跳转到主要内容
  • 投资者关系
  • 合作伙伴
  • 博客
  • 与我们联系
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
后退
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • 实验室及制造
      • 实验室及制造
        • 应用程序仿真
        • Automation and Orchestration
        • UE 仿真
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • 测试即服务 (TaaS)
        • 以太网测试
        • 高速网络
        • 光学制造测试平台
      • 存储网络测试
        • 存储网络测试
        • PCIe 测试设备
        • SAS 和 SATA
        • 光纤通道、以太网、FCoE、NVMeof
        • 协议测试
        • 试验器和生成器
        • 干扰器
    • 网络部署和维护
      • 网络部署和维护
        • 天线校准和监测
        • 资产和数据管理
        • 基站安装与维护
        • 电缆和天线分析仪
        • 干扰侦测
        • 射频分析
      • 光纤
        • 光纤
        • 资产和数据管理
        • 衰减器
        • 比特误码率
        • 铜缆、DSL、WIFI 和宽带测试
        • DOCSIS 测试
        • 光纤测试仪
        • 以太网测试
        • OTDR 和光纤特征分析
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 故障定位仪
        • 光纤传感器
        • 光纤光源
      • 光纤
        • 光纤
        • HFC 测试
        • MPO 测试设备
        • 光万用表
        • 功率计
        • 光谱分析
        • OTDR 测试
        • PON 测试
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • Core Network Assurance
        • 以太网保障
        • RAN Assurance
        • 光纤监控
      • 服务保障
        • 服务保障
        • 5G 保障
        • AIOps
        • 光纤服务保障
        • HFC/有线服务保障
        • 以太网
      • 实验室及制造
        • 实验室及制造
        • Automation and Orchestration
        • 云 UE 仿真
        • 核心仿真
        • 核心测试
        • O-CU 模拟器
        • O-CU 测试
        • O-DU 测试
        • O-RU 测试
        • RIC 测试
        • 安全验证
        • Network APIs
        • 资产和数据管理
        • 光纤监控
        • 虚拟测试和激活
        • AIOps
        • 以太网保障
        • 光纤监控
    • 铁路和关键应用
      • 铁路和关键应用
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • 性能和威胁可见性
        • 性能和威胁可见性
        • 最终用户体验
        • 丰富的流量收集
        • 数据包分析
        • 数据包捕获收集
        • 数据包元数据收集
      • 测试和认证
        • 测试和认证
        • 比特误码率
        • 以太网测试
        • 光纤识别仪
        • 光纤端面检测和清洁
        • 光纤传感器
        • MPO 测试设备
        • 功率计
    • 陆地移动和军用无线电
      • 陆地移动和军用无线电
      • Communications Service Monitors
      • 陆地移动无线电测试
      • 军用无线电测试
      • 模块化仪器
      • 软件定义的无线电和系统
    • 航空电子设备
      • 航空电子设备
      • ADS-B 合规性
      • 飞机燃油量测试装置和接口
      • 天线耦合器
      • 测距设备 (DME)
      • 光纤航空电子设备
      • GPS 模拟
      • 军用航空电子设备
      • 模块化仪器
      • 导航和通信
      • 无线电高度表 (RADALT)
      • 射频自动测试设备 (RF ATE) 系统
      • 战术空中导航系统 (TACAN)
      • 交通防撞系统 (TCAS)
      • 应答器和询问器
    • 位置、导航和计时
      • 位置、导航和计时
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 定制光学器件
        • 定制光学器件
        • 定制滤光器
        • 光整形光学器件
        • MicroNIR 光谱仪
      • 颜料
        • 颜料
        • 品牌保护
        • ChromaFlair 颜料
        • 安全颜料
        • SpectraFlair 颜料
    • 所有产品
      • 所有产品
      • 所有产品
      • 产品系列
      • 停产的产品
    • 服务
      • 服务
      • Care Support Plans
      • 翻新设备
      • 维修和校准
      • 系统维护和合同
      • 培训
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • 如何订购服务
      • 无线
        • 无线
        • 5G 解决方案
        • 5G 安全性
        • 定时和同步
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • 基站安装
        • 基于云的测试
        • 干扰侦测
        • MU-MIMO Test
        • 网络数字孪生
        • 非地面网络
        • 开放式 RAN (O-RAN)
        • 5G 专网
        • RAN Intelligence Solutions
      • 有线
