as “UNDEFINED”.

There are two issues with MLTT 7.2.0. First, by ignoring writes in “FAIL” state and not
performing data verification on those writes, legitimate data corruptions could be missed.

The second issue is the false data corruption error that can occur due to an undetected
overwrite. For example, consider the following sequence of events:

A. Write 16 logical blocks at LBA 1000. This write is recorded as “SUCCESS” in the
journal

B. Perform more writes

C. Around the time of power-loss interrupt, attempts to write 16 logical blocks at LBA
1008.

The first 8 logical blocks of write a C overwrites the last 8 logical blocks of the earlier write
in A. If the later write in C is recorded as “SUCCESS”, MLTT detects the overwrite. The
later write in C is verified, but the earlier write in A, because it was overwritten, is not veri-
fied in order to avoid raising false data corruption.

However, if the later write in C is a “FAIL” state, or if it is in “QUEUED” state with “UNDE-
FINED” verification result, MLTT 7.2.0 did not detect the overwrite in A. This caused a
failed verification on the overwritten data in A and incorrectly raised a “Data Corruption”
error and had to be manually resolved.

7.3.0
MLTT 7.3.0 implements a write detection algorithm for writes in “FAIL” state.

Appendix H
Partial Commits And “--jv-compat”

 Medusa Labs Test Tools Suite User’s Guide
Page 406 Version 7.8 July 2023

A. For writes in a “FAIL” state, if MLTT detects that at least 1 logical block had some
data transferred to the medium successfully, MLTT performs data verification on that
write.

i. If the data verification succeeds, the write is verified as “OK”

ii. If the data verification fails, MLTT raises a data corruption error on the write

B. If MLTT does not detect any logical block with actual data transfer, the write in “FAIL”
state is reported as an “UNDEFINED” verification result

Furthermore, with this implementation, MLTT detects if a write in “FAIL” state had over-
written an earlier write and avoids raising false data corruption errors from undetected
overwrite.

7.4.0 (7.3.0+)
MLTT 7.4.0 implements the write detection algorithm for writes in a “QUEUED” state as
well. This was implemented in a out as a patch to 7.3.0 for some customers. This further
eliminated false data corruptions due to overwrite by “QUEUED” writes.

Partial Commits And “--jv-compat”
The write detection algorithms implemented in 7.3.0 and 7.4.0 provide automatic ambiguity
resolution and proper detection of overwritten previous writes to avoid false data corrup-
tion. The ambiguity resolution detection, however, was not able to detect partial writes that
were interrupted at the time of power-loss.

A common symptom of a write at the time of power-loss interrupt is a partial commit.

Ideally, when a queued write is interrupted by power loss, the correct processing should
result in either none of the logical blocks of the transfer persisted to the medium, or all
logical blocks of the transfer persisted to the medium. However, “partial commits” can also
occur, where some - i.e. not all - logical blocks of the transfer in the command are persisted
to the medium.

With the write detection algorithm in 7.4.0, if MLTT raises a data corruption error on a write
in a “QUEUED” or “FAIL” state, it is actually detecting this partial commit on a write that
occurred at the moment of power loss.

From the application level, a partial commit is a legitimate data corruption because it signi-
fies some existing data being overwritten in an unintended manner. However, at the device
level, whether or not this should be considered a defect is up to the device specification.
For example, if the device specification guarantees an atomic write of N logical blocks at
power-loss and if the interrupted transfer size is greater than N logical blocks, then partial
commit does not violate the device specification.

Appendix H
Pitfalls

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 407

In MLTT 7.2.0, these partial commits were counted as verification “UNDEFINED” rather
than raising a data corruption error. In MLTT 7.4.0, you can restore this data verification
accounting behavior by specifying the “--jv-compat” option (“journal verification compati-
bility”).

Pitfalls
When you abruptly remove power from the DUT host, the system is susceptible to potential
damage:

The OS installation can become corrupt

The journal file can become corrupt

Physical damage can occur (mechanical disk crash, electrical damage to chips, etc)

While the risk is unavoidable when performing power-loss interrupt tests involving abrupt
power removal from the DUT host, there are some measures to mitigate the potential
journal file corruption.

Bypassing the file system and specifying a physical device as the journal “directory” can
help - e.g. “--journal=/dev/sdd”, “--journal=\\.\physicaldrive5”.

The best approach is to put the journal in a storage with a separate power source, for
example:

On a shared network directory. The actual file system host is a NAS or another server.

External USB drive with its own power supply. Combine this with physical drive journal
directory specification.

External storage with its own power supply connected via SAS or FC HBA with onboard
battery. Again, combine this with physical drive journal directory specification.

In MLTT 7.4.0, when specifying the physical drive as the journal directory, during the “--
journal -V” verification run, MLTT creates a copy of the journal file named “mltt.journal-
device-copy” in the current directory. This can be helpful when technical support is needed
because a copy of the journal can be sent for examination.

Appendix H
Pitfalls

 Medusa Labs Test Tools Suite User’s Guide
Page 408 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 409

Glossary

B Big Endian — Big Endian is the order in which bytes are arranged. When using multiple
bytes, the order must be identified. This is similar to identifying the order of bits by LSB and
MSB. The term big endian is a term used by designers of computer processors to
identify data in the following order:

Block — A unit equivalent to the specified buffer (I/O) size. This term is used to describe
the I/Os used to run the length of the specified file size. For example, a 1MB file would be
comprised of 16 total 64k blocks.

