C-band (Mid-band)

Full suite of testing tools for C-band (Mid-band) deployment in any part of the network lifecycle.

VIAVI has developed a complete test suite to support C-band deployment throughout the network lifecycle. In addition to efficient, intuitive tools for spectrum clearance, timing & synchronization, and signal analysis, VIAVI has also incorporated advanced test process automation to optimize antenna alignment, fiber certification, coax verification, and coverage mapping.

What Is the Meaning of C-band?

The communications or “C” band of the radio spectrum was originally designated by the IEEE for satellite communications, terrestrial microwave radio, and other industrial applications. C-band frequencies repurposed for 5G wireless range from 3.7 – 3.98 GHz. C-band provides an outstanding balance between bandwidth and coverage, with the throughput needed to enable 5G use cases like enhanced mobile broadband (eMBB).

Industry regulators continue to avail significant portions of C-band spectrum to wireless providers. 280MHz of spectrum was made available in the U.S. through an FCC C-band auction held in 2020. Operators paid over $80 billion in total to fortify 5G service in over 100 Partial Economic Area (PEA) markets. Satellite operators have now been tasked with relocating to a frequency range just above 4GHz.

What is The Difference Between C-band and Mid-band?

The terms C-band and “Mid-band” are often used interchangeably. It is more accurate to describe the C-band frequency range as a component of the larger 3.3 - 4.2 GHz mid-band spectrum. Mid-band resides within frequency range 1 (FR1), located squarely between low-band FR1 and the “millimeter wave” (FR2) RF spectrum. The term “C-band” is commonly referred to throughout North America, whereas “Mid-band” is more common in other parts of the world.

3GPP release 15 defines three distinct bands in this range: n77, n78, and n79, for mid-band 5G operation with potential channel bandwidth up to 100 MHz. In addition to offering gigabit throughput over the air, the range of mid-band is also sufficient to minimize cell tower installations.

  • Low-band spectrum provides outstanding coverage and can easily penetrate buildings or other common obstacles. This made low-band FR1 popular for 2G and 3G wireless deployments. Wider coverage translated to fewer cell towers and antennas, with their associated costs. Prior to LTE, the throughput offered by low-band wireless was adequate for most services.

  • Millimeter Wave (mmWave) is often associated with 5G technologies like beamforming and Massive MIMO. The shorter wavelength and high bandwidth of mmWave are ideally suited for 5G antenna arrays and use cases. However, frequencies above 24 GHz are also susceptible to obstacles, weather, and shadowing.

    With coverage limited to 10s of meters, a 5G foundation built entirely on mmWave is not a realistic one. C-band allocation helps to smooth the transition by coupling large swaths of available spectrum with the superior coverage of C-band wavelength.

  • Citizens Band Radio Service (CBRS) is also a component of the mid-band spectrum, although not a part of the C-band range. With approximately 150 MHz of spectrum located between 3.5 and 3.7 GHz, CBRS shares some positive traits with C-band frequencies. Historically used for satellite stations and military radar, CBRS mid-band spectrum was also actioned by the FCC in 2020, prior to the C-band auction. Although CBRS is already being utilized for TDD LTE, its usefulness for 5G will be limited by a “shared licensing” approach.

    Mid-band spectrum availability in the U.S.
    Click to enlarge

What is C-band Used for and Why Does It Matter?

Given the optimal balance between coverage and bandwidth, C-band is sometimes referred to as the “waterfront property” of RF spectrum. This potential has been harnessed by past, present, and future occupants of the C-band frequency range.

  • Satellite Operators have long recognized the value of C-band for over-the-air television transmission. The monolithic C-band dish of the 1980s has gradually been replaced by more compact dish formats, Wi-Fi, and fiber-based TV delivery. The FCC has incentivized these satellite operators to relocate their services above 4 GHz. Strict timelines have been set to clear the way for 5G services. Despite these assurances, C-band spectrum clearance is essential for ensuring minimal interference and optimal 5G network performance.

  • Satellite Earth Stations, also known as ground stations, are additional occupants of the C-band spectrum used to stream and collect remote sensing satellite data. The power generated by Massive MIMO and beamforming can potentially saturate the C-band LNB (low noise block) downconverter of a C-band satellite antenna system. Spectrum clearance for 5G is essential near these stations to prevent 5G C-band antenna interference with satellite receive bands.

    Satellite earth stations interacting with broadband wireless nodes
    Click to enlarge
  • Interference in the C-band should be evaluated during planning and pre-deployment phases and as a best practice throughout commissioning, optimization, and maintenance phases. An RF spectrum analyzer used in conjunction with a directional antenna can detect the presence and source of unwanted signals that must cleared. The VIAVI OneAdvisor-800 spectrum analyzer with InterferenceAdvisor forms a fully automated tool kit for interference detection with pinpoint location.

    Satellite earth stations interacting with broadband wireless nodes
    Click to enlarge

What is the Role of C-band in 5G?

