VIAVI Solutions

Data Sheet

VIAVI Trilithic DSP Series Meters

Value-based models for every technician work group

The DSP Series Meters

As cable networks migrate to newer technologies, and anticipating an eventual move to DOCSIS 3.1 and 1.2 GHz downstream range for all meters, the complete VIAVI meter line provides these installation and service measurement capabilities for cable service providers and contractors. These robust and compact DOCSIS 3.1 meters are known for their long battery life.

The 180 DSP-Lite starts the line with basic measurement capabilities, including levels, and DOCSIS 3.1 OFDM signal quality.

Key Features

- 1.25 GHz Frequency range
- Meters with DOCSIS[®] 3.1 RF measurements and with cable modem service tests
- Auto-discovery of channel plans

Applications

- Return spectrum analysis (4 to 205 MHz)
- Level, C/N; QAM and OFDM* measurement
- Complete channel plan scan with tilt measurement
- Advanced, yet simple testing and troubleshooting with channel plan auto discovery
- More efficient work flow with StrataSync for faster testing that complies with company/contractor processes

Benefits

- Provides cable installers and field technicians a full complement of RF measurement functions
- Color touchscreen reduces installer entry errors and improves decision making
- Multiple tests in a single autotest app provide a convenient way to standardize tech processes and procedures
- Powerful troubleshooting tools to improve overall system health

* DOCSIS 3.1 option equipped meters only

Basic Signal Level Meter – 180 DSP

A dependable tool for basic cable installation needs, the 180 DSP signal level meter features a compact rugged design, easy-to-use color user interface and an unparalleled selection of digital and analog channel measurements, including DOCSIS 3.1 OFDM signal analysis.

When testing or troubleshooting within analog, digital or mixed analog/digital transmission systems, the 180 DSP is the perfect tool for measuring analog and QAM carrier power levels. Additionally, for QAM carriers (including deep interleave) the 180 DSP provides Hum¹, Constellation, Equalizer Tap, MER and BER measurement displays. This allows users to quickly analyze 64 and 256 QAM downstream channels for quality verifications or to locate impairments with the meter, all right out of the box.

The 180 DSP performs an extensive set of OFDM signal measurements to enable testing in DOCSIS 3.1 deployments. In addition to average level, peak-to-valley, and in-channel tilt, the meter displays PLC constellation, level, pre/post BER, MER, decoder stress over time, and a summary for the default profile.

With its channel plan scan feature, the 180 DSP displays the frequency response of the entire channel lineup. This measurement displays a color-coded bar graph of each channel or your favorite channels in the active channel plan. The channel plan scan also includes on-screen markers that can be adjusted to perform a tilt measurement.

The 180 DSP comes standard with the ability to display the full return spectrum from 4 to 205 MHz. The spectrum display provides peak measurements, color-coded markers, and delta measurements. This feature also includes adjustable detector modes which are useful for capturing bursty transient noise. The 180 DSP optionally performs forward spectrum measurements from 5 MHz to 1,250 MHz².

Installation Troubleshooting and Certification – 180 and 360 DSP

180 and 360 DSP signal level meters are specifically tailored for fast installation RF signal testing and troubleshooting. These meters come equipped with all needed analog and digital signal measurements to ensure the highest quality installation—and at a price point that makes it feasible for system operators to outfit their entire fleet.

Designed for installer, contractor and service tech challenges, the 180 and 360 DSP help simplify decision making and streamline standardization processes and procedures, while improving tech efficiencies and the overall health of the entire system.

The 180 and 360 DSP feature intuitive, color touchscreen interfaces, simple pass/fail indicators, and autotest apps to streamline basic RF installation and make the installer's job easier. These meters are built with the technician in mind—from the quick charge time to the unique, built-in LED flashlight and glow in the dark keypad for those dark, cramped spaces.

The 180 and 360 DSP meters make basic RF installation a breeze for installers and contractors. Techs will appreciate the advantages of a quick and efficient device, featuring a flexible and easy-to-operate interface inspired by modern smart devices. These next-gen fulfillment tools come equipped with powerful troubleshooting tools and simplified autotest apps to perform triple-play tests, set home certifications standards, and measure both Analog and Digital signals. The 360 DSP has built-in DOCSIS 3.1 Modem, Ethernet, and WiFi communications capabilities, and test results can be easily to StrataSync for near real-time views of measurement data.

¹Hum is optional on 180 DSP-Lite

Maintenance Meter – Plant Maintenance – 1G DSP

Maintaining the health of your plant can now be achieved with one instrument, including everything needed for systemwide testing. Eliminate the need for multiple instruments—the 1G DSP conveniently combines CATV, DOCSIS 3.1 Cable Modem, Gigabit Ethernet, and Optical testing, and save capital expenses at the same time.

Designed to meet maintenance technician challenges, this meter has powerful troubleshooting tools for experienced techs, yet simplifies decision making and streamlines standard processes and procedures for the more novice tech. This results in more efficient technicians, greater overall system health, and allows techs to continue using the same meter as they become more experienced.

The 1G DSP can achieve throughput testing speeds of up to a gigabit/sec using a dedicated Ethernet test port or the internal cable modem.

The 1G DSP can perform either roundtrip or one-way Key Parameter Index (KPI) measurements for full Ethernet service testing. With constant payload testing for Layer 2 through Layer 4, the 1G DSP is built for verification of both Ethernet Service Level Agreement (SLA) and Quality of Service (QoS) metrics.

For optical power measurements, the 1G DSP can be optionally equipped with a single input port for measurement of single mode (1310 nm, 1490 nm, and 1550 nm) wavelengths with interchangeable FC, SC, and ST style adapters.

A high-quality, accurate, precise TDR is an option for the 1G DSP. When a TDR test is needed, the tech can switch to an alternate test mode on the meter instead of going back to the truck (or office) to get an application-specific instrument (TDR).

The 1G DSP features a large, high resolution, ultra-bright, color touchscreen interface, simple pass/fail indicators, and powerful autotest apps to streamline troubleshooting and make the technician's job easier. Everything about this next-gen meter was built with the technician in mind—from remote control of the meter via a web browser, to the long battery life, quick charge time, and glow in the dark keypad for those dark, cramped spaces. This meter also includes a visual fault locator (VFL) that makes it easy for the technician to locate and identify loss points in patch cords, patch panels, and enclosures.

StrataSync

Keeping track of test equipment inventory is typically a challenge for field operation groups. Asset management includes types of instruments, firmware versions, options, and automated test configurations that match standardized methods and procedures. The challenge increases every time a change occurs. Without a means to efficiently collect and analyze test data, valuable information about network health is missed.

StrataSync is a cloud-based, hosted solution that manages assets, configurations, and test data for VIAVI instruments to ensure they are all equipped with the latest software and installed options. It manages inventory, test results, and performance data from anywhere with browser-based ease—improving both technician and instrument efficiency. Operators can then leverage data from the entire network for results analysis and to inform and train the workforce.

