跳转到主要内容
  • 投资者关系
  • 合作伙伴
  • 博客
  • 与我们联系
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • 实验室及制造
      • 实验室及制造
        • 应用程序仿真
        • Automation and Orchestration
        • UE 仿真
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • 测试即服务 (TaaS)
        • 以太网测试
        • 高速网络
        • 光学制造测试平台
      • 存储网络测试
        • 存储网络测试
        • PCIe 测试设备
        • SAS 和 SATA
        • 光纤通道、以太网、FCoE、NVMeof
        • 协议测试
        • 试验器和生成器
        • 干扰器
    • 网络部署和维护
      • 网络部署和维护
        • 天线校准和监测
        • 资产和数据管理
        • 基站安装与维护
        • 电缆和天线分析仪
        • 干扰侦测
        • 射频分析
      • 光纤
        • 光纤
        • 资产和数据管理
        • 衰减器
        • 比特误码率
        • 铜缆、DSL、WIFI 和宽带测试
        • DOCSIS 测试
        • 光纤测试仪
        • 以太网测试
        • OTDR 和光纤特征分析
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 故障定位仪
        • 光纤传感器
        • 光纤光源
      • 光纤
        • 光纤
        • HFC 测试
        • MPO 测试设备
        • 光万用表
        • 功率计
        • 光谱分析
        • OTDR 测试
        • PON 测试
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • Core Network Assurance
        • 以太网保障
        • RAN Assurance
        • 光纤监控
      • 服务保障
        • 服务保障
        • 5G 保障
        • AIOps
        • 光纤服务保障
        • HFC/有线服务保障
        • 以太网
      • 实验室及制造
        • 实验室及制造
        • Automation and Orchestration
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • 资产和数据管理
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • 以太网保障
        • 光纤监控
    • 铁路和关键应用
      • 铁路和关键应用
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • 性能和威胁可见性
        • 性能和威胁可见性
        • 最终用户体验
        • 丰富的流量收集
        • 数据包分析
        • 数据包捕获收集
        • 数据包元数据收集
      • 测试和认证
        • 测试和认证
        • 比特误码率
        • 以太网测试
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 光纤传感器
        • MPO 测试设备
        • 功率计
    • 陆地移动和军用无线电
      • 陆地移动和军用无线电
      • Communications Service Monitors
      • 陆地移动无线电测试
      • 军用无线电测试
      • 模块化仪器
      • 软件定义的无线电和系统
    • 航空电子设备
      • 航空电子设备
      • ADS-B 合规性
      • 飞机燃油量测试装置和接口
      • 天线耦合器
      • 测距设备 (DME)
      • 光纤航空电子设备
      • GPS 模拟
      • 军用航空电子设备
      • 模块化仪器
      • 导航和通信
      • 无线电高度表 (RADALT)
      • 射频自动测试设备 (RF ATE) 系统
      • 战术空中导航系统 (TACAN)
      • 交通防撞系统 (TCAS)
      • 应答器和询问器
    • 位置、导航和计时
      • 位置、导航和计时
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 定制光学器件
        • 定制光学器件
        • 定制滤光器
        • 光整形光学器件
        • MicroNIR 光谱仪
      • 颜料
        • 颜料
        • 品牌保护
        • ChromaFlair 颜料
        • 安全颜料
        • SpectraFlair 颜料
    • 所有产品
      • 所有产品
      • 所有产品
      • 产品系列
      • 停产的产品
    • 服务
      • 服务
      • Care Support Plans
      • 翻新设备
      • 维修和校准
      • 系统维护和合同
      • 培训
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • 如何订购服务
      • 无线
        • 无线
        • 5G 解决方案
        • 5G 安全性
        • 定时和同步
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • 基站安装
        • 基于云的测试
        • 干扰侦测
        • MU-MIMO Test
        • 网络数字孪生
        • 非地面网络
        • 开放式 RAN (O-RAN)
        • 5G 专网
        • RAN Intelligence Solutions
      • 有线
        • 有线
        • AIOps
        • DWDM
        • 以太网业务激活测试
        • 光纤建设
        • 光纤监控