Mid-band 5G wireless will unleash the full potential of the C-band radiofrequency spectrum. Faster speeds, higher capacity, and optimal coverage meet the need for a true 5G experience.

  • 5G Use Cases
    With channel bandwidth driving throughput, the primary use cases for 5G can be achieved in the C-band spectrum. This includes eMBB, ultra-reliable low-latency communications (URLLC), and massive machine type communications (mMTC) with high connection density. The millimeter wave can also accommodate these advanced applications. Coverage limitations make a hybrid approach including both mmWave and C-band more practical.
  • Time Division Duplex (TDD)

    All 5G deployments above 3 GHz, including 5G C-band, will utilize time division duplex (TDD) transmission rather than frequency division duplex (FDD). TDD gains spectral efficiency by allocating precise time slots for uplink and downlink signals over the same frequency. Persistence spectrum analysis is a useful technology for identifying interference during the transition between TDD uplink and downlink segments.

    Timing and Synchronization are extremely important for TDD deployed over C-band. Timing requirements for TDD systems are necessarily strict to prevent crosstalk. Base stations are closely synchronized to a common phase clock reference. Frame and slot formats between adjacent networks must also be synchronized to prevent inter-cell interference.

    C-band in 5G: Time/phase requirements for Time Division Duplex (TDD) transmission
    Click to enlarge
  • Beamforming
    Beamforming and Massive MIMO enable 5G services to shift from a traditionally static, cell-centric model to a more dynamic, user-based approach. Beamforming is used to modify the phase and amplitude of multiple beams to direct energy more precisely into a user’s service area. Smaller mmWave and 5G C-band wavelengths enable beamforming by integrating a smaller form factor into larger arrays.

C-Band Test Solutions

VIAVI offers a full suite of C-band test tools to ensure spectrum clearance and performance throughout the network lifecycle. Advanced test process automation supports C-band testing through intuitive workflows and built-in guidance for Engineers and Technicians.

  • Antenna Alignment: 5G beamforming and massive MIMO rely on the precise tuning and precision of large arrays. Antenna alignment and line-of-sight surveys during installation are essential for maximizing mid-band frequency and mmWave performance.
    The VIAVI 3Z RF Vision antenna alignment tool performs directional antenna alignment including Azimuth, Tilt, and Roll settings. Reliable line-of-sight (LOS) surveys can also be generated. A built-in camera conveniently displays the line-of-sight on a 5-inch touchscreen display.
  • Fiber Inspection: Complete inspection and certification of fiber end faces verifies the “fiber hygiene” of the network during installation. With fiber forming the backbone of C-band 5G antenna deployment and x-haul, fiber inspection ensures that cleanliness, particles, and other fiber hygiene issues do not impede network performance.
  • OTDR Testing: Once fiber is installed, OTDR fiber testing allows any faults to be identified quickly, including the fault type, location, and probable cause. The SmartOTDR Handheld Fiber Tester performs automated OTDR testing with intuitive symbology and reporting. Test processes can be optimized for any skill level. Automated Pass/Fail fiber inspection, optical loss testing, and visual fault location (VFL) capabilities are also included.
  • OneAdvisor-800: Essential C-band verification tests can be completed quickly and easily using the OneAdvisor-800 analyzer. In addition to comprehensive interference hunting for spectrum clearance, this advanced C-band test product also performs persistence spectrum analysis to detect interference issues related to TDD. OTDR, Cable and Antenna Analyzer (CAA), and Fiber Scope modules round out this complete C-band test solution.
  • CellAdvisor 5G: The TDD environment accompanying 5G C-band frequencies carries stringent requirements for time error, frequency error, and frame formatting that can be validated through over-the-air testing. CellAdvisor 5G incorporates these tests within an innovative, compact, and complete 5G base station analyzer. Beam test functions for 5G also include beam index analysis for up to 64 beams and coverage mapping.
  • T-BERD/MTS-5800: The C-band sweet spot for 5G services means Timing and Synchronization testing are essential. The T-BERD/MTS-5800 is an outstanding tool for GPS antenna location, signal verification, and synchronization error testing. The TEM Timing Module, featuring a GNSS antenna and miniature atomic clock, enhances versatility and accuracy for field measurements.
  • Test Process Automation: C-band has unlocked the full potential of 5G use cases by striking a balance between coverage and bandwidth. The impact of beamforming, network function virtualization, and Massive MIMO can now be showcased without the coverage deficiencies of millimeter wave. Test Process Automation (TPA) by VIAVI is the key to effective C-band spectrum clearance, timing & synchronization, and performance testing with an automated, consistent, and tech-friendly interface.

Explore mais

Observações de aplicação

The Role of C-band in 5G


Timing and Synchronization Handbook


5G Validation, Verification, Visibility


The Role of C-BAND in 5G (Summary)

Queremos ajudar

Fale conosco para obter mais informações, receber uma cotação ou assistir vídeos de demonstração de produtos. Estamos aqui para ajudar no seu futuro.