There are many options for syncing VIAVI DSP series meters with StrataSync, including Ethernet, DOCSIS, or with WiFi (consider the many WiFi hotspots) when a data connection is established. Syncing on a consistent schedule becomes more important as techs are required to upload data to show that all tests for a service activation were performed and show that all tests passed. This provides confidence to the service provider that the installation was performed successfully, and in contractor situations helps to avoid bill-backs due to customer complaints post-installation.

Workforce management is more objective with StrataSync. Supervisors can verify compliance with methods and procedures, and will know which techs need coaching or further instruction. Trend analysis allows identification of problems like: incorrect test configurations or limits causing unnecessary retests; geographic clusters of failures that point to outside plant problems; workgroup-wide issues that may indicate a training deficit.

StrataSync provides insight into installation quality and trends, while enabling methods and procedures compliance verification. This leads to higher customer satisfaction as techs get the job done right the first time, reducing repeat visits.

Workflow

With the workflow option in StrataSync, each tech's meter can be updated with a day's work orders, enabling a tech to choose the work order that matches the current task, perform the prescribed tests, and close it out with data uploaded for management—with a smooth, simple process. Get confirmation that techs and contractors have performed the work by verifying the reports in StrataSync.

The test process is smoother and easier for techs with workflow enhanced with smooth work order integration and closeout. The StrataSync workflow option enables simpler compatibility with service operator and contractor work order systems. This means that test flow, pass/fail thresholds, and work orders can be relayed to the DSP, enabling the tech to select an assigned work order and perform tests to prescribed thresholds as guided through the flow. The work order related test data can then be included in a report and uploaded for management.

An example workflow is as follows:

- 1 Deploy profiles/configuration files to instruments via sync (as part of standard procedure)
- 2 Create work orders and reference techld and test profile
- 3 Deploy work order to instrument (with test profile reference)
- 4 Sync to StrataSync with work order info after testing and saving CDM reports (JSON)
- 5 View test results & associated work order on StrataSync and/or (contractor) transfer to customer

Fiber

Broadband CATV networks and broadband triple-play services often rely on fiber networks. For point-to-point fiber installations such as FTTC or business connections, field technicians can use the DSP meter together with the VIAVI MP-60 or MP-80 USB optical power meter (OPM) to ensure that fiber cable attenuation meets system requirement performance and is ready to survive network aging and environmental impacts. In combination with a VIAVI SmartPocket optical laser source (OLS), the DSP meter equipped with an MP-60 or MP-80 OPM can automatically perform optical link loss measurement at different wavelengths—resulting in a faster and more comprehensive fiber test.

Using the P5000i optical fiber scope, technicians can test the #1 cause for troubleshooting in optical networks contaminated fiber connectors. The P5000i provides pass/fail analysis based on user-selectable acceptance profiles.

Fiber Test	What It Tests	Why It Is Needed
Optical fiber scope	Pass/fail against a predefined profile; includes dual magnification	Contaminated fiber connectors are the #1 cause for troubleshooting in optical networks
Optical power level	Optical power level with pass/fail and reference values	Optical loss must be within budget at ONU site

Basic Operational Features

Easy Setup and Configuration

 Global configuration settings can be applied to all users of the device, while other settings can be tailored to suit each user

leter Configurat	tion	
Global	User	Interface
Measure	Channel Plan	Limit Set
Ethernet	Cable Modem	Wi-Fi
Bluetooth	GigE	Net Favorites
bal Settings (All Users)	

• Setting adjustments can be locked out using the ViewPoint software

Job Management

- Create and close out your jobs from this screen
- Shows what channel plan and how many tests have been run on a particular job

Name	Status	Tests	Channel Plan	
w20140822113149	Open	0	tap	
w20140822113154	Open	0	outlet	
w20140822113205	Open	0	ground block	
w20140822113209	Open	0	ground block	
w20140822113213	Open	0	tap	
w20140822113218	Open	0	outlet	
w20140822113145	Closed	0	outlet	
w20140822113159	Closed	0	tap	

Intuitive File Management

- Intuitive File Explorer that displays the files that are stored in the meter
- View and sort files by; name, type, size and date/time saved
- File Explorer
 Name
 Type
 DataTime
 Size

 Address
 327093-334 04096/33
 0.9 KB
 0.9 KB

 Jonne Cert
 autotose
 2013-124 802509
 2.7 KB

 CPE
 limit
 2014-01-08 3302260
 1.5 KB

 CPE
 limit
 2013-01-18 1052509
 2.7 KB

 Calcheck
 limit
 2013-07-15 1055511
 0.4 KB

 Calcheck
 ppg
 2014-02-19 0055717
 4.4 3 KB

 Tapa press Check
 plan
 2013-07-15 1365521
 3.2 KB

 Calcheck
 plan
 2014-02-07 21:3319
 7.3 KB

 Foreg
 plan
 2014-02-07 21:3319
 7.3 KB

 Forego
 conting
 cold-02-07 21:3319
 7.3 KB

 Forego
 conting
 2014-02-07 21:3319
 7.3 KB

 Forego
 conting
 2014-02-07 21:37:09
 0.8 KB
- Export files to USB, delete files, database backup and restore, and save system logs

Remote Access

- Remotely access the meter using any active network connection
- Control and monitor almost any function of the meter from your PC, smart phone, or tablet

Simple Network Management

- Choose between Ethernet, WiFi, GigE, or cable modem connection methods
- Provides connection details such as MAC, IP, gateway and DNS

Multiple User Profiles

- Allows up to 5 technicians to share a 1G DSP
- Each technician has his or her own profile, which loads in

completely different sets of channel plans, autotests, etc.

Convenient Firmware Updates

 Easily update the meter firmware through the web or via USB to ensure you always have the latest features

Update Firmware 2.4 V Current New Package V1.50.80.7166 Her Karnel 2.6.36-40.50.80.30.1 Her Library V1.50.80.7166 Her Marking V1.50.80.7166 Her Library V1.50.80.7166 Her Marking V1.50.80.71.81 Her Calle Modern US3AV3.31.8.1 Her Microstary Leges RaDATHE TERMS AND COMDITIONS OF THIS LICENSE ARREEMENT CAREFULLS REFORE CONTINUES (WITH TIST REMARKED HISTALL TIDE INFORMANCE HISTALL TIDE INFORMANCE CONTINUES CO

Web Browser

- The web browser allows you to view your favorite websites
- The web browser displays a default

Web Test Yahoo Google	

home page which includes a list of six favorite websites. These favorites can be set to any IP address or URL using the ViewPoint WFM Module software

Level Measurements

Single Frequency Pilot Carriers

 Shows a bar graph for the level of the selected single frequency carrier channel

CH 83

Pass

Provides Pass/Fail
 <u>Display Channel Plan Limit Set</u>
 results for Level and Carrier-to-Noise measurements
 when compared against user-defined limit sets