        • 光纤网络解决方案
        • 光纤传感
        • FTTx
        • HFC Network Test
        • MPO 连接器测试
        • PON 解决方案
        • Rural Broadband
        • 测试流程自动化 (TPA)
        • 传输网络运营
        • 超大规模
        • 数据中心互连
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
    • 网络设备制造商
      • 网络设备制造商
        • 5G 安全性
        • 5G 网络设备制造商
        • 6G Forward
        • 分析支持
        • 基于云的测试
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • 5G 专网
        • Coherent Optics Testing
        • 现场部署
        • 可扩展制造
        • 技术和服务介绍
        • 测试和开发
      • AIOps
      • Fiber Sensing
      • 开放式 RAN (O-RAN)
      • 5G 专网
      • Public Safety
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
      • 网络安全性
        • Open RAN Security Test
        • VPN 管理解决方案
        • 网络安全性
        • Fiber Sensing
    • 政府与国防
      • 政府与国防
        • Electromagnetic Warfare
        • 光学涂层和滤光器
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • 光学涂层和滤光器
        • 5G 专网
        • Public Safety
        • Secure and Reliable Communications
        • 通用航空
    • 企业和数据中心
      • 企业和数据中心
        • Cloud Monitoring
        • 最终用户体验监控
        • 网络性能监控
        • 5G 专网
        • Unified Communications
        • 网络安全性
        • Cloud Workflow Management
        • 数据中心互连
        • 以太网业务激活测试
        • 光纤和铜缆测试及认证
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
        • WAN 性能测试
        • Fiber Monitoring
        • Fiber Sensing
        • 电力运营商
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • 承包商
      • 承包商
      • 基站安装和调试
      • Data Center Contractor Solutions
      • 光纤和铜缆测试及认证
      • 家用宽带业务安装
      • 适用于现场技术人员的解决方案
      • 适用于安装人员的解决方案
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
    • 定制光学元件和颜料
      • 定制光学元件和颜料
      • 三维传感
      • 防伪
      • 汽车
      • Biomedical Applications
      • 消费电子
      • 定制色彩解决方案
      • 政府/航空航天
      • 工業用
      • 近红外光谱
      • 光谱传感
  • 购买方式
    • 请求报价
    • 样机需求
    • 订单状态
    • 与我们联系
    • 租用设备
    • 融资方案
    • 如何订购
    • 如何订购服务
    • 查找合作伙伴
    • 翻新设备
  • 资源
    • 学习中心
      • 学习中心
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • 什么是 5G 测试?
      • What is a Hyperscale Data Center? (简体中文)
      • 什么是数据中心互连?
      • 什么是光纤端面检测?
      • What is Fiber Optic Sensing?
      • 什么是光纤测试?
      • 什么是光纤监控?
      • 什么是无源光网络 (PON)?
      • 什么是 XGS-PON?
      • What is RF Interference?
      • View All Topics
    • 产品库
    • 博客
    • Subscription Center
    • 视频库
    • 网络研讨会
    • 客户支持
      • 客户支持
      • 客户服务门户
      • 客户服务
      • 技术支持门户
      • 退货授权(RMA)
      • 操作方法视频
      • 知识库
      • 快速参考卡和技术提示
      • 软件下载
      • 保修条款和条件
    • 关于我们
      • 关于我们
      • 奖项和荣誉
      • Environment, Social, and Governance (ESG)
      • 领导层
      • 地点
      • Together with VIAVI
    • 职业
      • 职业
      • Career Paths
      • 搜索和应用
      • Early-Career Program
      • Life at VIAVI
      • 福利和奖励
      • Events
      • 新闻报道
      • 新闻稿
      • 博客
      • Subscription Center
    • 合作伙伴
      • 合作伙伴
      • 查找合作伙伴
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • 政策和标准
      • 隐私政策
      • Terms and Conditions
      • Terms of Use
    • 与我们联系
Search icon
  1. 首页
  2. 资源
  3. 学习中心