        • 有线
        • AIOps
        • DWDM
        • 以太网业务激活测试
        • 光纤建设
        • 光纤监控
        • 光纤网络解决方案
        • 光纤传感
        • FTTx
        • HFC Network Test
        • MPO 连接器测试
        • PON 解决方案
        • Rural Broadband
        • 测试流程自动化 (TPA)
        • 传输网络运营
        • 超大规模
        • 数据中心互连
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
    • 网络设备制造商
      • 网络设备制造商
        • 5G 安全性
        • 5G 网络设备制造商
        • 6G Forward
        • 分析支持
        • 基于云的测试
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • 5G 专网
        • Coherent Optics Testing
        • 现场部署
        • 可扩展制造
        • 技术和服务介绍
        • 测试和开发
      • AIOps
      • Fiber Sensing
      • 开放式 RAN (O-RAN)
      • 5G 专网
      • Public Safety
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
      • 网络安全性
        • Open RAN Security Test
        • VPN 管理解决方案
        • 网络安全性
        • Fiber Sensing
    • 政府与国防
      • 政府与国防
        • Electromagnetic Warfare
        • 光学涂层和滤光器
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • 光学涂层和滤光器
        • 5G 专网
        • Public Safety
        • Secure and Reliable Communications
        • 通用航空
    • 企业和数据中心
      • 企业和数据中心
        • Cloud Monitoring
        • 最终用户体验监控
        • 网络性能监控
        • 5G 专网
        • Unified Communications
        • 网络安全性
        • Cloud Workflow Management
        • 数据中心互连
        • 以太网业务激活测试
        • 光纤和铜缆测试及认证
        • MPO 连接器测试
        • 第 1 层(基本)光纤认证
        • 第 2 层(扩展)光纤认证
        • WAN 性能测试
        • Fiber Monitoring
        • Fiber Sensing
        • 电力运营商
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • 承包商
      • 承包商
      • 基站安装和调试
      • Data Center Contractor Solutions
      • 光纤和铜缆测试及认证
      • 家用宽带业务安装
      • 适用于现场技术人员的解决方案
      • 适用于安装人员的解决方案
      • 适用于运营经理的解决方案
      • 测试流程自动化 (TPA)
    • 定制光学元件和颜料
      • 定制光学元件和颜料
      • 三维传感
      • 防伪
      • 汽车
      • Biomedical Applications
      • 消费电子
      • 定制色彩解决方案
      • 政府/航空航天
      • 工業用
      • 近红外光谱
      • 光谱传感
  • 购买方式
    • 请求报价
    • 样机需求
    • 订单状态
    • 与我们联系
    • 租用设备
    • 融资方案
    • 如何订购
    • 如何订购服务
    • 查找合作伙伴
    • 翻新设备
  • 资源
    • 学习中心
      • 学习中心
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • 什么是 5G 测试?
      • What is a Hyperscale Data Center? (简体中文)
      • 什么是数据中心互连?
      • 什么是光纤端面检测?
      • What is Fiber Optic Sensing?
      • 什么是光纤测试?
      • 什么是光纤监控?
      • 什么是无源光网络 (PON)?
      • 什么是 XGS-PON?
      • What is RF Interference?
      • View All Topics
    • 产品库
    • 博客
    • Subscription Center
    • 视频库
    • 网络研讨会
    • 客户支持
      • 客户支持
      • 客户服务门户
      • 客户服务
      • 技术支持门户
      • 退货授权(RMA)
      • 操作方法视频
      • 知识库
      • 快速参考卡和技术提示
      • 软件下载
      • 保修条款和条件
    • 关于我们
      • 关于我们
      • 奖项和荣誉
      • Environment, Social, and Governance (ESG)
      • 领导层
      • 地点
      • Together with VIAVI
    • 职业
      • 职业
      • Career Paths
      • 搜索和应用
      • Early-Career Program
      • Life at VIAVI
      • 福利和奖励
      • Events
      • 新闻报道
      • 新闻稿
      • 博客
      • Subscription Center
    • 合作伙伴
      • 合作伙伴
      • 查找合作伙伴
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • 政策和标准
      • 隐私政策
      • Terms and Conditions
      • Terms of Use
    • 与我们联系
Search icon
  1. 首页
  2. 资源
  3. 学习中心

