跳转到主要内容
  • 投资者关系
  • 合作伙伴
  • 博客
  • 与我们联系
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • 实验室及制造
      • 实验室及制造
        • 应用程序仿真
        • Automation and Orchestration
        • UE 仿真
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • 测试即服务 (TaaS)
        • 以太网测试
        • 高速网络
        • 光学制造测试平台
      • 存储网络测试
        • 存储网络测试
        • PCIe 测试设备
        • SAS 和 SATA
        • 光纤通道、以太网、FCoE、NVMeof
        • 协议测试
        • 试验器和生成器
        • 干扰器
    • 网络部署和维护
      • 网络部署和维护
        • 天线校准和监测
        • 资产和数据管理
        • 基站安装与维护
        • 电缆和天线分析仪
        • 干扰侦测
        • 射频分析
      • 光纤
        • 光纤
        • 资产和数据管理
        • 衰减器
        • 比特误码率
        • 铜缆、DSL、WIFI 和宽带测试
        • DOCSIS 测试
        • 光纤测试仪
        • 以太网测试
        • OTDR 和光纤特征分析
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 故障定位仪
        • 光纤传感器
        • 光纤光源
      • 光纤
        • 光纤
        • HFC 测试
        • MPO 测试设备
        • 光万用表
        • 功率计
        • 光谱分析
        • OTDR 测试
        • PON 测试
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • Core Network Assurance
        • 以太网保障
        • RAN Assurance
        • 光纤监控
      • 服务保障
        • 服务保障
        • 5G 保障
        • AIOps
        • 光纤服务保障
        • HFC/有线服务保障
        • 以太网
      • 实验室及制造
        • 实验室及制造
        • Automation and Orchestration
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • Network APIs
        • 资产和数据管理
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • 以太网保障
        • 光纤监控
    • 铁路和关键应用
      • 铁路和关键应用
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • 性能和威胁可见性
        • 性能和威胁可见性
        • 最终用户体验
        • 丰富的流量收集
        • 数据包分析
        • 数据包捕获收集
        • 数据包元数据收集
      • 测试和认证
        • 测试和认证
        • 比特误码率
        • 以太网测试
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 光纤传感器
        • MPO 测试设备
        • 功率计
    • 陆地移动和军用无线电
      • 陆地移动和军用无线电
      • Communications Service Monitors
      • 陆地移动无线电测试
      • 军用无线电测试
      • 模块化仪器
      • 软件定义的无线电和系统
    • 航空电子设备
      • 航空电子设备
      • ADS-B 合规性
      • 飞机燃油量测试装置和接口
      • 天线耦合器
      • 测距设备 (DME)
      • 光纤航空电子设备
      • GPS 模拟
      • 军用航空电子设备
      • 模块化仪器
      • 导航和通信
      • 无线电高度表 (RADALT)
      • 射频自动测试设备 (RF ATE) 系统
      • 战术空中导航系统 (TACAN)
      • 交通防撞系统 (TCAS)
      • 应答器和询问器
    • 位置、导航和计时
      • 位置、导航和计时
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 定制光学器件
        • 定制光学器件
        • 定制滤光器
        • 光整形光学器件
        • MicroNIR 光谱仪
      • 颜料
        • 颜料
        • 品牌保护
        • ChromaFlair 颜料
        • 安全颜料
        • SpectraFlair 颜料
    • 所有产品
      • 所有产品
      • 所有产品
      • 产品系列
      • 停产的产品
    • 服务
      • 服务
      • Care Support Plans
      • 翻新设备
      • 维修和校准
      • 系统维护和合同
      • 培训
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • 如何订购服务
      • 无线
        • 无线
        • 5G 解决方案
        • 5G 安全性
        • 定时和同步
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • 基站安装
        • 基于云的测试
        • 干扰侦测
        • MU-MIMO Test
        • 网络数字孪生
        • 非地面网络
        • 开放式 RAN (O-RAN)
        • 5G 专网
        • RAN Intelligence Solutions
      • 有线
        • 有线
        • AIOps
        • DWDM
        • 以太网业务激活测试
        • 光纤建设