Buffer Size (I/O Size) — The size (length) in bytes of the data sequence to be written or
read in an operation. This is the size requested at the application level and does not
necessarily correlate to the actual transfer size sent to the target device. The operating
system or an underlying device driver will likely break a large I/O size down into several
smaller I/O transactions.

D Data Pattern — The payload sent to the target in each I/O operation. Data patterns are
typically a sequence of raw data that result in signal aggravation of specific system
components, bus, or serial architectures.

F File Size — Used in a couple of different ways in the context of MLTT. When the tools are
used on a file system, file size refers to the size of the file used by each worker (thread.)
When the tools are used on a physical or logical device, file size refers to the extent of
space accessed by each worker on the device.

Glossary

 Medusa Labs Test Tools Suite User’s Guide
Page 410 Version 7.8 July 2023

Flag — A flag generically refers to an option passed to an I/O operation (for example, the
cache options available on the -R and -W switches.)

FOP — A file operation is a complete write and read pass through a file or device extent
of the specified file size.

Full-Device Coverage — An I/O test that covers the full length of a target device. The
options -m17, -m18, --full-device all perform full device coverage.
For full device coverage, “file size” given in the command has a different meaning. Inter-
nally, it is how far each thread travels for write before rewinding and doing the reads – then
move on to the next “stroke area”. The “File size = 512KB” shown in the log file is the
512KB given in the command line which is used for the “stroke size”. For non-full device
modes, “file size” == “stroke size”.
“FILE SIZE:” shown in the sample header is the target device size divide by the number of
threads adjusted to fit as multiple of buffer size – it is the total per-thread contiguous area
to be covered, and it should correspond to the LBA range shown per thread.

I Initiator — A computer system running any supported operating system and MLTT.

I/O — A single command (write or read) issued to a device. An I/O is active or pending
from the time the command is issued until status is returned or the command is aborted.

L LBA — Logical block address.

M Miscompare (Data Corruption) — A miscompare occurs when the value of a sequence
of data reads back differently than it was written. At some point in the data transfer, the
data was somehow corrupted so the write data and the read data do not match.
There are two primary types of data corruptions: Write corruption and read corruption.
Write corruption is indicated when every subsequent read of the data produces the same
corrupted data. This is a result of the data being committed to the media in a corrupted
state. In this case, the corruption occurred at some point during the write data transfer.
Read corruption is indicated when the initial read of the data is returned in a corrupted
state, but a subsequent read produces the correct data. The data was corrupted at some
point during the first read. When the data is read back again, the correct data is returned
because the write operation successfully committed the data to media. It is possible for a
follow-up read to return corrupted data and still be a case of read corruption. In a rare case
like this, the follow-up read may return data that is corrupted in a different manner from the
first read.

Q Queue Depth — Queue depth refers to the number of I/O operations (write or read) that
are pending at any given time. An I/O is considered to be pending from the time the
command is sent until status is received or the command is aborted. Generically, the
thread count in synchronous tools such as Pain, correlates to queue depth. In the asyn-
chronous tools, queue depth is specified on the command line.

Glossary

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 411

R Random Access — Random access refers to I/O operations across a device at randomly
selected offsets.

S Secure Erase — The Secure Erase configuration editor erases the data on a drive leaving
it in a clean state after the test process using the configuration is complete.

SMART — Retrieves Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.)
attributes and status from target devices and logs them.

SSD — Solid State Drive

T T10-PI — T10 Protection Information (PI) is a standard for protecting the integrity of data.
The data is validated as it moves end-to-end through the data path from the HBA to the
storage device. This is done by appending an extra 8 bytes of integrity metadata to each
512-byte sector of data. There are four device protection types or levels.

Target — Any physical or logical device that is addressable by an operating system as a
storage device. Examples include a local hard drive, a network share, or a SAN storage
controller. The target is specified to MLTT with the -f switch. The Pain tool also has a
memory-only mode where system memory is used as the target for host bus or memory
subsystem testing.

TCP Incast — A severe failure of TCP throughput caused by the number of servers
exceeding the Ethernet switch limitations to buffer the packets being sent to a client. A
microburst of TCP data is sent from several servers to a single switch resulting in the loss
of data.

Thread — I/O workers are executed in the context of threads within the tool processes.
The number of workers or threads depends on the specific tool. Pain utilizes a single I/O
per thread architecture. Maim uses a single thread per target by default but more can be
specified with -t switch.

Trigger — MLTT has built-in functionality for sending a special write command with a data
sequence that can be used to trigger a protocol analyzer. This feature is enabled with the
-! or -# switches.

Trim — The Trim configuration erases specified data blocks. It may be run as a target
drive pre-conditioning step before running I/O tests.

W Walking Pattern — A walking pattern is a data pattern than increments or decrements a
value a bit at a time, for example, 0x01, 0x02, 0x03...0xFF.

Glossary

 Medusa Labs Test Tools Suite User’s Guide
Page 412 Version 7.8 July 2023

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 413

Index

Symbols
-! Enable Analyzer trigger writes (command line
switch) 281
-? online help switch 204
-@ (specified data pattern) 319
-@ dedup unit (command line switch) 268
-@ read data pattern from a file (command line
switch) 268
-# Enable Analyzer trigger writes (command line
switch) 281
% deduplication 123, 136, 158, 169
-% I/O profile specification (command line switch)
235
% range deviation 108, 140
% slope deviation 108, 140