What is R-PHY?

Take a deep dive into Remote PHY and understand how to overcome challenges with testing.

  • Remote PHY
  • Distributed Access Architectures
  • Testing and Monitoring
  • View Poster
  • View White Paper
  • View White Paper

Remote PHY (also known as R-PHY, R PHY, and RPHY) is a type of distributed access architecture (DAA) that moves the physical layer from the headend or hub to the edge of the access network. Remote PHY architecture splits the components of the headend between the MAC layer and PHY layer. This innovative technology allows the MAC functionality, including bandwidth scheduling and signaling, to remain in the headend, while the PHY functionality is pushed to the network’s fiber nodes.

A Remote PHY device (RPD) at the network edge converts the downstream data transmitted from the core from digital to analog and transforms upstream data from end users from analog to digital format. The RPD includes QAM modulators for downstream translation and QAM demodulators for upstream traffic. The converged cable access platform core (CCAP core) at the headend or in a data center can include a CMTS core element to service DOCSIS transmission as well as an EQAM core for video signals.

The Importance of Remote PHY

Remote PHY has gained popularity among service providers by alleviating the rack space, power consumption, and cooling constraints in the hub of the network. CableLabs introduced the Remote PHY specifications in 2015 to take full advantage of DOCSIS and Ethernet transport technologies, allowing cable operators to efficiently transmit more data over the same amount of spectrum and meet customer demands for faster transport speeds. 

The insatiable appetite for bandwidth to support services such as 4k and IP video has now validated the projections that Remote PHY explained. An increase in remote work and schooling has further transformed network usage patterns, with more demand for videoconferencing, educational platforms, and other more symmetric (equal upstream and downstream consumption) services. Upstream consumption has increased significantly singe the pandemic and shows no signs of slowing. Most households and businesses now have multiple devices accessing the network at any given time, further driving demand for higher service tiers. 

For this to happen, an exponential number of node splits are required to reduce service group sizes. In some cases, the number of nodes will increase by a multiple of 5-10x over the next five years. While this can increase speeds and per-subscriber capacity, it also creates new problems in the head-end or hub. More space/power/cooling capacity are required in the hub to accommodate the exponential number of nodes splits. Remote PHY relieves these issues.
 

Remote PHY is part of a larger family of technologies known as distributed access architectures (DAA) that alleviate congestion in the hub by spreading the load across the access network. In general, DAA technologies such as R-PHY, R-MACPHY, and R-CCAP provide options to virtualize and move specific elements of a network out of the hub and closer to subscribers.

As more functionality moves away from the core, hubs are gradually evolving from housings with rows of specialized equipment and RF splitting/combining networks into collections of optical switches and routers, similar to “mini” data centers. R-MACPHY and R-CCAP have been adopted to some extent by the cable industry, although Remote PHY is the most popular DAA option to-date, based on enthusiastic early acceptance by network equipment manufacturers (NEMs) and a fully completed and released CableLabs standard.

Flexible MAC Architecture (FMA) represents the continued advancement of DAA technology beyond R-PHY, with an architecture conceived around the flexible location of MAC functions in the headend or distributed in the access network. The FMA library of specifications published by CableLabs in September of 2020 defines the disaggregation of management, control, and data planes into discrete elements. FMA also emphasizes equipment and interface interoperability, giving cable operators more opportunities to mix and match the best combination of technologies and suppliers.

Download the free white paper: Remote PHY Architectures: Operational Challenges and Opportunities

 


Advantages of Remote PHY

In addition to reducing space/power/cooling requirements in the hub, R-PHY also replaces the analog optical link with a commodity digital fiber 10G or higher Ethernet link. This provides distinct advantages for the network moving forward. A digital fiber link is easier to set up and more reliable, thereby requiring less maintenance and technician time. Significant signal to noise ratio (SNR) improvement is also achieved by using digital optical links instead of amplitude modulated links, potentially enabling more bits to pass through each Hz of spectrum via higher modulation orders in DOCSIS 3.1.