        • 光纤监控
        • 光纤网络解决方案
        • 光纤传感
        • FTTx
        • HFC Network Test
        • MPO 连接器测试
        • PON 解决方案
        • Rural Broadband
        • 测试流程自动化 (TPA)
        • 传输网络运营
        • 超大规模
        • 数据中心互连
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
    • 网络设备制造商
      • 网络设备制造商
        • 5G 安全性
        • 5G 网络设备制造商
        • 6G Forward
        • 分析支持
        • 基于云的测试
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • 5G 专网
        • Coherent Optics Testing
        • 现场部署
        • 可扩展制造
        • 技术和服务介绍
        • 测试和开发
      • AIOps
      • Fiber Sensing
      • 开放式 RAN (O-RAN)
      • 5G 专网
      • Public Safety
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
      • 网络安全性
        • Open RAN Security Test
        • VPN 管理解决方案
        • 网络安全性
        • Fiber Sensing
    • 政府与国防
      • 政府与国防
        • Electromagnetic Warfare
        • 光学涂层和滤光器
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • 光学涂层和滤光器
        • 5G 专网
        • Public Safety
        • Secure and Reliable Communications
        • 通用航空
    • 企业和数据中心
      • 企业和数据中心
        • Cloud Monitoring
        • 最终用户体验监控
        • 网络性能监控
        • 5G 专网
        • Unified Communications
        • 网络安全性
        • Cloud Workflow Management
        • 数据中心互连
        • 以太网业务激活测试
        • 光纤和铜缆测试及认证
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
        • WAN 性能测试
        • Fiber Monitoring
        • Fiber Sensing
        • 电力运营商
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • 承包商
      • 承包商
      • 基站安装和调试
      • Data Center Contractor Solutions
      • 光纤和铜缆测试及认证
      • 家用宽带业务安装
      • 适用于现场技术人员的解决方案
      • 适用于安装人员的解决方案
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
    • 定制光学元件和颜料
      • 定制光学元件和颜料
      • 三维传感
      • 防伪
      • 汽车
      • Biomedical Applications
      • 消费电子
      • 定制色彩解决方案
      • 政府/航空航天
      • 工業用
      • 近红外光谱
      • 光谱传感
  • 购买方式
    • 请求报价
    • 样机需求
    • 订单状态
    • 与我们联系
    • 租用设备
    • 融资方案
    • 如何订购
    • 如何订购服务
    • 查找合作伙伴
    • 翻新设备
  • 资源
    • 学习中心
      • 学习中心
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • 什么是 5G 测试?
      • What is a Hyperscale Data Center? (简体中文)
      • 什么是数据中心互连?
      • 什么是光纤端面检测?
      • What is Fiber Optic Sensing?
      • 什么是光纤测试?
      • 什么是光纤监控?
      • 什么是无源光网络 (PON)?
      • 什么是 XGS-PON?
      • What is RF Interference?
      • View All Topics
    • 产品库
    • 博客
    • Subscription Center
    • 视频库
    • 网络研讨会
    • 客户支持
      • 客户支持
      • 客户服务门户
      • 客户服务
      • 技术支持门户
      • 退货授权(RMA)
      • 操作方法视频
      • 知识库
      • 快速参考卡和技术提示
      • 软件下载
      • 保修条款和条件
    • 关于我们
      • 关于我们
      • 奖项和荣誉
      • Environment, Social, and Governance (ESG)
      • 领导层
      • 地点
      • Together with VIAVI
    • 职业
      • 职业
      • Career Paths
      • 搜索和应用
      • Early-Career Program
      • Life at VIAVI
      • 福利和奖励
      • Events
      • 新闻报道
      • 新闻稿
      • 博客
      • Subscription Center
    • 合作伙伴
      • 合作伙伴
      • 查找合作伙伴
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • 政策和标准
      • 隐私政策
      • Terms and Conditions
      • Terms of Use
    • 与我们联系
Search icon
  1. 首页
  2. 资源
  3. 学习中心