SQ-QAM Carriers

 Shows a bar graph for the level of the selected digital SC-QAM channel

Pre-BER, Post-BER, and MER measurements when compared against user-defined limit sets

OFDM Carriers*

 Shows the Physical Link Channel (PLC) frequency and a bar graph for the level of the selected digital OFDM channel

Ref 10 dBmV	10 dB/Div	CH 130	DIG: 834	.000 MHz
		CH130	BW: 96.	000 MHz
10		Deere	FFT: 4K	Docsis 3.1
20		Pass	CP:	5 us
30				
40				
50		PLC Freq.	832.00	0 MHz
50 60		PLC Freq. Avg Level	832.000 -0.4 dB	0 MHz mV 🔇
50 60 70		PLC Freq. Avg Level Max P/V	832.000 -0.4 dB 1.5 dB	0 MHz mV
50		PLC Freq. Avg Level Max P/V Tilt	832.000 -0.4 dB 1.5 dB 0.2 dB	0 MHz mV
50 60 70 80 90		PLC Freq. Avg Level Max P/V Tilt	832.000 -0.4 dB 1.5 dB 0.2 dB	0 MHz mV
50 60 70 90 90		PLC Freq. Avg Level Max P/V Tilt	832.000 -0.4 dB 1.5 dB 0.2 dB	0 MHz mV
so 70 90 90 90 90 90 90 90 90 90 90 90 90 90	umber	PLC Freq. Avg Level Max P/V Tilt	832.000 -0.4 dB 1.5 dB 0.2 dB	D MHz mV

 Provides Pass/Fail results for Average Level, Max P/V, and Tilt measurements when compared against userdefined limit sets

NTSC/PAL/SECAM Carriers

 Shows a bar graph for the video and audio levels of the selected analog channel

• Provides Pass/Fail

results for Video Level, Audio Level, Delta V/A, and Carrier-to-Noise measurements when compared against user-defined limit sets

Analog and Digital Hum Measurement³

 Measure the amplitude of 50/60 Hz, 100/120 Hz, and low frequency interference present on analog or digital channels

• Provides Pass/Fail results for limit sets

DOCSIS 3.1 Channel Information*

 Displays the PLC, BPSK Sub-Carriers, Blocks of QAM Sub-Carriers, and Exclusion Zones defined within Profile A of the

DOCSIS 3.1 OFDM Channel

• Provides Markers for closer inspection of individual carriers, which include the start/stop frequency of the carrier as well as its type and modulation.

Constellation Measurements

SC-QAM

- Shows the constellation diagram of the selected digital SC-QAM channel
- Provides Pass/Fail results for Level,

Pre-BER, Post-BER, and MER measurements when compared against user-defined limit sets

Multi-Channel Measurements

Channel Plan Scan

 Full channel plan scan displays the frequency response of the entire channel lineup

CH 83

ost BER

Provides Pass/Fail
 results for limit sets and
 color-coded channels;
 blue for analog green for

blue for analog, green for SC-QAM digital, and aqua for OFDM digital

Digital Troubleshooting

Equalizer Tap Display

 Shows the equalizer tap levels of the selected digital SC-QAM channel in comparison to the DOCSIS specification for allowable correction

Level			Limit	limitname
°		CH 116	DIG: 747	000 MHz
10		DS	BW: 6.0	00 MHz
	_	Deere	256 QAM	Annex A
.20		Pass	SR: 5.361	000 MSPS
-25				
-30		Level	3.2 dBr	nV (
-35		Tevel	5.2 001	
-40		тар	0.00 u	sec (
-45		Value	0.0 dB	
-50		Distance	0 Mete	rs (
-55				
Eq	ualizer			
Set the Channel Nu	imber			Norma
Display	Channel Dian	Limite Cat		

OFDM Physical Link Channels (PLC)*

 Shows the constellation diagram for the PLC continuous pilots, BPSK symbols, and 16 QAM data of the selected digital OFDM channel

• Provides Pass/Fail results for PLC Level, Pre-BER, Post-BER, and MER measurements when compared against user-defined limit sets

Tilt Measurement

• Full channel plan scan displays the frequency response of the entire channel lineup

• Provides Pass/Fail

results for limit sets and color-coded channels; green for digital and blue for analog

• Tilt shows the level difference between two selectable channels

BER-Over-Time Display

 Shows the BER measurement of the selected digital SC-QAM channel over a user-defined time period

• The graph displays green lines for Pre-BER and red lines for Post-BER and provides Pass/Fail results for Level, Pre-BER, Post-BER, and MER measurements when compared against user-defined limit sets

Spectrum Measurements

Return Spectrum Measurement

- Provides the ability to view raw return spectrum traces from 4 to 205 MHz
- Fast DSP spectrum snapshots give the

user extreme speed to capture fast transients on the upstream

OFDM Channel Spectrum

• Provides the ability to view raw forward and return spectrum traces of full 24 to 192 MHz OFDM channels

Ref 0 dBmV	Mode: C	enter/Span	5 dB/Div
5			
10			
15			
20 Mir Martin April and with	elydrophilas and	hudwing and we have have	Non performante
25			
25			
25			
25 30 Center 834.000 MHz	100 kH	Iz RBW	Span 100.000 MH
25 30 Center 834.000 MHz Marker 784.000 MHz	100 kH -50.7 dBmV	Iz RBW Delta 0.000 MHz	Span 100.000 MH: 0.0 dB
25 30 Center 834.000 MHz Marker 784.000 MHz Marker 784.000 MHz	100 kH -50.7 dBmV -50.7 dBmV	Iz RBW Delta 0.000 MHz Peak 821.850 MHz	Span 100.000 MH: 0.0 dB -14.0 dBmV
25 30 Center 834.000 MHz Marker 784.000 MHz Marker 784.000 MHz Set Reference	100 kH -50.7 dBmV -50.7 dBmV	iz RBW Delta 0.000 MHz Peak 821.850 MHz	Span 100.000 MH: 0.0 dB -14.0 dBmV Norma

• Fast DSP spectrum snapshots give the user extreme speed to capture fast transients on the upstream and downstream

Network Connectivity Testing

Network Test Suite

 The Network Test Suite includes Ping, VoIP, Throughput, and Traceroute tests

• These tests provide

a quick and simple

- connectivity test to your favorite testing sites or to the VIAVI ACTS software

Fiber Inspection Scope

- Connects to USB port
- P5000i enables fast and easy certification for clear and optimized connections

Full Spectrum Measurement⁴

- Provides the ability to view raw forward spectrum traces from 5 to 1250 MHz
- Fast DSP spectrum snapshots give the

user extreme speed to capture fast transients on the downstream

OFDM Physical Link Channels (PLC)

 Provides the ability to view raw spectrum traces of the continuous pilot carriers needed for locking onto an OFDM signal

- Identify locations of ingress or interference that could potentially affect the PLC
- Provides reliable and objective Pass/Fail fiber analysis for the best possible customer experience