The 10G Ethernet link also creates an economical path for providers to add new services in the future. A new FTTH connection to a high-usage customer or small business can be accomplished very economically with a 10G Ethernet digital fiber connection already accessible. The digital link to the optical node also allows for longer fiber runs in the network, enabling greater flexibility in collapsing hub sites.

Pushing fiber deeper into the access network via DAA is also directionally aligned with fiber deep and N+0 plans, Full-Duplex DOCSIS (FDX) rollouts, and selective FTTH/PON connectivity for high bandwidth businesses and users. The speed and efficiency of R-PHY coupled with 10G EPON or XGS-PON is a dynamic combination for high symmetrical bandwidth with reduced power consumption.

Remote PHY creates new opportunities to support 5G deployment, as the same 10G Ethernet links can be leveraged for 5G xHaul applications. R-PHY expands upon the 5G monetization opportunities for cable providers that include leasing of deployed dark fiber, offering Ethernet bandwidth as a paid service, and utilizing FDX links for 5G xHaul.

The Generic Access Platform (GAP) could potentially promote the service flexibility of R-PHY deployments further by creating a standardized node housing that accepts pluggable modules for 5G, WiFi, FTTH, or DOCSIS. Each slot in a GAP enclosure is allotted a budget for power consumption and thermal dissipation and is fully adaptable to new technology deployment within each service group.


R-PHY Challenges for Testing

Deploying Remote PHY creates some unique challenges for testing. Specifically, R-PHY removes the RF feed from the hub, which also negates the use of dedicated test and monitoring gear in these locations. This change has a direct impact on actions such as return path monitoring, sweep, and transmitting leakage tagger signals.

Remote PHY can also introduce timing issues between the MAC and PHY layers, since R-PHY separates these previously co-located elements of the CCAP core, making it more difficult to keep the timing in sync. If precision timing protocol (PTP) messages are delayed, timing sync can be thrown off, and upstream packets from different modems can collide and introduce errors that are difficult to troubleshoot without the right equipment and training.

Video Verification is another important test challenge for Remote PHY cable operators, since the combined video RF is created at the RPD and cannot be tested before the RPD is deployed and activated. Common video issues include missing channels, programs not running, missing packet identifiers (PIDs), and Out of Band (OOB) carriers that are not enabled. A lengthy and complex manual video verification test process requiring multiple instruments can be reduced to 5 minutes or less, using the OneCheck video analysis application of the handheld OneExpert CATV signal analysis meter.

Remote PHY has created a proliferation of new NEMs entering the market, which gives providers more choices but can also create confusion and complexity concerning test practices. Many NEMs offer point-solution testing tools that only partially support other vendors' gear. This means technicians must be trained and equipped with a wider mix of test tool combinations to accurately maintain and troubleshoot the situations they may encounter.


Remote PHY and Fiber

Fiber has been an important element of cable networks since the first hybrid fiber-coaxial (HFC) networks were deployed, but distributed access architectures like R-PHY are rapidly accelerating the deployment of digital fiber and complicating the fiber testing challenges. Advanced fiber transmission technologies like dense wavelength division multiplexing (DWDM) require more comprehensive testing as fibers are migrated from analog optical links to digital Ethernet links.

DWDM networks are more complicated to install, troubleshoot, and maintain versus previous technologies and require new equipment to support. Turning up R-PHY optical nodes requires the certification or validation of the fiber physical layer links feeding the new R-PHY optical nodes. Newly activated DWDM wavelengths must be verified to route correctly from hub to node through any MUX/deMUX (optical combiner/splitter), and the optical power of each channel must be tested at the appropriate wavelength.

This applies to newly laid fiber as well as any legacy analog fibers that are repurposed for Remote PHY. Dispersion of legacy fibers should also be evaluated, since chromatic dispersion (CD) and polarization mode dispersion (PMD) levels beyond IEEE 802.3ae-2002 limits can impair digital fiber performance at 10G transmission rates.

R-PHY is leading to a massive increase in deployed fiber, meaning more technicians must be trained and equipped appropriately. Complete fiber characterization for high- speed links includes connector inspection, bi-directional loss testing, distance and reflectance measurement, in addition to any DWDM, synchronization, and dispersion testing required by the configuration. R-PHY fiber test tools from VIAVI have empowered technicians by introducing advanced automation, portability, and cloud connectivity to the E2E Remote PHY fiber tool kit.