What is 5G Mobile Edge Computing (MEC)?

  • What is Mobile Edge Computing 5G?
  • Purpose
  • Advantages and Challenges
  • Architecture
  • Contact an Expert

As Open RAN, beamforming, and Massive MIMO transform the mobile network landscape, the real time intelligence needed for dynamic spectrum allocation, beam management, and service assurance continues to move closer to the edge of the network. With an unmatched portfolio of network monitoring, fiber certification, 5G RAN optimization, and access testing solutions, VIAVI is uniquely qualified to support the expansion of mobile edge computing that comes with 5G adoption.

VIAVI maintains a dedication to testing and assurance throughout the network lifecycle. Advanced emulation and certification tools for the lab expedite and optimize edge data center performance in the field. Cloud-enabled fiber and application test solutions with automated workflows simplify deployment while remote 24/7 monitoring capabilities enable efficient and reliable “lights out” edge data center operation.

  • By migrating computing infrastructure closer to the radio access network (RAN) and end user, increased user density, high-speed transmission, and ultra-low latency requirements introduced by 5G use cases become achievable. Shifting the computing burden to the network edge reduces traffic congestion and improves overall quality of experience (QoE). 5G Distributed Architecture divides the functionality of a traditional base station between a Radio Unit (RU), Distributed Unit (DU) and Centralized Unit (CU). A DU situated at the edge of the network supports lower levels of the protocol stack for a variety of mobility scenarios. To facilitate 5G edge densification, many distributed units can be connected through a single centralized unit closer to the Core network.
  • Massive MIMO (multiple-input, multiple-output) technology utilizes large antenna arrays to improve spectral efficiency and coverage. “Super-massive” MIMO connects multiple arrays together. Steerable antennas within these arrays require precise alignment and real time synchronization that can only be attained through 5G edge computing.
  • The European Telecommunications Standards Institute (ETSI) has established the MEC industry specification group (ISG) to develop a unified standard for edge computing that ensures interoperability for all stakeholders. This standardization brings the telco and cloud ecosystems into alignment and allows third parties to deploy mobile applications more easily.

Multi access edge computing increases flexibility for all access technologies by shifting intelligence, applications, and decisions further from centralized data centers and closer to the user and/or IoT application. Latency reduction and efficiency are enhanced with 5G and edge computing working in tandem, along with QoS and reliability.

  • 5G/6G Performance: As 5G networks are deployed worldwide, tentative steps toward the 6th generation of wireless technology are already underway. The FCC has opened terahertz wave spectrum (95GHz to 3THz) and 3GPP release dates for 6G standards are being set. Exponential speed and bandwidth increases will soon be coupled with nearly imperceptible latency. With range limitations inherent to higher frequencies and IoT use cases multiplying, the demand for MEC deployments will continue to rise.   
  • RAN Intelligent Controller (RIC): As a fundamental component of Open RAN architecture, the software-defined RIC performs essential, time-sensitive functions including load balancing, handover, and interference detection. The RIC automates RAN performance and improves interoperability and agility. The rapid decision-making required by the RIC will add more emphasis on enhanced MEC capabilities. MEC .
  • Beamforming: Along with massive steerable antenna arrays, beamforming technology narrowly focuses 5G signals toward specific user equipment (UE). 5G MEC supports complex beam handover and reconfiguration functions. With communication networks of the future expected to place any application with 1 hub of the user, intelligent software at the edge is essential for beam management. 

5G MEC Use Cases

Bringing the network closer to the user pushes performance to unprecedented levels. Although multi access edge computing enhances broadband delivery, interactive gaming, and Software-as-a-Service (SaaS) applications, the most remarkable edge computing use cases harness the power of 5G and the IoT to transform everyday experiences.

  • Coverage Optimization: The millimeter wave (mmWave) frequencies employed by 5G are limited to a few hundred meters in range and are subject to high path and penetration loss. Although steerable antennas and beamforming technology overcome these obstacles and improve coverage, transmission quality is still highly susceptible to environmental conditions and user mobility. 5G beam measurement and reporting techniques used to optimize handovers and coverage rely on the real-time intelligence delivered through 5G MEC.
  • Public Safety: Improved public safety practices are an undeniable byproduct of 5G and IoT adoption. Enhanced speed and bandwidth support rich media streaming and information access for first responders while reduced latency enables the use of autonomous vehicles in dangerous conditions. With IoT applications expanding to further the use of body-worn cameras and smart city sensors, 5G MEC plays a pivotal role in sustaining public safety evolution.
  • Advanced Driver-Assistance Systems (ADAS): Driverless cars, “vehicle to everything” communication, and breakthroughs in transportation safety, security, and infotainment rely on well-orchestrated network slices and artificial intelligence (AI) to decipher complex mobility scenarios. The autonomous edge supports low latency (1-2ms) ADAS requirements and seamless handovers as vehicle positions rapidly change.
  • Connected Health: A new and improved healthcare ecosystem where technology compliments personalized care will encompass virtual consultations, AV/AR-enabled medical training, and improved access to treatment and diagnostics in rural areas. Next generation connected health applications including remote surgical procedures and wearable IoT devices raise the bar by placing life-or-death importance on 5G edge artificial intelligence and ultra-low latency performance.