Optical Power Meter

- THUMb drive size, connects to USB pc
- Verify power levels within design specification at various points in fiber network

Optical Po	wer		λ 1310 nm
-4 -11		-5.7	2 dBm
-25 -32 -39 -46 -53		Min: Max: Avg:	-43.82 dBm -1.45 dBm -14.73 dBm
-60 Power in	dBm		No Ref
Reset	Settings	Ĩ.	Reference

• MP-series optical power meter size, functionality, and ease-of-use makes it an extremely useful and practical tool

Cable Modem Measurements (360 and 1G DSP)

Cable Modem Network Connectivity and Status

The Network
 Manager view
 allows users to
 quickly and easily
 use the internal
 cable modem for
 network connectivity and
 performance testing

• Upon connecting, the Network Manager displays the MAC address, IP address, subnet, gateway, and DNS information for

the cable modem network connection

 The Cable Modem Statistics view provides a summary that displays the type of Cable Modem being used, meter IP address, and modem IP address

Cable Modem Stati	stics	Limit : None
Config File		
Configuration File Parameters	:	
Network Access = 1 Maximum Number of CPEs = Upstream Service Flow Enco Service Flow Reference GoS_Parameters Set_Typ Traffic_Priority = 01 Service_Flow_Schedlung Service_Flow_Schedlung Service_Flow_Reference QoS_Parameters_Set_Typ Traffic_Priority = 1 Privacy_Enable = 1	16 ding: = 1 = 2 j. Type = 2 coding: = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	
Display	Limit Set	

 This view also displays the current channel bonding along with the min/max/ avg Rx Level and BER of the downstream channels and the min/max/avg Tx Level of the downstream channels

Upstream and Downstream Cable Modem Statistics

 Internal DOCSIS 3.1 modem that operates in both DOCSIS 3.0 (32x8) and DOCSIS 3.1 modes*

ID	Frequency (MHz)	Tx Level	
56	80.900 (64 QAM)	51.3 dBmV	Ø
54	67.700 (64 QAM)	49.3 dBmV	Ø
53	61.100 (64 QAM)	49.3 dBmV	Ø
52	28.100 (64 QAM)	47.0 dBmV	Ø
51	21.500 (64 QAM)	47.3 dBmV	Solution
50	14.900 (64 QAM)	46.8 d8mV	Ø
49	8.300 (64 QAM)	46.8 dBmV	

- Measure up to eight
 (8) upstream SC-OAM channels
- Displays the ID, channel frequency, Tx Level, SNR, PreBER, and Post BER of each upstream channel
- Measure up to 32 downstream SC-QAM channels when operating in a DOCSIS 3.0 only environment

01	vnstream					Pa
Pri	Frequency (MHz)	Rx Level	SNR	PreBER	PostBER	
	633.000 (256 QAM)	8.4 dBmV	43.4 dB	1.005-09	1.00E-09	0
	534.000 (OFDM 4K)	3.7 dBmV	47.1 dB	1.00E-05	1.00E-05	0
	585.000 (256 QAM)	8.4 dBmV	43.4 dB	3.87E-08	1.00E-09	0
	591.000 (256 QAM)	8.1 d8mV	40.9 dB	1.29E-08	1.00E-09	S
	597.000 (256 QAM)	8.8 dBmV	43.4 dB	1.008-09	1.00E-09	0
	603.000 (256 QAM)	9.1 dBmV	43.4 dB	6.47E-09	1.00E-09	0
	609.000 (256 QAM)	8.2 dBmV	40.9 dB	1.008-09	1.00E-09	0
	615.000 (256 QAM)	7.9 dBmV	40.4 dB	1.298-08	1.008-09	0
	621.000 (256 QAM)	8.7 dBmV	40.9 dB	1.00E-09	1.00E-09	0
	627.000 (256 QAM)	8.8 dBmV	40.9 dB	3.24E-09	1.00E-09	0
	639.000 (256 QAM)	8.2 dBmV	43.4 dB	3.24E-09	1.00E-09	0
	Display			imit Set		

- Measure up to two (2) downstream OFDM channels and 30 downstream SC-QAM channels when operating in a mixed DOCSIS 3.0 and DOCSIS 3.1 environment*
- Displays the primary status, channel frequency, Rx Level, SNR, PreBER, and Post BER of each downstream channel

OFDM Profile Statistics*

 Displays the performance statistics for all of the available OFDM profiles

Do	wnstr	eam					P	'as
Pri	Fre	quency (MHz)	Rx Lev	rel SNR	PreBER	PostBER		
✓ _	819.000	D3.1	Profile S	itatistic	5			
	438.000	Profile	Locked	PreCWER	Post	CWER		
 Image: A second s	777.000	PLC	Yes	0.00E+00	0.00	E+00	1 🔮	
	783.000	NCP	Yes	0.00E+00	0.00	E+00	S	
	789.000	A	Yes	0.00E+00	0.00	E+00		
	795.000	в	Yes	2.00E-04	0.00	IE+00		
	801.000	с	Yes	6.20E-01	0.00	E+00		
	807.000							
	897.000						i õ	
	903.000 (2	256 QAM)	-5.2 dBmV	38.6 dB	1.005-09	1.00E-09	0	
_	Displa	v	Profile	, in the second	Limit Set	l l	CWER	

• Displays the

Profile Name, Locked Status, PreBER/CWER, and PostBER/CWER of each downstream DOCSIS 3.1 OFDM Channel

Cable Modem Measurements (360 and 1G DSP) continued

OFDM Multiple Profile Selection*

• Capability to decode up to four (4) Profiles 0-3 (A-D)

 Allows for switching between the multiple profiles

OFDM Profile Summary with Distributed MER*

Docsis 3.1 Channel In

- Displays the PLC, **BPSK Sub-Carriers**. Blocks of OAM Sub-Carriers, and Exclusion Zones defined within each profile of the DOCSIS 3.1 OFDM Channel
- Provides Markers for closer inspection of individual carriers. which include the start/stop frequency of the carrier as well

as its type and modulation

 MER is measured on all continuous pilot carriers and is displayed as a plot of MER versus frequency. This view also displays the average, standard deviation, 2nd percentile, and minimum MER for the entire OFDM channel

OFDM Subcarrier Measurement Details*

- Displays the performance statistics for all of the OFDM subcarriers
- Displays the Frequency, Subcarrier

Number, and MER of each individual OFDM subcarrier

Upstream Linear Distortions Testing (360 and 1G DSP)

Equalizer Taps Measurement

- Used to determine if equalization is hiding potential problems within the upstream
- View the preequalization of the

upstream channel and the distance to the EQ taps

Group Delay Measurement

• Used to determine if equalization is hiding potential problems within the upstream

• View the pre-

equalization of the upstream channel and group delay

In-Channel Response Measurement

• Used to determine if equalization is hiding potential problems within the upstream

• View the preequalization of the upstream channel and the in-channel frequency response

Ethernet Service Testing (1G DSP)