Numerics
0 SUCCESS exit code 389
1 LOOP_DONE exit code 389
10 CLOSE_ERROR exit code 389
11 READ_ERROR exit code 389
12 WRITE_ERROR exit code 389
13 CORRUPT_ERROR exit code 390
14 INITIAL_ERROR exit code 390
15 REMOVE_ERROR exit code 390
16 UNKNOWN_ERROR exit code 390
17 TIMEOUT_ERROR exit code 390
18 LICENSE_ERROR exit code 390
19 IOCTL_ERROR exit code 390
2 STARTUP_ERROR exit code 389
20 HALT_ERROR exit code 390
3 MALLOC_ERROR exit code 389
4 LOG_ERROR exit code 389

5 SEEK_ERROR exit code 389
6 RETRY_ERROR exit code 389
7 SIZE_ERROR exit code 389
8 OPEN_ERROR exit code 389
9 FLUSH_ERROR exit code 389

A
-a Auto-mode (Catapult switch) 328
-A default session ID (command line switch) 204
about 64
add a new configuration to the test plan button 73
advanced I/O tab 118, 154
advanced mode 140
all threads issue I/Os to same offsets 259
Analyzer triggers 283
-aseconds 328
ATA trim 112, 127, 141, 245
auto mode duration 328

B
-b Log retrieval (Catapult switch) 328
-B sequential I/O direction control (command line
switch) 227
basic mode 140
big endian 409
binary preview tab 136, 158, 169
blink pattern, custom 312
block 409
block size, dedup 123, 136, 158, 169
block, duplicate 123, 136, 158, 169
buffer size 409
burst and static tabs 96

Index

 Medusa Labs Test Tools Suite User’s Guide
Page 414 Version 7.8 July 2023

burst mode interval switch 228
burst mode, TCP coordinated 163, 238

C
-c Clean Directories (Catapult switch) 329
-c commit or flush data (command line switch) 228
-C comparison mode (command line switch) 270
--cap limit I/O throughput (command line switch) 247
Catapult

basis usage 322
scripting 352
switches 327–351

-a Auto-mode 328
-b Log retrieval 328
-c Clean Directories 329
-d Delay Test Start 330
-e Increment Data Pattern 330
-f File system access 331
-g Change directory prefix 332
-h online help 333
-i Include drive 333
-J Limit inquiry ioctls 335
-j prescramble write output data 334
-k Kill tool processes 335
-l Logical drive access 336
-m Minimize tool windows 337
-n Enable prompts 338
-now Run all tests with no windows 338
-o Override drive signature check 339
--off Offline disk 340
--on Online disk 341
-p Physical drive access 341
-q Removes excluded drives 342
-r remote access 343
--restart-service 344
-s Set tool starting offset 345
-t Multi-target Mode 346
-v Verify mode 347
-w Watch mode 348
-x Exclude drive 349
-y Specify grace period 350
-z Debug mode 351

clear directories 329
CLOSE_ERROR exit code 370, 389
collect latency histogram switch 206
comm switch 235
comma-delimited performance log 288
command line

switches 179–285
-! Enable Analyzer trigger writes 281
-? online help 204
-@ dedup unit 268
-@ read data pattern from a file 268
-# Enable Analyzer trigger writes 281
-A default session ID 204
-B sequential I/O direction control 227
-c commit or flush data 228
-C comparison mode 270
--cap limit I/O throughput 247

-D display data the pattern 261
-d test duration in seconds 199
-E compression entropy strength 263
-e custom blink pattern modifier 262
-E custom blink pattern modifier for walking bit
variations 263
-e dedup duplicate block count 262
-F custom blink pattern modifier 263
File Size 250
--full-device run to entire target device 260
-g burst mode interval 228
-h online help 204
-H time to wait before retrying I/O operation 279
--handler specify custom error handling 283
-I invert data pattern 264
-i number of iterations 200
-j data scrambling mode 264
-J data scrambling mode reset interval 265
--journal run I/O test with journaling enabled
276
-L continuous fill 266
-L dedup percentage 266
-L number of times to repeat data pattern 266
-l specify data pattern number 265
--latency-histogram collect latency histogram
206
-m I/O call method mode number 229
-M I/O monitoring mode 280
-n disable data corruption checking 271
-N disable data pattern reversals 267
-o keep target device or file open 254, 256
-O override device base offset 257
-P modify data patterns with phase shift 267
--perf-mode performance-optimized mode 248
-q control displayed information 200
-Q queue depth 230
-R read buffering mode 232
-r read-only mode 231
--reopen-on-retry 285
-ro read-only with one write pass 232
-S second to delay between thread creation 201
-s single sector I/O mode 233
--sample-delay specify sample delay 203
--scsi direct SCSI command for read/write 244
--secure-erase perform secure erase 217
--skip sequential I/O skip size 246, 276
--steady-state determine steady state 205
-T set I/O thread/CPU affinity 202
-t thread count 233
--trim send trim to target 219
-u disable unique I/O marks 271
-U I/O signature timestamp units 205
-V reverify existing data to a specified data pat-
tern 272
-V verify journaled write operations 273
-v verify retry count 280
-W write buffering mode 235
-w write-only mode 234
-x comm 235
-x multi-share mode 1 258
-X multi-share mode 2 259
-y create data pattern based on various lengths
268

Index

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 415

-y random seed value 268
-Y seconds between performance samples 203
-Z license client operation 217

command lines tab 123, 137, 145, 146, 158, 169,
171, 175, 177
comments tab 123, 137, 145, 146, 158, 169, 171,
175, 177
commit or flush data switch 228
comparison mode switch 270
compression entropy strength 263
compression/deduplication 122, 136, 157, 168
configuration chooser window 103
configuration editor 83, 101–177

custom 106–124
format and secure erase 172–175
integrity 125–137
network CLI 171
performance 138–145
socket 147–159
storage CLI 146
TCP App 160–170
trim 176

configuration, selecting or creating 55
configurations area 70
contacting Medusa Labs xvi
continuous fill switch 266
control displayed information switch 200
coordinated burst mode 163, 238
CORRUPT_ERROR exit code 370, 390
create

a new configuration button 70
a new folder button 70
a new test plan button 73
the configuration 55

create data pattern based on various lengths switch
268
custom

configuration editor 106–124
custom blink pattern modifier for walking bit variations
switch 263
custom blink pattern modifier switch 262, 263
custom blink pattern switch 312
cycle length 307

