Перейти к основному содержанию
  • Инвесторы
  • Партнеры
  • Блог
  • Контакты
Назад
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Назад
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Лабораторные и производственные решения
      • Лабораторные и производственные решения
        • Эмуляция приложений
        • Automation and Orchestration
        • Эмуляция пользовательского оборудования
        • Облачная эмуляция пользовательского оборудования
        • Эмуляция основной сети
        • Тестирование основной сети
        • Имитатор открытого центрального устройства (O-CU)
        • Тестирование открытого центрального устройства (O-CU)
        • Тестирование открытого распределенного устройства (O-DU)
        • Тестирование открытого радиоустройства (O-RU)
        • Тестирование дистанционного интерфейса управления (RIC)
        • Подтверждение безопасности
        • Тестирование согласно сервисной модели (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Платформа для производственных испытаний оптических компонентов
      • Тестирование сетей хранения данных
        • Тестирование сетей хранения данных
        • Тестовое оборудование для PCIe
        • SAS и SATA
        • Оптоволоконный канал, Ethernet, FCoE, NVMeoF
        • Тестирование протоколов
        • Устройства тестирования и генераторы
        • Передатчики преднамеренных помех
    • Развертывание и обслуживание сетей
      • Развертывание и обслуживание сетей
        • Мониторинг и юстировка антенн
        • Управление ресурсами и данными
        • Монтаж и обслуживание базовых станций
        • Анализатор антенно-фидерных устройств
        • Поиск и локализация помех
        • Анализ радиочастот
      • Оптоволокно
        • Оптоволокно
        • Управление ресурсами и данными
        • Оптические aттенюаторы
        • Частота битовых ошибок
        • Тестирование медных кабелей, DSL, WIFI и широкополосных систем
        • Тестирование DOCSIS
        • Оптические тестеры
        • Ethernet Test
        • Оптические рефлектометры и оценка состояния волокна
        • Оптические Идентификаторы
        • Проверка и очистка оптоволокна
        • Локаторы повреждений
        • Оптические датчики
        • Оптические источники излучения
      • Оптоволокно
        • Оптоволокно
        • Тестирование гибридной волоконно-оптической/коаксиальной линии (HFC)
        • Тестовое оборудование для многоволоконных кабелей (MPO/MTP)
        • Optical Multimeter
        • Измерители мощности
        • Анализ оптического спектра
        • Оптическая рефлектометрия
        • Тестирование PON
        • Мониторинг ВОЛС
        • Виртуальное испытание и активация
        • Искусственный интеллект для ИТ-операций (AIOps)
        • Core Network Assurance
        • Обеспечение качества Ethernet
        • RAN Assurance
        • Мониторинг ВОЛС
      • Обеспечение качества сервисов
        • Обеспечение качества сервисов
        • Обеспечение качества 5G
        • Искусственный интеллект для ИТ-операций (AIOps)
        • Контроль качества услуг по оптоволокну
        • Обеспечение качества услуг по гибридному коаксиальному кабелю
        • Обеспечение качества транспортной сети
      • Лабораторные и производственные решения
        • Лабораторные и производственные решения
        • Automation and Orchestration
        • Облачная эмуляция пользовательского оборудования
        • Эмуляция основной сети
        • Тестирование основной сети
        • Имитатор открытого центрального устройства (O-CU)
        • Тестирование открытого центрального устройства (O-CU)
        • Тестирование открытого распределенного устройства (O-DU)
        • Тестирование открытого радиоустройства (O-RU)
        • Тестирование дистанционного интерфейса управления (RIC)
        • Подтверждение безопасности
        • Network APIs
        • Управление ресурсами и данными
        • Мониторинг ВОЛС
        • Виртуальное испытание и активация
        • Искусственный интеллект для ИТ-операций (AIOps)
        • Обеспечение качества Ethernet
        • Мониторинг ВОЛС
    • Железные дороги и ответственные объекты
      • Железные дороги и ответственные объекты
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Визуализация производительности и угроз
        • Визуализация производительности и угроз
        • Опыт конечных пользователей
        • Сбор расширенных потоков
        • Анализ пакетов
        • Сбор захваченных пакетов
        • Сбор метаданных пакетов
      • Тестирование и сертификация
        • Тестирование и сертификация
        • Частота битовых ошибок
        • Ethernet Test
        • Идентификаторы оптоволокна
        • Проверка и очистка оптоволокна
        • Оптоволоконные датчики
        • Тестовое оборудование для многоволоконных кабелей (MPO/MTP)
        • Измерители мощности
    • Наземные мобильные и военные средства радиосвязи
      • Наземные мобильные и военные средства радиосвязи
      • Communications Service Monitors
      • Тестирование наземных мобильных радиостанций
      • Тестирование радиостанций военного назначения
      • Modular Instrumentation
      • Программно определяемые радиосистемы (SDR)
    • Авионика
      • Авионика
      • Соответствие стандарту ADS-B
      • Контрольно-измерительные комплекты и интерфейсы для анализа количества авиационного топлива
      • Блоки согласования для тестирования бортовых систем и антенн
      • Оборудование для измерения расстояния (DME)
      • ВОЛС для авиации
      • Имитация GPS
      • Военная авионика
      • Modular Instrumentation
      • Навигация и связь
      • Радиоальтиметры (RADALT)
      • Оборудование для систем автоматического радиочастотного тестирования (RF ATE)
      • Тактические аэронавигационные системы (TACAN)
      • Системы предупреждения о столкновении в воздухе (TCAS)
      • Транспондер и маяк-запросчик для систем свой/чужой и систем радиолокационного наблюдения
    • Позиционирование, навигация и синхронизация
      • Позиционирование, навигация и синхронизация
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Специализированные оптические компоненты
      • Специализированные оптические компоненты
      • Специализированная оптика