Leveraging the Remote PHY Unit

Virtualization of certain aspects of the hub for Remote PHY obviously has its challenges but also creates advantages moving forward. The technology within each R-PHY device (RPD) can be useful for monitoring the upstream RF, supporting the field find and fix for technicians, and enabling return sweep including real-time field meter interaction. It also provides the downstream RF tagging needed for leakage monitoring and troubleshooting systems.

Ethernet test gear designed for CATV is used to validate new R-PHY device turn-ups and troubleshoot timing issues for Remote PHY nodes that split the MAC and PHY layers. Virtualizing the upstream spectral analysis capabilities previously handled by hub-mounted hardware into the RPD enables continuity of these critical capabilities in a R-PHY environment.

The RPD can be leveraged further to transmit and receive sweep telemetry signaling with existing field sweep meters, enabling a common sweep process between legacy and Remote PHY nodes. In this case, the technician uses the same process and meter regardless of the optical node type or service provision gear in use, effectively insulating the technician from the underlying complexity. Leakage tagger functionality is also virtualized into Remote PHY nodes to enable this critical plant maintenance capability in this new virtualized environment.

VIAVI has developed the OneExpert CATV field instrument and the XPERTrak monitoring solution for networks that are deploying R-PHY and other DAA technologies. The OneExpert CATV meter can be used to test both legacy and virtualized environments while automating tests and conveniently displaying pass/fail results on a dashboard. XPERTrak simplifies the transition to R-PHY by enabling continuity of critical test capabilities, including interoperation with deployed VIAVI field meters for return sweep and ingress remediation.

For Ethernet testing in R-PHY environments, the T-BERD/MTS 5800 and MAP-2100 provide unmatched field test and monitoring capabilities. As the industry’s smallest 10G handheld tester, the T-BERD/MTS 5800 performs automated Ethernet service activation and integrated timing/synchronization testing. The MAP-2100 is a rack-mounted test solution for remote Ethernet bit-error-rate (BER) testing that can be utilized effectively for service activation and ongoing transmission quality verification.

For the essential fiber testing processes in R-PHY, the 4100 series DWDM OTDR module with Smart Link Mapper Smart Link Mapper (supported on the T-BERD/MTS 2000, 4000V2 & 5800), OCC-56C DWDM Optical Channel Checker along with fiber inspection tools such as the P5000i (also supported by the T-BERD/MTS platforms) or FiberChek Probe provide a complete fiber testing solution with everything required to deploy, certify, and troubleshoot new or existing fiber links, including those with DWDM services.

To gain more in-depth knowledge about Remote PHY read, “Remote PHY Architectures: Operational Challenges and Opportunities”. More detailed information regarding sweep testing for Remote PHY and DOCSIS 3.1 can be found in the application note, “Sweeping in an Evolving Network”.

Short on time? There are two great webinars that can help. “Remote PHY: Problems Solved, and Problems Created by DAA” and, “Exploring Distributed Access Architectures” will get you up to speed in no time.


VIAVI tools to simplify your R-PHY Transition

Simplify your R-PHY Transition

资源

  • 白皮书和书籍

    Test Guide to DAA Planning Deployment & Maintenance
  • 白皮书和书籍

    Remote PHY Roll-outs
  • 白皮书和书籍

    CCAP and Remote PHY in the Headend

Related Links

  • OTDR 测试
  • 什么是光纤端面检测?
  • 远程光纤测试和监测
公司
  • 关于我们
  • 招贤纳士
  • 投资者关系
  • 新闻稿
  • 合作伙伴
  • 社会责任
专业技术领域
  • 3D 传感
  • 5G 测试
  • 光纤
  • 服务保障
  • 航空电子设备
支持
  • 客户服务
  • 技术支持
  • 支持门户
  • 维修和校准
  • 软件下载
购买方式
  • 请求报价
  • 联系销售人员
  • 查找合作伙伴
  • 订单状态
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • 饼干偏好
  • 与我们联系
  • 站点地图
  • 法律
  • 隐私政策
  • 技术支持
  • 退货授权(RMA)
  • 请求报价
  • 查找合作伙伴
  • 客户服务门户
  • 与我们联系