D
-d Delay Test Start (Catapult switch) 330
-D display data the pattern (command line switch)
261
-d test duration in seconds (command line switch)
199
data corruption 410
data pattern 409
data pattern, incrementing a 330
data scrambling mode reset interval switch 265
data scrambling mode switch 264

debug example 368
debug mode switch 351
dedup block size 123, 136, 158, 169
dedup duplicate block count switch 262
dedup percentage switch 266
dedup unit switch 268
deduplication percentage 123, 136, 158, 169
deduplication/compression 122, 136, 157, 168
default session ID switch 204
delay test start 330
deleting test plan history 57
description tab 93
determine steady state switch 205
deviation

% range 108, 140
% slope 108, 140

direct SCSI command for read/write switch 244
direction control mode 227
disable data corruption checking switch 271
disable data pattern reversals switch 267
disable unique I/O marks (signatures) switch 271
display data the pattern switch 261
displaying highest value on graph 96
displaying values on line graphs 97
download website xvi
-dseconds 330
duplicate block 123, 136, 158, 169
duplicate block count switch, dedup 262
duration, test 199, 328

E
-E compression entropy strength (command line
switch) 263
-e custom blink pattern modifier (command line
switch) 262
-E custom blink pattern modifier for walking bit
variations (command line switch) 263
-e dedup duplicate block count (command line
switch) 262
-e Increment Data Pattern (Catapult switch) 330
-ebit_length 312
-Ehold_cycles 313
email Medusa Labs xvi
Enable Analyzer trigger writes switch 281
enable prompts 338
enable random offset alignment 5, 114, 119, 129, 144
entropy strength 122, 136, 157, 168
entropy strength, compression 263
environment variable, PATTERN 330
error log 288, 290

Index

 Medusa Labs Test Tools Suite User’s Guide
Page 416 Version 7.8 July 2023

exclude drive switch 349
exit 62
exit codes 388–390
export

selected configurations 62
selected test plans 61
test summaries 57

F
-F 313
-F custom blink pattern modifier (command line
switch) 263
-f File system access (Catapult switch) 331
file

system access 331
File menu 60
file operation 410
file size 409
File Size (command line switch) 250
firewall 20
flag 410
FLUSH_ERROR exit code 370, 389
FOP 410
format and secure erase configuration editor 172–
175
full device coverage 410
--full-device run to entire target device (command line
switch) 260

G
-g burst mode interval (command line switch) 228
-g Change directory prefix (Catapult switch) 332
general status log 288
generate license .dat file 61
GetKey utility 10, 13, 17
graph

graphing options 94
legends 96
tab 94
view pane 87

GUI window 58

H
-h online help switch 204, 333
-H time to wait before retrying I/O operation
(command line switch) 279
HALT_ERROR exit code 370, 390
--handler specify custom error handling (command
line switch) 283
help menu 64
hexadecimal preview tab 123, 136, 158, 169

highest value on graph 96
histogram tab 100
histogram, latency 107, 139
history

deleting test plan 57
information pane 92
summaries information pane 92
summaries pane 90
tests information pane 92
tests pane 91

I
-i Include drive (Catapult switch) 333
-I invert data pattern (command line switch) 264
-i number of iterations (command line switch) 200
I/O 410

Behavior tab 115, 130, 151
Payload tab 110, 126, 148
signatures 385

I/O call method mode number switch 229
I/O latency (steady state) 108, 140
I/O monitoring mode switch 280
I/O signature timestamp units switch 205
-iinclude_list 333
import

configurations 60
histories 60
test plans 60

include drives switch 333
increment data patterns 330
INITIAL_ERROR exit code 370, 390
initiator 410
install license from file 61
integrity configuration editor 125–137
invert data pattern switch 264
IOCTL_ERROR exit code 370, 390
IOPS (steady state) 108, 140

J
-j data scrambling mode (command line switch) 264
-J data scrambling mode reset interval (command
line switch) 265
-J Limit inquiry ioctls (Catapult switch) 335
-j prescramble write output data (Catapult switch) 334
--journal run I/O test with journaling enabled
(command line switch) 276
Journal tab 108
journaling 276

K
-k Kill tool processes (Catapult switch) 335

Index

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 417

keep target device or file open switch 254, 256
key time limit 12

L
-L continuous fill (command line switch) 266
-L dedup percentage (command line switch) 266
-l Logical drive access (Catapult switch) 336
-L number of times to repeat data pattern (command
line switch) 266
-l specify data pattern number (command line switch)
265
-l0 (specified data pattern) 268, 319
latency histogram configuration 107, 139
latency histogram tab 100
--latency-histogram collect latency histogram
(command line switch) 206
launching the MLTT GUI 50
LBA 410
-Lcycle_length 307
license

key 12
licensing 12, 64
remote checkout 17
requirements 13

license client operation switch 217
LICENSE_ERROR exit code 370, 390
limit I/O throughput switch 247
limitations, system 19
line graphs, displaying values 97
log

comma-delimited 288
error 288, 290
general status 288
performance summary 288, 289