        • Специализированная оптика
        • Специализированные оптические фильтры
        • Инструменты для формирования направленных пучков света
        • Спектрометры MicroNIR
      • Пигменты
        • Пигменты
        • Защита бренда от фальсификаций (антиконтрафакт)
        • Оптические пигменты ChromaFlair
        • Защитные пигменты
        • Оптические пигменты SpectraFlair
    • Все оборудование
      • Все оборудование
      • Все оборудование
      • Оборудование по линейному ряду
      • Оборудование, снятое с производства
    • СЕРВИСЫ
      • СЕРВИСЫ
      • Программы технической поддержки
      • Восстановленное оборудование
      • Repair and Calibration
      • Техническое обеспечение систем и контракты
      • Обучение
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Беспроводные сети
        • Беспроводные сети
        • 5G решения
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • Искусственный интеллект для ИТ-операций (AIOps)
        • Automated Lab-as-a-Service for Open RAN
        • Монтаж базовых станций
        • Тестирование на основе облачных вычислений
        • Поиск и локализация помех
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Проводные сети
        • Проводные сети
        • Искусственный интеллект для ИТ-операций (AIOps)
        • DWDM
        • Тестирование активации Ethernet-служб
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • Тестирование МРО-разъемов
        • Решения для PON
        • Rural Broadband
        • Автоматизация процесса тестирования (TPA)
        • Эксплуатация транспортной сети
        • Гипермасштабирование
        • ЦОД и подключения
        • Тестирование МРО-разъемов
        • Сертификация оптоволокна по Tier 1 (базовый уровень)
        • Сертификация оптоволокна по Tier 2 (расширенный уровень)
    • Производители сетевого оборудования
      • Производители сетевого оборудования
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Аналитическая поддержка
        • Тестирование на основе облачных вычислений
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Развертывание в полевых условиях
        • Масштабируемое производство
        • Введение в технологии и обслуживание
        • Тестирование и разработка
      • Искусственный интеллект для ИТ-операций (AIOps)
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Решения для руководителей проектов
      • Автоматизация процесса тестирования (TPA)
      • Безопасность сети
        • Open RAN Security Test
        • Решения для управления VPN
        • Безопасность сети
        • Fiber Sensing
    • Госсектор и оборона
      • Госсектор и оборона
        • Electromagnetic Warfare
        • Оптические покрытия и фильтры
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Оптические покрытия и фильтры
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • Авиация общего назначения
    • Корпоративные сети и ЦОД
      • Корпоративные сети и ЦОД
        • Cloud Monitoring
        • Мониторинг опыта конечного пользователя
        • Мониторинг производительности сети
        • Private 5G
        • Unified Communications
        • Безопасность сети
        • Cloud Workflow Management
        • Data Center Interconnect
        • Тестирование активации Ethernet-служб
        • Fiber and Copper Test and Certification
        • Тестирование МРО-разъемов
        • Сертификация оптоволокна по Tier 1 (базовый уровень)
        • Сертификация оптоволокна по Tier 2 (расширенный уровень)
        • Тестирование производительности WLAN
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Подрядчики
      • Подрядчики
      • Монтаж базовых станций
      • Data Center Contractor Solutions
      • Испытание и сертификация оптоволокна и меди
      • Монтаж ШПД-систем
      • Решения для эксплуатации сети
      • Решения для монтажа сети
      • Решения для руководителей проектов
      • Автоматизация процесса тестирования (TPA)
    • Пользовательская оптика и пигменты
      • Пользовательская оптика и пигменты
      • 3D сканирование
      • Зашита от фальсификаций и контрафакта
      • Автопроизводители
      • Biomedical Applications
      • Пользовательская электроника
      • Пользовательские цветовые решения
      • Авиационно-космические предприятия
      • Промышленность
      • БИК-спектроскопия
      • Спектрометры
  • Как купить
    • Запросить коммерческое предложение
    • Запросить демо
    • Статус заказа
    • Контакты
    • Аренда оборудования
    • Варианты финансирования
    • Как заказать
    • How to Order Services
    • Найти партнера
    • Восстановленное оборудование
  • Ресурсы
    • Учебный центр
      • Учебный центр
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • Что означает термин «Тестирование 5G»?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • Что такое XGS-PON?
      • What is RF Interference?
      • View All Topics
    • Библиотека литературы
    • Блог о перспективах развития
    • Подписки
    • Видеотека
    • Вебинары
    • Служба поддержки клиентов
      • Служба поддержки клиентов
      • Вход на портал для клиентов
      • Клиентский сервис
      • Портал технической поддержки
      • Return Material Authorization (RMA)
      • Видео советы и инструкции
      • База знаний
      • Краткие справочные карты и практические указания
      • Загрузки ПО
      • Гарантийные обязательства, условия и положения
    • Информация о компании
      • Информация о компании
      • Награды и достижения
      • Environment, Social, and Governance (ESG)
      • Руководство компании
      • Наши офисы
      • Together with VIAVI
    • Карьера в компании
      • Карьера в компании
      • Career Paths
      • Поиск и применение
      • Early-Career Program
      • Life at VIAVI
      • Преимущества и перспективы
      • Events
      • Компания в новостях
      • Пресс-релизы
      • Блог о перспективах развития
      • Подписки
    • Партнеры
      • Партнеры
      • Найти партнера
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Политики и стандарты
      • Политика конфиденциальности
      • Terms and Conditions
      • Terms of Use
    • Контакты
Search icon
  1. Главная
  2. Ресурсы
  3. Учебный центр