Ethernet Loopback Functionality

Provides the ability to toopback
 measure the optical
 power through the
 optical transceiver

 Provides link speed, wavelength, Tx

power, and Rx power measurements of active SFP connection

Gigabit Bit-Error-Rate Testing

 Throughput testing speeds of up to 1 GbE using a dedicated test port

 Roundtrip or oneway constant payload

testing for Layer 2–4 for verification of Ethernet SLA and QoS metrics

SFP Optical Power Measurement

 Provides the ability to measure the optical power through the optical transceiver

Optical Pov	ver (dBm)		
10 5 0		<u>o</u> o 1000	Mbps
-5 10 15 20		Wavelength Tx Power	1550 nm 2.1 dBm
15 10 15		KX Power	-3.7 aBM
Tx	Rx		
		i i i i i i i i i i i i i i i i i i i	Info

 Provides link speed, wavelength, Tx power, and Rx power measurements of active SFP connection

Wi-Fi Sur

WiFi Testing (360 and 1G DSP)

N-Speed WiFi with Survey Test Mode

- Built-in 802.11 "b/g/n" 2.4/5 GHz wireless adapter
- Actively view live signal strengths of WiFi networks in the area

Cable Continuity Testing

Frequency Domain Reflectometer⁵

- Determine the distance to cable faults (opens, shorts, splitters, etc.)
- Events shown on a distance versus amplitude display

• Markers to identify the distance and loss at the source of the reflection

Ingress Under Carrier Measurements (360 and 1G DSP)

Upstream Traffic Control Plus

- Allows for a highspeed real-time view of ingress in the upstream
- Heat map allows for simplified view of ingress hotspots

• 100% coverage so technicians can see the shortest cable modem bursts and ingress even under the busiest upstream

Downstream QAM Error Vector Spectrum

• Tune to downstream QAM channels to display Error Vector Spectrum (EVS)

Set Reference			Norma
Marker 768.472 MHz	-60.7 dB	Peak 769.992 MHz	-37.9 dB
Marker 768.472 MHz	-60.7 dB	Delta 0.000 MHz	0.0 dB
in Marina	MMM	MMMM	Mymm
0	A		A
0	1		
0			
0			
0 MER JS die			
Ref 0 dB	СН	19	10 db/Di
QAM EVS			r tan r promone

• Display the ingress that is present

"underneath" a downstream cable modem channel, or any bursty signal

Dual RF Test Ports and Source Generator⁶

• The meter features two (2) built-in test ports for RF loopback testing that allow for the simultaneous transmission of a

source signal from the TX Port and the measurement of the same signal using the TX/RX Port

 The Source Generator provides the ability to transmit continuous wave (CW), 16 to 256 QAM, or 4K/8K OFDM carriers* within the return band from 5 to 85 MHz with user-adjustable bit error injection

In-Band Return Sweep (1G DSP)

Cable Modem (CM) Sweep

 The optional CM Sweep feature (Sweepless Model) is a first of its kind, patent pending sweep that uses the cable modem built

into the meter to perform in-band sweeps within your modem carriers

- This feature not only allows operators to balance the upstream, but also allows them to see the percentage of pre-qualizer effort and isolate problems between active components without causing any issues with upstream modem performance
- When this function is selected, the meter injects up to eight (8) upstream modem carriers to talk back to the

CMTS and use the pre-equalized data for each of the upstream carriers to plot a frequency response of what your upstream sweep would look like with injected carriers When combined, these features allow maintenance techs to use a single field analyzer to identify issues with active and

passive devices, such as amplifiers, nodes, pads, and cables

 This feature doesn't require any expensive headend sweep gear and works with any DOCSIS 3.0 or DOCSIS 3.1 compatible CMTS with pre-EQ enabled

Cable Modem Sweep – with OFDMA (1G DSP Sweepless and Sweep)*

- Detailed return band sweep using only the internal DOCSIS 3.1 cable modem
- Modem tests entire return band including close to diplexer

Forward Sweep (1G DSP)

Passive and Active Forward Sweep

The optional
 Forward Passive
 Sweep feature
 (Sweepless Model)

is a stand-alone test that doesn't use injected carriers

but instead passively uses the live carriers in the HFC distribution system to test and set the tilt and gain of distribution amplifiers without the need for any dedicated headend gear The optional
 Forward Active
 Sweep feature
 (Sweep Model) uses
 carriers injected into
 non-active channel

spaces by the 8300B FST Forward SpeedSweep Transmitter in the headend to test and set the tilt and gain of distribution amplifiers over frequency bands where there aren't any active carriers

• The instrument compensates for differences in the amplitudes of the carriers by comparing two sweeps, a reference scan saved to the 1G DSP (typically at the node or first active component of the network) and a test point in the field

High-Resolution Return Sweep (1G DSP)

RSA Sweep

 The optional RSA Sweep feature (Sweep Model) enables the 1G DSP to function as an upstream return path sweep transmitter

Ref 10 dBmV	Gain -8.5 dB	Tilt -9.5 dB	10 dB/Div
10			TP 7
0			
10			
-20			
-30			
101			
~		and the second states of the s	
-50		halilaihin ^{an} ht	When the West of the State
-50		www.	"Ann ann an ann an an an an an an an an an
50 60 70	n han the state of	of freilebor weile	"Annortheridad
50 60 70 Start 4.719 MHz		Mandreine war	Stop 64.000 MH
50 60 70 Start 4.719 MHz 5.156 MHz -8	 .5 dBmV ● 45.000 МНа	-18.0 dBmV Inj	Stop 64.000 MH Level 10 dBmV
5.156 MHz -8 Peak -3.8 dB	ор *A 5 dBmV Ф 45.000 Мнг Valley -18.0 dB Р	-18.0 dBmV inj	Stop 64.000 MH Level 10 dBmV k 700.000 MHz
50 60 51 51 51 51 51 51 51 51 51 51 51 51 51	 .5 dBmV ● 45.000 МН2 Valley -18.0 dB Р Sy	• • -18.0 dBmV Inj /V 14.2 dB	Stop 64.000 MHz Level 10 dBmV k 700.000 MHz Norma

for troubleshooting micro-reflections and instances of narrow suck-outs between the test point and the headend, while also stepping around active channels in order to avoid interference

- When this function is selected, the 1G DSP transmits the return sweep from a test point in the field to the 8310 RSA Return SpeedSweep Analyzer in the headend for analysis
- The channel plan on the 8310 RSA and the sweep response information are then sent back to the 1G DSP via a telemetry signal which allows

the 1G DSP to track up to 643 individual sweep points and display a full sweep on the screen every four seconds

• The instrument compensates for differences in the amplitudes of the carriers by comparing two sweeps, a reference scan saved to the 1G DSP (typically at the node or first active component of the network) and a test point in the field

Hi-Speed Return Sweep (1G DSP)