What is Signal Leakage?

Learn about the challenges of signal leakage testing and the importance of monitoring and controlling leakage for improved customer experience and minimized service disruptions.

  • Signal Leakage
  • Testing Challenges
  • Plant Leakage Testing
  • High-Split Leakage
  • View Products
  • View Blogs

What is RF leakage? Signal leakage refers to the loss or egress of radio frequency (RF) signals from a cable system when they are not properly contained. This can result from a multitude of causes but is generally the result of shielding defects within the cable network. In the US, FCC standards for signal leakage encompass egress from both analog and digital cable systems. Signal leakage has taken on renewed importance recently as issues like LTE interference have piqued government and mobile operator attention globally.

Why Signal Leakage Monitoring is Important

In theory cable networks are closed systems completely isolated from any off-air signals which may be present. This concept allows frequency sharing between off-air and cable signals such as AM/FM radio, remote control cars, wireless phones, CB radio, aeronautical communications, cell phones, and many others.

The reality is that cable networks are not perfectly sealed, and as a result signals from cable networks can escape (egress) and interfere with off-air signals at the same frequencies. Conversely, off-air signals can enter into the cable network (ingress) and interfere with the cable signals.

The FCC limits imposed on signal leakage originated from a public safety perspective, with leakage monitoring in the 108-137 MHz aeronautical band being performed since the 1970’s. RF signals are essential to modern air traffic control systems, so interference caused by leakage beyond an acceptable threshold must be controlled.

With today’s widespread propagation of wireless communication, this same type of egress from cable plants can also disrupt Long Term Evolution (LTE) data transport at higher (UHF) frequencies. Mobile operators pay very high license fees for exclusive use of spectrum bands in this range to deliver cellular services to their customers, and in the US the FCC has the authority to fine any entity which generates interfering signals in these licensed spectrum bands. Similarly, ingress originating from off-air LTE signals has the potential to disrupt wired cable networks if HFC shielding is compromised. In this way, adherence to standards originally intended to enhance public safety can provide the additional benefits of improved customer experience and minimized service disruptions.

Aside from potential for interfering with off-air signals, leaks from cable plants are an indicator of shielding weaknesses that can manifest in many other ways and impact cable subscriber quality of experience. While HFC leakage detection and remediation systems were originally adopted to comply with US FCC requirements, cable operators globally have recognized the value in overall plant hardening enabled by finding and fixing plant weaknesses identified by leakage tools.

Check out the new standard in GPS leakage management

The challenges associated with signal leakage might be best summarized through an analogy to fluid leakage, since damaged connections, aging parts, and open-ended lines are some of the potential leakage sources in both instances. However, unlike fluid leakage, cable signal leakage is invisible, and therefore more difficult to pinpoint the source of the leak. Given this constraint, a signal leak from one location can potentially mask a leak from a nearby location. Signal leaks can also be intermittent, meaning a slight bend or movement in the cable from one point in time to the next can render the leak undetectable. Metal objects can also interfere with signal leakage detection equipment.

Since this equipment was originally conceived to accommodate the aeronautical VHF frequencies, long standing practices and equipment are not always effective in detecting leakage at higher frequencies or measuring noise-like QAM signals. Rapidly changing technology and increased airwave traffic requires versatile test equipment, technician training, and processes to evolve at breakneck speed.

Another challenge facing leakage monitoring systems is determining which detected signals originate from within a specific cable network versus from other sources. To allow this discrimination, leakage monitoring systems will inject a “tag” or unique RF signal into the cable plant that can then be detected by the field monitoring tools. Anytime that the field gear detects this unique tag signal they can be sure that the detected signal is leaking from their specific system and not an overbuilt competitors’ system or other ambient source.

Instead of detecting signal tags injected into downstream or OFDM pilot leakage out of cable networks, an innovative approach has been developed for use in high split plants. This approach uses OFDMA Upstream Data Profile (OUDP) test bursts transmitted by DOCSIS 3.1 or higher cable modems as the unique signal that advanced leakage detectors use to identify emissions from HFC networks. These test bursts are already defined in DOCSIS specifications, all deployed DOCSIS 3.1 CPE should support OUDP operation with no new development required. Many legacy leakage meters deployed today don’t have hardware capable of OUDP detection, but advanced meters with software-defined radio-based architectures like the VIAVI Seeker X can with just a field-deployable firmware update.

While the equipment and technology has changed radically since egress testing was first implemented for use in the aeronautical band, the basic tenants required for accurate signal leakage testing remain unchanged. Calibration of all leakage detection equipment is the first important step for ensuring accurate measurements in the field or subscriber premises.

Routine Monitoring

The FCC mandates all cable operators to routinely identify and repair any cable leakage measured to be greater than 17 µV/m at 3 meters and maintain leakage maintenance records. In addition, the cumulative leakage index (CLI) must be assessed once per year.

Established in 1985 to protect the integrity of aeronautical communications, the CLI is a measure of the cumulative or additive signal leakage produced by the system in total. This index can be determined either through ground-based testing (drive out through system and log all leaks), or by using specialized aircraft to measure the leakage from an altitude of 450 meters.