What are Working Principles and Characteristics of OTDRs?

The accuracy and utility of OTDR testing would not be possible without the science that preceded it.

  • What is an OTDR?
  • Principles
  • Basics & Functions
  • Parameters
  • View Products
  • Use Selector Tool
  • Contact an Expert

It is a fiber optic instrument used to characterize, troubleshoot and maintain optical telecommunication networks. OTDR testing is performed by transmitting and analyzing pulsed laser light traveling through an optical fiber. The measurement is said to be unidirectional as the light is insert at extremity of a fiber optic cable link.

Using information obtained from the resultant light signature reflected or scattered back to the point of origin, the OTDR acts as an optical radar system, providing the user with detailed information on the location and overall condition of splices, connections, defects and other features of interest.

Find the right OTDR for you by using our OTDR Selector Tool.

The accuracy and utility of OTDR testing would not be possible without the science that preceded it. Understanding the physics behind the instrument provides invaluable insight into the working principles of OTDR.

When Albert Einstein theorized that electrons could be stimulated to emit a particular waveform, the seed of possibility that would eventually lead to the first operational laser in 1960 was born. While the applications envisioned at that time probably did not include worldwide telecommunications using fiber optics, this technology has now become synonymous with twenty-first century connectivity.

Over the years, many breakthrough discoveries have been leveraged in the development of OTDR testers.

OTDR Symbol Meanings

An OTDR contains a laser diode source, a photodiode detector and a highly accurate timing circuit (or time base). The laser emits a pulse of light at a specific wavelength, this pulse of light travels along the fiber being tested, as the pulse moves down the fiber portions of the transmitted light are reflected/refracted or scattered back down the fiber to the photo detector in the OTDR. The intensity of this returning light and the time taken for it to arrive back at the detector tells us the loss value (insertion and reflection), type and location of an event in the fiber link.

OTDR working principle illustration

Light is returned to the photo detector through a number of mechanisms:

Rayleigh Scattering and Backscattering

Physicists of the previous century were still consumed with such fundamental questions as, “Why is the sky blue?” The answer to this question, as discovered by Lord Rayleigh in 1904, is what is now known as Rayleigh scattering. When light photons scatter off molecules in the air, the resulting light waves visible on the Earth are predominantly at the blue end of the spectrum because blue light is scattered more efficiently than red.

When light is injected into a fiber some of the photons of light are scattered in random directions due to microscopic particles in the fiber, this effect is Rayleigh scattering. In addition, some of the light is scattered back in the opposite direction of the transmitted light, this is referred to as backscattering.
Rayleigh scattering and backscattering effects in fiber

The predictable nature of Rayleigh scattering has been leveraged as a fundamental working principle in OTDR technology. The volume of source light energy backscattered to the detector provides a reliable indication of attenuation and signal (or optical) loss in the optical fiber link.

Fresnel Reflection

The properties of light reflection, characterized by optical physicist Augustin-Jean Fresnel, predated the discoveries of Rayleigh, but were equally important to the development of OTDR working principles.