SSR Sweep

 The optional SSR Sweep feature (Sweep Model) enables the 1G DSP to function as a return path spectrum transmitter to catch

bursty ingress and impulse noise interference to voice services with an extremely high spectrum acquisition speed

- When this function is selected, the 1G DSP injects up to eight user-selectable test carriers into the upstream that the 9581 SST automatically measures in the headend
- The 9581 SST then analyzes the test signals from the 1G DSP and the return spectrum separately to compute the gain and tilt of the return

path before packaging the measurement results into a data stream for transmission back to the 1G DSP

- When the 1G DSP receives its data, the response of the return path is displayed as a line graph with numeric values for gain and tilt. The ingress and noise are also displayed as spectrum analyzer traces
- The instrument compensates for differences in the amplitudes of the carriers by comparing two sweeps, a reference scan saved to the 1G DSP (typically at the node or first active component of the network) and a test point in the field

Local and Remote Return Path Spectrum (1G DSP)

SST Compare

 The optional SST Compare feature (Sweep Model) simultaneously displays the return path spectrum

measured locally and the spectrum as scanned from the headend by the 9581 SST

• This feature is used to determine if disrupting ingress detected by the 9581 SST is coming from the leg of the system to which the meter is currently connected

Optical Power Meter and VFL (Optional for 1G DSP only)

- This optional hardware package and measurement suite includes both a built-in FTTx ready Optical Power Meter (OPM) for testing of passive optical networks and a Visual Fault Locator (VFL) to identify loss points in patch cords, patch panels, and enclosures
- The optical power meter provides the ability to perform both absolute and relative measurements of ITU-T G983.3 recommended wavelengths of 1310 nm, 1490 nm, and 1550 nm. Additionally, the VFL emits a Class III visible red light laser beam with 3 mW of power that allows you to quickly and easily locate light escaping from damaged single-mode and multi-mode fiber cables

Home Leakage Testing (Optional, all meters)

- Installation and service technicians perform "pressure tests" on home networks to accentuate any breaches in RF shielding integrity that can enable ambient RF in the home to get into the closed network (ingress)
- A DSP meter (or OneExpert CATV) can be fitted with an antenna and a "leakage" software option that enables it to receive signals leaking during a pressure test
- The tech connects a hand-held Seeker HL (Home Leakage) transmitter to the drop at the tap or to the ground block to inject high-level signals in the aeronautical and LTD frequency ranges. The tech then walks throughout the house and when a signal is detected, the meter emits a tone that varies in pitch with the received field strength.
- This test is very effective in locating home network trouble spots, so they can be eliminated while the tech is there for installation for service. This saves the tech time in troubleshooting as it eliminates a time-consuming trial and error method.

TDR (1G DSP)

• The step-type TDR has a measurement range of over 4000 meters with a zero dead zone and an accuracy of less than one foot for cables at any length. This meter is ideal for technicians who need to identify and locate impairments in coaxial cable, such as poor splices, water intrusion, pinched coax, poor quality cables, impedance mismatches, and bridged taps, or to determine how much cable is left on a reel.

- No Dead Zone Pulse TDRs have various Dead Zone lengths depending on the pulse width selected
- No pulse width selection required prior to measurement techs don't have to guess the correct pulse width for an unknown length of cable
- No gain adjustment required the Step waveform provides high levels of returned signal strength at all ranges. Pulse TDRs require the operator to set gain levels for different cable lengths
- Automatic cable impedance match no operator selection required

Specifications

Level Measurement					
Channel Bandwidth	6 MHz and 8 MHz				
Amplitude Range	-40 dBmV to +50 dBmV				
	Analog: NTSC, PAL B/D/G/H/I/K/N and SECAM B/D/G/H/I/K				
Modulation Types	Digital: 16/32/64/128/256 QAM Annex A, 64/256 QAM Annex B/C, OFDM 4K/8K*				
Analog Measurement Accuracy	±0.75 dB @ 77° F (25° C); ±2.0 dB from 0° to +50° C (32° to 122° F)				
Digital Measurement Accuracy	±0.75 dB @ 77° F (25° C); ±2.5 dB from 0° to +50° C (32° to 122° F)				
Display Resolution	0.1 dB				
Spectrum Measurement					
	Return Path: 4 to 205 MHz				
Frequency Range ^{**}	Forward Path: 5 to 1250 MHz				
Duel Delver Delle Dielevere	42 MHz: 4 to 42 MHz				
Duai Return Path Diplexers	85 MHz: 4 to 85 MHz				
Manually Adjustable	Return Path: 300 kHz				
Resolution Bandwidth	Forward Path: 10, 30, 100, and 300 kHz; 1 and 3 MHz				
	10 kHz: Span ≤ 3.5 MHz				
	30 kHz: Span ≤ 12.0 MHz				
Auto Ranging	100 kHz: Span ≤ 35.9 MHz				
Resolution Bandwidth	300 kHz: Span ≤ 300 MHz				
	1 MHz: Span ≤ 359.2 MHz				
	3 MHz: Span ≥ 359.3 MHz				
Display Spans	Return Path: 4 to 42 MHz, 4 to 65 MHz, 4 to 85 MHz or 4 to 205 MHz				
Display sparis	Forward Path: User-selectable in 1 kHz steps				
Display Scale	1, 2, 5, 7.5 or 10 dB/division				
Display Range	8 vertical divisions (when marker bar is hidden)				
Spurious Free Dynamic Range	60 dB @ 25° C (77° F) (+50 dBmV)				
Consistivity (terminated)	Return Path: -40 dBmV (4 to 205 MHz)				
	Forward Path: -40 dBmV (5 to 1250 MHz)				
Digital Channel Measurement					
Deep Interleave Compatibility	Yes				
Downstroom MED	40 ±2 dB @ +6 dBmV RF Input Level				
Downstream MER	34 ±2 dB @ -6 dBmV RF Input Level				
	Method: True BER, derived from code words not from MER				
Downstream BER	Standard: ITU J.83 annex A, B, C				
	Range: 1 E-7 to 1 E-9 @ -6 dBmV RF Input Level				
Symbol Rates	≥ 2 MSPS; ≤ 6.952 MSPS				