LOG_ERROR exit code 370, 389
logical block address 410
LOOP_DONE exit code 389

M
-m I/O call method mode number (command line
switch) 229
-M I/O monitoring mode (command line switch) 280
-m Minimize tool windows (Catapult switch) 337
Maim 9, 20, 187
Maim tab 95
Maim vs Pain tool comparison 9
main window 58
MALLOC_ERROR exit code 370, 389
MBPS (steady state) 108, 140
Medusa Agent 11
Medusa Labs email xvi

Medusa sample test plans 76
memory utilization 19
Menu bar 59
minimize windows 337
miscompare 410
modify data patterns with phase shift switch 267
multiple sessions offset 258
multi-share mode 1 switch 258
multi-share mode 2 switch 259

N
-n disable data corruption checking (command line
switch) 271
-N disable data pattern reversals (command line
switch) 267
-n Enable prompts (Catapult switch) 338
network CLI configuration editor 171
-now Run all tests with no windows (Catapult switch)
338
number of iterations switch 200
number of times to repeat data pattern switch 266

O
-o keep target device or file open (command line
switch) 254, 256
-O override device base offset (command line switch)
257
-o Override drive signature check (Catapult switch)
339
--off Offline disk (Catapult switch) 340
offset alignment, enable random 5, 114, 119, 129,
144
offset, set start 345
--on Online disk (Catapult switch) 341
online help switch 204
OPEN_ERROR exit code 370, 389
operating system restrictions 21
output, viewing the test 57
override device base offset switch 257

P
-P modify data patterns with phase shift (command
line switch) 267
-p Physical drive access (Catapult switch) 341
Pain 9, 20, 180
Pain tab 95
Pain vs Maim tool comparison 9
PATTERN 330
pattern

editor tab 133, 166

Index

 Medusa Labs Test Tools Suite User’s Guide
Page 418 Version 7.8 July 2023

pattern editor tab 120, 155
patterns tab 119, 133, 154
percent, deduplication 123, 136, 158, 169
perfbaselinetest.bat 289
--perf-mode performance-optimized mode
(command line switch) 248
perform secure erase switch 217
performance

configuration editor 138–145
mode 111, 126, 140, 148, 161
summary log 288, 289
test, running the 56
test, setting up 55

performance-optimized mode switch 248
physical drive access 341, 343
planning group editor 77
prfgrab.exe 289
processor utilization 20
product information xvi
prompts, enable 338
protocol analyzers 47

Q
-q control displayed information (command line
switch) 200
-Q queue depth (command line switch) 230
-q Removes excluded drives (Catapult switch) 342
queue depth 410
queue depth switch 230

R
-R read buffering mode (command line switch) 232
-r read-only mode (command line switch) 231
-r remote access (Catapult switch) 343
random access 411
random offset alignment, enable 5, 114, 119, 129,
144
random seed 122, 136, 157, 168
random seed value switch 268
range deviation 108, 140
read buffering mode switch 232
read data pattern from a file switch 268
READ_ERROR exit code 370, 389
Read/Write, Read, and Write tabs 95
read-only mode switch 231
read-only with one write pass switch 232
remote check, license 17
remote checkout 13
REMOVE_ERROR exit code 370, 390
--reopen-on-retry (command line switch) 285

requirements
license 13
system 19

--restart-service (Catapult switch) 344
restrictions, operating system 21
RETRY_ERROR exit code 389
reverify existing data to a specified data pattern
switch 272
-ro read-only with one write pass (command line
switch) 232
run I/O test with journaling enabled switch 276
run to entire target device switch 260
running the performance test 56

S
-S second to delay between thread creation
(command line switch) 201
-s Set tool starting offset (Catapult switch) 345
-s single sector I/O mode (command line switch) 233
sample test plans 76
--sample-delay specify sample delay (command line
switch) 203
saving graphs 98
scripting, Catapult 352
--scsi direct SCSI command for read/write (command
line switch) 244
SCSI unmap 112, 127, 141, 245
SE operation tab 172
second to delay between thread creation switch 201
seconds between performance samples 203
secure erase 411
--secure-erase perform secure erase (command line
switch) 217
seed, random 122, 136, 157, 168
SEEK_ERROR exit code 389
selecting the configuration 55
selecting the target 55
send trim to target switch 219
sequential I/O direction control switch 227
sequential I/O skip size switch 246, 276
set I/O thread/CPU affinity switch 202
setting up performance test 55
single sector I/O mode switch 233
SIZE_ERROR exit code 389
size, dedup block 123, 136, 158, 169
--skip sequential I/O skip size (command line switch)
246, 276
slope deviation 108, 140
SMART 411
SMART monitoring 260
socket configuration editor 147–159

Index

 Medusa Labs Test Tools Suite User’s Guide
July 2023 Version 7.8 Page 419

-soffset_amount 345
solid state drive 411
specified data patterns (-y, -IO, -@) 319
specify custom error handling switch 283
specify data pattern number switch 265
specify sample delay switch 203
speedometers pane 88
SSD 411
STARTUP_ERROR exit code 370, 389
steady state 107, 139
--steady-state determine steady state (command line
switch) 205
Stop button 56
storage CLI configuration editor 146
strength, entropy 122, 136, 157, 168
SUCCESS exit code 389
summary, exporting test 57
support xvi
switches, Catapult 327–351
switches, command line 179–285
system limitations 19
system memory 19
system requirements 19