Outside plant leakage testing is generally performed by driving in a methodical pattern, using GPS to locate leakage locations on a map. When leaks greater than 17 µV/m are detected by leakage meters, FCC guidelines for leakage measurement and repair must be followed. Ideally the same gear that is used in drive out testing can be removed from the truck and used for walk out testing to find and fix the actual leak sources. It is critical that leakage gear support both low and high frequency leaks as most leaks are frequency-specific and show up at just one end of the spectrum or the other. Much of the magic in leakage monitoring systems resides in the centralized post-processing of field leakage data to eliminate redundant leaks and properly indicate the lat/long coordinates of the leak source.

Although the monitoring of outside cable leakage is required by the FCC, the practice should be considered a prudent one for maintaining safe and effective operations, regardless of the regulated requirements. Monitoring “drive out” leakage can also supplement user leakage data trending and paint a more complete picture of the overall system leakage. Ideally, leakage drive out data is correlated with proactive network maintenance (PNM) data to pinpoint the location of plant issues, quantify number of subscribers impacted by them, and speed the field find and fix process.

Cable operators globally are beginning to implement high-split architectures, extending their upstream frequencies from 42 or 65MHz up to 204Mhz in an effort to keep up with exploding broadband upstream demand. Expanding a 42MHz network to 204MHz in the upstream provides >500% increase in usable spectrum, potentially deferring the need for node splits for many years. This migration creates many challenges, with high-split leakage being among the toughest. The aeronautical band that is subject to the FCC mandate currently resides in the downstream of sub-split and mid-split networks, but moves to the upstream in high split networks. This breaks existing leakage processes and equipment and drives the need for a new approach.

Home Signal Leakage Testing

Signal leakage detection inside the end user’s premises using the same techniques as plant leakage requires high sensitivity equipment because the signal levels within the home are lower than outside plant levels, especially when digital services are installed. The lower signal levels within a customer’s home also make it less likely for these leaks to interfere with off-air signals outside of the home but testing for leakage in the home is critical for another reason. As mentioned earlier, the same shielding weaknesses that allow egress out of the cable plant also can allow ingress in. Up to 95% of ingress into cable plans comes from homes and drops, so ensuring that homes/drops are tight can pay huge dividends for cable operators in improved service quality and reduced OPEX.

  • VIAVI Seeker X is a BTR Diamond Award Winner. Watch video

    Read more about the Home Leakage Test Kit 2018 BTR Diamond Award

Pressure Test with HL Transmitter

Leakage meters that can detect potential egress/ingress points even when the ambient source is not present are vital to maintaining a high-quality user experience. Going back to the fluid leakage analogy, a common technique used to test for existing or potential fluid leaks is the use of hydraulic pressure to detect or verify resistance to leakage. The increased pressure enables detection of minor weaknesses that would be undetectable at standard pressures.

This same basic concept can be employed for in-home signal leakage testing. By utilizing the Seeker HL in conjunction with an OneExpert (ONX) or DSP meter, high output test carriers at +60 dBmV can be injected into the system at the ground block or tap, thereby “pressurizing” the home network to make weaknesses due to damage or other quality issues more easily detectable.

OneCheck Test on OneExpert

Automation and simplification of test practices is extremely valuable as it can lead to more efficient and consistent in-home leakage certification and troubleshooting. The OneExpert (ONX) CATV signal analysis meter features a OneCheck dashboard with a collection of stored automated tests. Pressure testing routines are a natural fit for this recall interface.

Get Introduced to Home Leakage Testing with VIAVI

Start detecting signal leakage with VIAVI today!

Are you ready to take the next step with one of our signal leakage products or solutions? Complete one of the following forms to continue:

  • Contact a product expert in your region
  • Request a demo
  • Request a quote

Related Links

  • Home Leakage
  • What is High-Split Leakage?
  • 设备泄漏
公司
  • 关于我们
  • 招贤纳士
  • 投资者关系
  • 新闻稿
  • 合作伙伴
  • 社会责任
专业技术领域
  • 3D 传感
  • 5G 测试
  • 光纤
  • 服务保障
  • 航空电子设备
支持
  • 客户服务
  • 技术支持
  • 支持门户
  • 维修和校准
  • 软件下载
购买方式
  • 请求报价
  • 联系销售人员
  • 查找合作伙伴
  • 订单状态
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • 饼干偏好
  • 与我们联系
  • 站点地图
  • 法律
  • 隐私政策
  • 技术支持
  • 退货授权(RMA)
  • 请求报价
  • 查找合作伙伴
  • 客户服务门户
  • 与我们联系