* DOCSIS 3.1 option equipped meters only

** Forward spectrum analysis is optional on the 180 DSP-Lite

Specifications continued

Cable Modem Measurement (360 and 1G DSP Only)

cable modelli medbarement (500 a	
Dratacal Support	DOCSIS 1.1 / 2.0 / 3.0 / 3.1*
	SNMP V1, V2c, V3
Compliance Certificates	FCC
CM Diplexer	85 MHz: 5 to 85 MHz
	Frequency (edge to edge): 108 to 1218 MHz
	Channel Bandwidth: 6 MHz
	Signal Level: -15 to 15 dBmV
	DOCSIS 3.0 Demodulation: 64 QAM, 256 QAM
Receiver Demodulation	DOCSIS 3.0 Data Rate: Up to 1.2 Gbps with 32 downstream channel bonding
	(DOCSIS 32x8)
	DOCSIS 3.1 Demodulation: Multi-Carrier OFDM 16 to 4096 QAM*
	DOCSIS 3.1 Data Rate: Up to 2.5 Gbps with 2 OFDM 196 MHz
	Downstream Channels*
	Frequency (edge to edge): 5 to 85 MHz
	Signal Level: Controlled by CMTS though power ranging function
	DOCSIS 3.0 Modulation: QPSK, 8 QAM, 16 QAM, 32 QAM, 64 QAM,
Transmitter Modulation	and 128 QAM (SCDMA only)
	DOCSIS 3.0 Data Rate: Up to 320 Mbps with 8 upstream channels bonding
	DOCSIS 3.1 Modulation: Multi-Carrier OFDMA BPSK to 4096 QAM*
	DOCSIS 3.1 Data Rate: Up to 1 Gbps with 2 OFDMA 96 MHz
	Upstream Channels*
Carrier-to-Noise Measurement (In-	service, non-scrambled standard channels only)
Minimum Input Level for Full Range	+10 dBmV
Dynamic Range	50 dB
Resolution	< 0.5 dB
Tilt Measurement	

14 (dependent on favorite channel setup)			
0.1 dB			
Video, audio, pilot, and digital carriers			
Analog and Digital Hum (In-service, non-scrambled standard channels only)**			
0 dBmV			
0 to 5%			
0.10%			
±0.5%			

* DOCSIS 3.1 option equipped meters only

** Hum is optional on 180 DSP-Lite

Specifications continued

Frequency Domain Reflectometer (360 DSP Advar	nced and Pro Models, 1G DSP)			
Velocity of Propagation	Adjustable from 60.0 to 99.0% in 0.1% increments			
Warking Distance	Minimum: 755 feet (230 meters) @ VoP of 60.0%			
working Distance	Maximum: 1247 feet (380 meters) @ VoP of 99.0%			
Amplitude Range	0 to -80 dBRL			
Distance Accuracy	5 feet			
Source Generator (Advanced and Pro Models, 1G E	DSP)			
Modulation	CW, 16 QAM, 32 QAM, 64 QAM, 128 QAM, 256 QAM, OFDM (4K/8K)*			
OFDM Subcarrier Modulation	16 to 4096 QAM, PLC Configurable*			
Frequency Range	5 to 85 MHz			
	CW: 50 kHz			
Source Width	QAM: 6 MHz			
	OFDM: 6 to 24 MHz*			
	CW: Adjustable from 10 to 55 dBmV			
Amplitude	QAM: Adjustable from 10 to 45 dBmV			
	OFDM: Adjustable from 10 to 40 dBmV*			
QAM Symbol Rates	0.64, 1.28, 2.56, 5.12 MSPS			
	BER: Adjustable from 0 to 1.00E-2			
QAM Error Rates	MER: > 38 dB			
CW Source Accuracy	±2 dB			
Optical Power Meter (1G DSP Only)				
Finish	UPC and APC			
Additional Connectors	FC/SC/ST			
Measurement Range	-50 dBm to +26 dBm			
Display Resolution	0.01 dB			
Tone Detection Range	-30 dBm to +6 dBm			
Tone Detection	270 Hz, 330 Hz, 1 kHz, 2 kHz			
Wavelengths	1310 nm, 1490 nm, 1550 nm			
	+/-0.5dB > -40 dBm @ 25° C			
Accuracy	+/- 1dB < -40 dBm @ 25° C			
Visual Fault Locator (VFL) (1G DSP Only)				
Port Style	FC Style Adapter			
Fiber Size	9/125 µm			
Wavelength	650 nm			
Output Power	3.0 mW			
Pulse Duration	CW (always on) or 2 Hz (0.25 sec pulse)			
Maximum Radiant Power	< 5.0 mW			
Turn-On Safety Delay	2 seconds			

* DOCSIS 3.1 option equipped meters only

Specifications continued

TDR (1G DSP Only)	
Maximum Distance	15954 ft (4862m)
Distance accuracy	<1 ft
Noise Filter / AVG	1 to 100 samples
Measurement time	<2 Seconds
Physical	
Construction	Rubber overmolded plastic housing
Control	Glow in the dark keypad and LCD touchscreen and/or via a wireless connection to a mobile device such as a laptop, tablet, iPad [®] or iPhone [®] , or Android [®] handset
Display	Color LCD touchscreen, 180/360: 480 x 272 pixels (approx 4" x 2.25"); 1G: 800 x 480 pixels (approx 4.5" x 2.75")
Annunciators	Audible annunciator for key strokes
Antenna	Internal WiFi antenna, 2 dB gain
Flashlight	High-intensity LED (0.25W)
Dimensions w/o Case (H x W x D)	8.6 x 6.1 x 2.00 in (21.84 x 15.94 x 5.08 cm)
Dimensions w/ Case (H x W x D)	9.6 x 7.1 x 3.00 in (24.38 x 18.03 x 7.62 cm)
Weight w/o Case	360 DSP: 2.9 lbs (1.32 Kg); 1G DSP: 3.75 lbs (1.70 Kg)
Weight w/ Case	360 DSP: 3.9 lbs (1.79 Kg); 1G DSP: 4.75 lbs (2.15 Kg)
Available Interface Types	
	75 Ohm Replaceable F-Type Connector
IX lest Port	Source Generator Output Transmission Only
	75 Ohm Replaceable F-Type Connector
Tx/Rx Test Port	Upstream and Downstream RF Measurements
	DOCSIS 3.1 Modem
	RJ45 Management Port (10/100 Mbps)
Ethernet	RJ45 Electrical Test Port (10/100/1000 Base-T) (1G Only)
	SFP Optical Test Port (100/1000 Base-X) (1G Only)
WiFi	802.11 b/g/n 2.4/5 GHz WiFi Adapter (360 & 1G only)
USB	USB 2.0 Type-A Standard Port
Battery and Power	
Operating Time	360 DSP: 8 to 10 hours, dependent on use; 1G DSP: 12 hours plus, dependent on use
Charge Time	4 hours
Battery	Two 2600 mAh @ 7.4V Li-Ion internal batteries, factory replaceable (1G DSP, Three 2600 mAh batteries)
Power Adapter	Input: 100 to 240 VAC ~ 50 to 60 Hz, 1.2A Max
	Output: 15 VDC, 3.34A
Environmental	
Storage	-18° to +50° C (0° to 122° F)
Operating Temperature	0° to +50° C (32° to 122° F)