T
-t Multi-target Mode (Catapult switch) 346
-T set I/O thread/CPU affinity (command line switch)
202
-t thread count (command line switch) 233
T10-PI 218, 411
target 411

categories section 66
considerations 46
selecting the 55

targets area 65
TCP

App configuration editor 160–170
application transaction mode 237
coordinated burst mode 163, 238
incast 163, 236, 238, 241, 411

technical assistance xvi
Test

Analysis tab 59, 89
Log tab 99
Planning tab 59, 65
Running tab 59, 84

test
list and statistics pane 85
output, viewing the 57
plan browser 74
plan editor 80
plan history, deleting 57
plan, sample 76
planning 63
plans area 71

running 63
summaries, exporting 57

test duration in seconds switch 199
text view pane 86
thread 411
thread count switch 233
time limit, license 12
time to wait before retrying I/O operation switch 279
TIMEOUT_ERROR exit code 370, 390
tool comparison, Pain vs Maim 9
trigger 411
triggers, Analyzer 283
Trim 176
trim 411
trim configuration editor 176
trim operation tab 176
--trim send trim to target (command line switch) 219

U
-u disable unique I/O marks (command line switch)
271
-U I/O signature timestamp units (command line
switch) 205
UNKNOWN_ERROR exit code 370, 390
update remote systems 61
user’s guide 64
utilization, processor 20

V
-V reverify existing data to a specified data pattern
(command line switch) 272
-V verify journaled write operations (command line
switch) 273
-v Verify mode (Catapult switch) 347
-v verify retry count (command line switch) 280
verify journaled write operations 109, 273
verify mode switch 347
verify retry count switch 280
view menu 62
view targets button 65
viewing the test output 57

W
-w Watch mode (Catapult switch) 348
-W write buffering mode (command line switch) 235
-w write-only mode (command line switch) 234
walking pattern 411
watch mode switch 348
website xvi

Index

 Medusa Labs Test Tools Suite User’s Guide
Page 420 Version 7.8 July 2023

windows, minimize 337
workstation name 288
write buffering mode switch 235
WRITE_ERROR exit code 370, 389
write-only mode switch 234
WS_NAME 288
-wwait_seconds 348

X
-x Exclude drive (Catapult switch) 349
-x multi-share mode 1 (command line switch) 258
-X multi-share mode 2 (command line switch) 259
-xexclude_list 349

Y
-y create data pattern based on various lengths
(command line switch) 268
-y random seed value (command line switch) 268
-Y seconds between performance samples comm
(command line switch) 203
-y Specify grace period (Catapult switch) 350
-ypattern_value (specified data pattern) 319

Z
-z Debug mode (Catapult switch) 351
-Z license client operation (command line switch) 217
zooming in/zooming out on graphs 98

VIAVI Solutions

North America: 1.844.GO VIAVI / 1.844.468.4284

Latin America +52 55 5543 6644

EMEA +49 7121 862273

APAC +1 512 201 6534

All Other Regions: viavisolutions.com/contacts

Version 7.8
July 2023
English

	About This Guide
	Purpose and Scope
	Assumptions
	Related Information
	Conventions
	Technical Assistance
	Medusa Labs Test Tools Product Information and Assistance

	Chapter 1 About Medusa Labs Test Tools Suite
	What’s New in this Medusa Labs Test Tools Version
	What Medusa Labs Test Tools Does
	How Medusa Labs Test Tools Work
	Pain and Maim Test Tools
	Sock Test Tool
	Catapult Test Tool Automation
	FindLBA Utility
	GetKey Utility
	Medusa Agent
	Licensing
	Licensing Requirements
	Licensing Administration
	Report Server State
	Report Client State
	Client User Configuration Property
	Client Auto Check-in Configuration Property
	Client Subnet Check-in
	Proxy Client Subnet Check-in
	License Server Pull
	License Server Net Sync

	Remote Checkout
	To return a remote checkout:

	Migrating the MLM License Server

	System Requirements
	System Limitations
	Memory Utilization
	Processor Utilization
	Firewalls
	Operating System Restrictions
	Windows User Account Control (UAC) Restrictions

	MLTT Basics
	Prerequisites
	Fundamental Concepts in MLTT
	MLTT Storage Target Types
	Physical
	Logical
	File System

	I/O Area Size
	Sequential-Access I/O (General Description)
	Asynchronous Sequential-Access I/O, Burst Queueing
	Asynchronous Sequential-Access I/O, Continuous Queueing
	Random-Access I/O (General Description)
	Some Additional Considerations

	Sequential-Access vs. Random-Access I/O
	Reads, Writes, And Data Integrity Checking

	Testing Concepts
	Target Considerations
	Protocol Analyzers
	TraceView Support

	Chapter 2 Using the Graphical User Interface
	Using the Medusa Labs Test Tools GUI
	Launching the Medusa Labs Test Tools
	Quick Start Overview

	Setting Up a Performance Test
	Selecting the Target
	Selecting or Creating the Configuration
	Running the Test
	Viewing the Test Output, Exporting Test Summaries, and Deleting Test Plan History

	Medusa Labs Test Tools GUI
	GUI Overview
	Medusa Labs Test Tools Menu Bar
	Test Planning Tab
	Test Running Tab

	Medusa Labs Test Tools Menus
	File Menu
	Import Test Plans...
	Import Configurations...
	Import Histories...
	Update Remote Systems...
	Install License From File...
	Generate License .dat File...
	Export Selected Test Plans...
	Export Selected Configurations...
	Export Selected Histories...
	Exit

	View Menu
	Test Planning
	Testing Running
	Licensing...