Advantages of Mobile Edge Computing

5G MEC safeguards the performance and latency of IoT use cases while providing a higher level of end-to-end visibility. Intelligence at the edge is leveraged to deploy the automation, infrastructure, and analytics that define 5G QoS and reliability.    

  • Automation and Zero-touch operation: 5G, network slicing, beamforming, and the IoT bring dramatic changes to wireless network management and orchestration. Fully automated, “zero-touch” networks capable of self-monitoring and self-healing reduce operational expenses and mean-time-to-repair (MTTR). The visibility needed to implement zero-touch 5G automation cannot be established without end-to-end intelligence deployed from RAN to Core.
  • Spectrum Management: Edge computing 5G intelligence allows the available spectrum to be utilized more efficiently. Dynamic spectrum allocation techniques use real-time feedback from UEs to instantaneously optimize transmission frequencies. Dynamic spectrum sharing (DSS) allows 5G and LTE signals to occupy the same frequency band, instantaneously dividing the available bandwidth based on the traffic demands.
  • Service Optimization: Data and analytics managed closer to the edge provide local visibility into user preferences and traffic patterns to endow differentiated levels of service. Bandwidth availability, power consumption, and application performance are continually optimized, and applications are deployed more efficiently.

Challenges of Mobile Edge Computing

As 5G rollout continues, the challenges and limitations of distributed edge computing continue to be revealed. Many of the breakthrough innovations enabling 5G technology can also be used to address these challenges proactively.

  • Power consumption is an ongoing concern with hardware deployed at thousands of individual tower sites and each 5G base station consuming over twice the energy of its 4G predecessor. Although dual power feeds to improve resiliency are often included in larger data centers, the size and location of 5G edge deployments make this less practical. Lights out (unmanned) edge locations with self-healing capabilities help to lessen 5G MEC energy utilization.  
  • Distribution of intelligence from Core to edge optimizes performance from the user perspective but also introduces a heightened level of system complexity that must be managed. Artificial intelligence and machine learning are among the evolving technologies used to detect and resolve 5G and edge computing issues in real time.
  • Densification is an inevitable result of 5G adoption. The impact of higher device and IoT sensor counts is magnified by the sheer volume of RAN hardware required for short-range mmWave transmission. Densification has driven intelligence and flexibility into distributed networks so that time division duplex (TDD) with efficient uplink and downlink transmission over the same frequency and dynamic network slicing processes can be optimized.

5G edge computing architecture combines elements of cloud computing and virtualized RAN to create a working foundation for 5G operation at the edge of the wireless network.

  • The 3GPP has recognized MEC as a central element of 5G architecture since its inception. Edge computing for 5G mobile networks is defined by 3GPP Technical Specification TS 23.501. Modular, service-based 5G architecture at the edge allows mobile operators to scale their offerings more efficiently.
  • The ETSI MEC guidelines describe MEC software architecture for either 4G or 5G networks and standard APIs. ETSI reference architecture includes a mobile edge host to supply storage, computing, and networking resources and a mobile edge platform for application assistance, authentication, and state change notifications.

Related Links

  • 什么是 5G 时钟同步?
  • 开放式 RAN
公司
  • 关于我们
  • 招贤纳士
  • 投资者关系
  • 新闻稿
  • 合作伙伴
  • 社会责任
专业技术领域
  • 3D 传感
  • 5G 测试
  • 光纤
  • 服务保障
  • 航空电子设备
支持
  • 客户服务
  • 技术支持
  • 支持门户
  • 维修和校准
  • 软件下载
购买方式
  • 请求报价
  • 联系销售人员
  • 查找合作伙伴
  • 订单状态
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • 饼干偏好
  • 与我们联系
  • 站点地图
  • 法律
  • 隐私政策
  • 技术支持
  • 退货授权(RMA)
  • 请求报价
  • 查找合作伙伴
  • 客户服务门户
  • 与我们联系