Ordering Information

Model	Description	Part Number
180 DSP-Lite	Installation and Service Meter	TRI-DSP-180-LITE
180 DSP Base	Installation and Service Meter	TRI-DSP-180-BASE
180 DSP Advanced	Adds FDR and Source Generator	TRI-DSP-180-ADV
360 DSP	DOCSIS Installation and Service Meter	TRI-DSP-360-D31-BASE
360 DSP D3.0	DOCSIS 3.0 Installation and Service Meter	TRI-DSP-360-D30-BASE
360 DSP Advanced	Adds FDR and Source Generator	TRI-DSP-360-D31-ADV
360 DSP D3.0 Advanced	Adds FDR and Source Generator	TRI-DSP-360-D30-ADV
360 DSP Pro	Adds Upstream Traffic Control Plus, Upstream Linear Distortion Measurements, and QAM Error Vector Spectrum Analysis	TRI-DSP-360-D31-PRO
360 DSP D3.0 Pro	Adds Upstream Traffic Control Plus, Upstream Linear Distortion Measurements, and QAM Error Vector Spectrum Analysis	TRI-DSP-360-D30-PRO
1G DSP Pro	Plant Maintenance Meter	TRI-DSP-1G-D31-PRO
1G DSP Sweepless	Plant Maintenance Meter with Sweepless Sweep	TRI-DSP-1G-D31-SWPLS
1G DSP Sweep	Plant Maintenance Meter with Active Sweep	TRI-DSP-1G-D31-SWEEP
1G DSP with OPM/VFL Pro	Plant Maintenance Meter with optical power meter and visual fault locator	TRI-DSP-1G-D31-VFL-PRO
1G DSP with OPM/VFL Sweepless	Plant Maintenance Meter with Sweepless Sweep, optical power meter and visual fault locator	TRI-DSP-1G-D31-VFL-SWPLS
1G DSP with OPM/VFL Sweep	Plant Maintenance Meter with Active Sweep, optical power meter and visual fault locator	TRI-DSP-1G-D31-VFL-SWEEP
1G DSP PRO with TDR	Plant Maintenance Meter with TDR	TRI-DSP-1G-D31-TDR-PRO
1G DSP SWEEPLESS with TDR	Plant Maintenance Meter with TDR and FWD/ REV Sweepless Sweep	TRI-DSP-1G-D31-TDR-SWPLS
1G DSP SWEEP with TDR	Plant Maintenance Meter with TDR and FWD/ REV Sweepless-Active Sweep	TRI-DSP-1G-D31-TDR-SWEEP
Home Leakage Test Kit	Seeker Home Leakage Companion Kit Seeker HL Source Transmitter, Dual-Band Antenna, Near-Field Probe and Case	TRI-LKG-HL-METER-KIT DSP
	Meter Leakage Software Option	TRI-DSP-SW-HL-LKG-OPT
Optional Accessories	Description	Part Number
I/O-15	Precision test cable	TRI-ACCY-RF-TEST-CBL
I-Stop 1 GHz Test Probe	Ingress troubleshooting probe	TRI-ISTOP-1000MHZ or TRI-ISTOP-1250MHZ
TLB-46	Return measurement low-pass filter	TRI-TLB-46-LPF
MP-80A	USB Optical Power Meter	MP-80A
P5000i USB Fiber Scope	USB Fiber Scope	FBP-P5000i
Replacement fitted case		TRI-DSP-180-CASE-REPL, TRI-DSP-360-CASE-REPL, or TRI-DSP-1G-CASE-REPL
Replacement shoulder strap		TRI-DSP-STRAP-REPL
Replacement charger (no power cord)		TRI-DSP-PWR-ADPT-NEW

Feature Matrix

Model	180 DSP Lite	180 DSP	360 DSP	1G DSP				
Analog NTSC/PAL Channel Measurements								
Video/Audio Level	•		•	-				
Delta V/A	•							
Carrier-to-Noise			•					
Hum	Option							
Digital QAM Channel Measurements								
Level								
Pre/Post BER								
MER								
Constellation								
Equalizer								
BER vs Time								
Errored Seconds								
Severely Errored Seconds								
Hum	Option							
Digital OFDM Channel Measurements*								
Average Level								
Max P/V								
In-Channel Tilt								
PLC Constellation		•		•				
PLC Level								
PLC Pre/Post BER		•						
PLC MER								
Decoder Stress vs Time								
Default Profile Summary								
Cable Modem Statistics								
Priority								
Channel Frequency								
Tx/Rx Level								
Signal-to-Noise Ratio								
Pre/Post BER/CWER								
MER								
Cable Modem OFDM Measurements*								
Summary for All Profiles								
Advanced Profile Statistics								
Multiple Profile Selection								
Continuous Pilot Distributed MER								
Subcarrier Measurement Details			-					

* DOCSIS 3.1 option equipped meters only

Feature Matrix continued

Model	180 DSP Lite	180 DSP	360 DSP	1G DSP			
Net Tests							
Ping							
Trace Route							
Throughput							
VoIP							
Modem Speed Test							
Miscellaneous Features							
Tilt Measurement	•		•				
Channel Plan Auto Discovery							
Channel Plan Scan							
Multi-language support							
Create jobs right on the meter							
Interactive basic RF installation process							
Forward Spectrum Analysis (5 to 1250 MHz)	Option						
Return Spectrum Analysis (4 to 205 MHz)							
Built-in web browser, real-time data transmission							
Multi-user support							
WiFi Survey							
Frequency Domain Reflectometer		Advanced	Advanced				
Source Generator (CW, QAM & OFDM*)		Advanced	Advanced				
Upstream Traffic Control Plus			Pro				
Upstream Linear Distortion Measurement			Pro				
QAM Error Vector Spectrum Analysis (Ingress under QAM)			Pro	-			
Cable Modem Sweep				Sweepless			
Forward Passive Sweep				Sweepless			
Forward Active Sweep (w/8300A FST)				Sweep			
RSA High-Resolution Return Sweep (w/8310 RSA)				Sweep			
SSR High-Speed Return Sweep (w/9581 SST)				Sweep			
SST Compare with 9581 SST				Sweep			
Home Leakage Test	Option	Option	Option	Option			
Full-featured TDR				Option			

* DOCSIS 3.1 option equipped meters only

**DOCSIS is a trademark of CableLabs.

VIAVI Care Support Plans

Increase your productivity for up to 5 years with optional VIAVI Care Support Plans:

- Maximize your time with on-demand training, priority technical application support and rapid service.
- Maintain your equipment for peak performance at a low, predictable cost.

For more Information: go to viavisolutions.com/viavicareplan

Features

reatures						*5-	-year plans only
Plan	Objective	Technical Assistance	Factory Repair	Priority Service	Self-paced Training	5 Year Battery and Bag Coverage	Factory Calibration
BronzeCare	Technician Efficiency	Premium	\checkmark	\checkmark	\checkmark		
SilverCare	Maintenance & Measurement Accuracy	Premium	\checkmark	\checkmark	\checkmark	\checkmark^{\star}	\checkmark

Contact Us +1 844 GO VIAVI (+1 844 468 4284)

To reach the VIAVI office nearest you, visit viavisolutions.com/contact.

© 2020 VIAVI Solutions Inc. Product specifications and descriptions in this document are subject to change without notice. dspmeters-ds-cab-nse-ae 30186467 905 0420