	Help Menu
	User’s Guide
	About

	Test Planning Tab
	Targets Area
	Targets View Buttons
	Target Categories Section

	Configurations Area
	New Folder Button
	New Configuration Button
	Configurations section

	Test Plans Area
	Test Plans Directory Pane
	Test Plans Editor Pane

	Test Running Tab
	Test List and Statistics Pane
	Text View Pane
	Graph View Pane
	Speedometers Pane

	Test Analysis Tab
	History Summaries Pane
	History Tests Pane
	History Information Pane
	Description Tab
	Graphs Tab
	Test Log Tab
	Latency Histogram Tab

	Chapter 3 Using the Configuration Editors
	Using the GUI Configuration Editors
	New Configuration Button
	Configuration Chooser Window

	Configuration Editors
	Test a Range Controls

	Custom Configuration Editor
	General Tab
	Steady State

	Journal Tab
	I/O Payload Tab
	I/O Behavior Tab
	Advanced I/O Tab
	Patterns Tab
	Pattern Editor Tab
	Hexadecimal Preview Tab
	Binary Preview Tab

	Comments Tab
	Command Lines Tab

	Integrity Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Patterns Tab
	Pattern Editor Tab
	Hexadecimal Preview Tab
	Binary Preview Tab

	Comments Tab
	Command Lines Tab

	Performance Configuration Editor
	General Tab
	Steady State

	I/O Payload Tab
	Comments Tab
	Command Lines Tab

	Storage CLI Configuration Editor
	Command Line Tab
	Comments Tab

	Socket Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Advanced I/O Tab
	Patterns Tab
	Pattern Editor Tab
	Hexadecimal Preview Tab
	Binary Preview Tab

	Comments Tab
	Command Lines Tab

	TCP App Simulation Configuration Editor
	General Tab
	I/O Payload Tab
	I/O Behavior Tab
	Patterns Tab
	Pattern Editor Tab
	Hexadecimal Preview Tab
	Binary Preview Tab

	Comments Tab
	Command Lines Tab

	Network CLI Configuration Editor
	Command Line Tab
	Comments Tab

	Format and Secure Erase Configuration Editor
	SE Operation Tab
	Comments Tab
	Command Lines Tab

	Trim Configuration Editor
	Trim Operation Tab
	Comments Tab
	Command Lines Tab

	Chapter 4 Using the Command Line Switches
	Syntax
	Command Line Switch Conventions

	Basic Switches
	Target Specification
	-f Target

	I/O Size
	-b Buffer size
	file_size

	Queue Depth
	-Q Queue_Depth (Maim only)

	Thread Count
	-t Thread Count

	Data Pattern
	-l Data Pattern

	Concurrent Workloads and Workload Groups
	Concurrent Workloads
	Workload Group Global Options
	First Workload of the First Workload Group
	Illegal Workload Options

	Sequential Workload Groups
	Rules and Limitations

	Switches by Category
	General Switches
	-d Test Duration in Seconds
	-i Number of Iterations
	-q Control log Output Level
	-S Seconds to Delay Between Thread Creation
	-T Set I/O Thread/CPU Affinity
	-Y Seconds Between Performance Samples
	--sample-delay Specify Sample Delay
	-h Online Help
	-A Override Default Session ID
	-U I/O Signature Timestamp Units
	--steady-state Determine Steady State
	--latency-histogram Collect Latency Histogram
	--log-utc Coordinated Universal Time(UTC) Timestamps
	--x-csv Per-Sample Period CSV Additions
	--io-trace I/O Operation History Trace and Payload Data Logging
	--io-trace-dir Specify a Directory for I/O Trace
	--io-trace-size Specify Maximum Number of I/O Traces
	--io-trace-on-error Specify Action on Error for I/O Trace
	--io-trace-perf Specify Write Types for I/O Trace
	--io-trace-parse Parse I/O Traces
	--io-trace-output-csv Parse I/O Trace into CSV File
	--io-trace-play Streaming a Trace to a Target
	--io-trace-no-prescan Opting out of Initial Prescan
	. Running Concurrent workloads
	- Running Sequential Work Groups

	Stand-alone Switches
	-Z License Client Operation
	--secure-erase Erase the Target Device and Exit
	--trim Send Trim to Target
	--nvme-erase NVMe Format NVM and Sanitize Administration Commands
	--nvme-get-log NVMe Get Log
	--nvme-get-features Get NVMe Features
	--nvme-set-features NVMe Set Features
	--nvme-reset-zone ZNS Zone Reset

	I/O Characteristic Switches
	-b Buffer size
	-B Sequential I/O Direction Control
	-c Commit or Flush Data
	-g Burst Mode Interval
	-m I/O Call Method Mode Number
	-Q Queue Depth (Maim only)
	-r Read-only Mode
	-ro Read-only with One Write Pass
	-R Read Buffering Mode
	-s Single Sector I/O Mode
	-t Thread Count
	-w Write-only Mode
	-W Write Buffering Mode
	-% I/O Profile Specification
	Zoned I/O Distribution
	--ptio SCSI/NVME Pass-through I/O Mode
	--skip Sequential I/O Skip Size
	--cap Limit I/O Throughput
	--perf-mode Performance-optimized mode
	--nvme-io NVMe Commands
	--random-x-map Random Access Map
	--io-repeat I/O Repeat Count

	Target Related Switches
	File Size
	--f Target
	--file-per-thread Create Target Files for each Thread
	--target-partition Target Partition Range
	-o Keep Target Device or File Open
	-O Override Device Base Offset
	-x Starting Offset
	-X Shared Offset Mode - All Threads Issue I/Os to the Same Offsets
	--full-device Run to Entire Target Device
	--smart S.M.A.R.T Monitoring

	Data Pattern Related Switches
	-D Display the Data Pattern
	-e Custom Blink Pattern Modifier/Duplicate Block Count
	-E Custom Blink Pattern Modifier (walking bit variations)/ Entropy Strength
	-F Custom Blink Pattern Modifier
	-I Invert Pattern Mode
	-j Data Scrambling Mode
	-J Data Scrambling Mode Reset Interval
	-l Specify a Data Pattern Number
	-L Number of Times to Repeat the Data Pattern Cycle/ Continuous Fill/Dedup %
	-N Disable Data Pattern Reversals
	-P Modify Data Patterns with a Phase Shift
	-y Create Data Patterns Based on Various Lengths/Random Seed Value
	-@ Read Data Pattern from a File/Deduplication Unit

	Data Integrity Related Switches
	-C Comparison Mode
	-n Disable Data Corruption Checking
	-u Disable Unique I/O Marks
	-V Reverify Existing Data to a Specified Data Pattern/Verify Journaled Write Operations
	-Vw Write-once for Reverification
	--journal Run I/O test with journaling enabled
	--journal-flush-once Journal Only Flushed Once
	--jv-compat

	Error Related Switches
	-H Time to Wait Before Retrying an I/O Operation
	-M I/O Monitoring Mode
	-v Verify/Retry Count
	-! (or -#) Enable Analyzer trigger writes
	--handler Specify Custom Error Handling
	--reopen-on-retry

	Chapter 5 Logging and Output
	Overview
	Status Log
	Performance Summary Log
	Comma-delimited Performance Log
	Error Log
	I/O Operation History Trace and Payload Data Logging
	Trace Events

	NVMe Identify and NVMe Get Log
	NVMe Identify
	NVMe Get Log

	SMART Log
	Sample Logs
	Sample Error Log
	Sample Status Log

	Chapter 6 Data Pattern Reference
	Overview
	Designed For Signal Aggravation
	Customized Patterns
	Static Data Patterns versus Dynamic Data Patterns
	Continuously Changing I/O Stream

	Customizing Data Patterns
	Using Pattern Modifiers
	-L Number of Times to Repeat the Data Pattern Cycle
	-I Invert Pattern Mode
	-P Modify Data Patterns with a Phase Shift

	Custom Blink Pattern (-l99)
	-e Length of Blinking Bits
	-E Set Custom Blink Hold Cycles (before transition for bit-walking variations)
	-F Reset custom blinking pattern to the initial pattern value each cycle

	Deduplication/Compression Pattern (-l80)
	Compression-only Testing
	Deduplication-only Testing
	Deduplication and Compression Testing
	-E Entropy Strength
	-L Deduplication Percentage
	-@ Deduplication Unit
	-e Duplicate Block Count
	-y Random Seed Value

	Specified Data Patterns
	-y Create Data Patterns Based on Various Lengths
	-l0, -@file_name Read Data Pattern from a File

	Chapter 7 Catapult Test Tool Automation
	Basic Usage
	Drive Listing Examples

	Catapult Switches
	-a Auto-mode
	-b Log retrieval
	-c Clean Directories
	-d Delay Test Start
	-e Increment Data Pattern
	-f File system access
	-g Change directory prefix
	-h online help
	-i Include drive
	-j Prescramble write output data
	-J Limit inquiry ioctls
	-k Kill tool processes
	-l Logical drive access
	-m Minimize tool windows
	-n Enable prompts
	-now Run all tests with no windows
	-o Override device exclusions
	--off Offline disk
	--on Online disk
	-p Physical drive access
	-q Removes excluded drives
	-r remote access
	--restart-service Restarts the Medusa agent
	-s Set tool starting offset
	-t Multi-target mode
	-v Verify mode
	-w Watch mode
	-x Exclude drive
	-y Specify grace period
	-z Debug mode

	Scripting
	Example 1 (Windows batch file)
	Example 2 (Windows batch file)

	Appendix A Data Pattern Numbers
	Appendix B Test Guidelines and Examples
	A Word About Hardware Configurations
	Maximum Bandwidth Stress Testing
	Examples Using Pain:
	Examples Using Maim:

	Performance Testing
	High Bandwidth Example:
	High IOPS Example:
	General Guideline:

	Data Integrity Testing
	Examples:
	Backup or Snapshot Testing
	Example:

	Maximum Queue Testing
	Example:

	Full Coverage Target Testing
	Example:

	Appendix C Debug Example
	Overview
	Default Trigger Value
	TRIGGER.OUT marks - for CACA trigger

	Locating the Trigger Data Frame in TraceView
	Finding the Write and Read Operations
	Error Log Created
	Finding the Corrupt Data Frame
	Using I/O Signatures
	Using the FindLBA Utility
	Example 1
	Example 2

	Appendix D I/O Signatures
	Offsets
	Example of I/O Signature:

	Appendix E Exit Codes
	Using Exit Codes
	Exit Code Descriptions

	Appendix F Architecture Bandwidths
	PCI
	PCI-X
	PCI-Express
	Fibre Channel (Full Duplex)
	Fast Ethernet (Full Duplex)
	Gigabit Ethernet (Full Duplex)
	SAS
	NVMe

	Appendix G Sock Test Tool
	Sock Notes
	Sock Transaction Mode
	Additional Information

	Appendix H
	Limitations
	Write State Ambiguities
	QUEUED State Ambiguities
	FAIL State Ambiguities

	Ambiguity Resolution
	7.2.0
	7.3.0
	7.4.0 (7.3.0+)

	Partial Commits And “--jv-compat”
	Pitfalls

	Glossary
	Index