Fresnel discovered the reflection coefficient which is a ratio of the reflected light wave amplitude relative to the original source wave. He found that the reflection coefficient could be predicted for the interface of two materials based on the respective refractive indices of these components.

Fresnel reflection occurs when light reflects off a boundary of two optically transmissive materials, each having a different refractive index. This boundary can occur at a joint (connector or mechanical splice), at a non-terminated fiber end, or at a break.

Fresnel reflection illustration

Since many events of interest in an optical fiber link, such as splices, breaks, connections and terminations, all represent specific material intersections such as glass and air, the Fresnel reflection equations can be used to determine the type, location and intensity of these events.

Absorption

Another physical property that is integral to fiber optic performance is the absorption of the fiber. As the name implies, a small percentage of the original light intensity is absorbed by internal impurities over the length of the fiber core. The greater the purity of the fiber, the less absorption will occur, meaning a higher quality material will result in less signal (or optical) loss.

Since the elements that induce absorption are inherently non-reflective, they would not be detected through Fresnel reflection measurements. Instead, the effects of absorption are captured through the backscatter effect, as the light returning to the source is absorbed proportionally to the incident light.

The inherent value of OTDR testing comes from diagnosing the condition of a fiber optic cable that would otherwise be impossible to see. This is essential when the link contains multiple splices and connections that can be subject to failure.

The optical return loss (ORL) and reflectance can be used to diagnose conditions where more loss than expected is occurring at a specific location in the fiber run. The total fiber attenuation can also be assessed, since the amount of backscatter provides an indication of this value.

These same principles are used to calculate distance measurements that are invaluable when repair, troubleshooting or maintenance needs arise. The end of the fiber link or a fiber break will be detectable through Fresnel reflection, since a break or unterminated fiber end is also a change in material media (glass to air). In addition to the overall length of the fiber, the distance to faults, splices and connections can be determined with a graphical presentation of the findings accompanying the analysis.

OTDR Types

As the functional utility of OTDR testing increases along with the demand for enhanced testing speed, accuracy, report generation and storage capabilities, the variation in product offerings continues to diversify. The two predominant categories are bench-top and hand-held. A bench-top OTDR is essentially a feature-rich instrument with a direct AC power source, whereas a hand-held or compact OTDR is typically a lightweight, battery-powered device intended for use in the field.

Beyond this basic division, the features and options available for an OTDR should be carefully considered based on the intended use. One important consideration is the type of fiber you will be testing - multimode, single-mode, or both. Another variable is the length of fiber you will be testing. Products designed for long haul applications typically have higher dynamic range capabilities that would not be required for testing shorter fiber optic links, such as FTTA.

Usability features also vary by product, which is yet another reason the intended application for the OTDR should be the most important factor in product selection (Import factors for choosing an OTDR). For example, a light weight product might not be necessary for a stationary test, but if the testing is going to be performed by technicians climbing cell towers or working in an otherwise active setting, weight, as well as features like battery life and ruggedization of the product enclosure become more important.

With the wide variety of applications for OTDR testing, setting parameters accurately for the task at hand will ensure accurate measurements. Using an auto-test function may be sufficient for some tests, but manual setting of parameters is still advisable given the variation in length, type, and complexity of optical fiber runs. Once the correct parameters for testing a given fiber run have been established, these OTDR testing configurations can be recalled from an instruments memory the next time the same or similar run is evaluated.

Pulse Width

Setting the adjustable pulse width determines the duration of the pulse being emitted into the fiber link. A shorter pulse width is usually selected for shorter cable lengths, since this will maximize resolution, while minimizing energy output. Short pulse widths are especially useful for evaluating segments of cable that are closer to the OTDR. Since these shorter pulse widths will also produce shorter dead zones, you will have a greater ability to detect events close to a connection or splice. Longer pulse width settings may be called for when testing a longer cable run, since more optical energy is required to produce sufficient backscatter at great distances from the OTDR.

Dead Zones

When the OTDR detector becomes saturated by a highly reflective interface in the fiber link, the recovery period for the OTDR translates to a distance from the event, known as a dead zone, which is essentially a portion of the cable for which no data will be available. Air gaps, bad splices, flat fiber end faces (connectors or the fiber end) and other incidences producing high Fresnel reflection are the usual causes of dead zones.

Distance Range

The distance range setting on an OTDR controls the display range for the amount of cable to be presented on the screen. It also defines the rate of pulse emission, since each pulse must be returned to the detector before the next pulse is sent out.

Setting this parameter appropriately requires accurate documentation of the optical fiber link. If the OTDR has preset distance range settings, you should choose the shortest setting that is still longer than the maximum fiber length. For example, if the instrument has settings of 10, 100, 200 and 500 kilometers, and your actual fiber link is 150 kilometers, you would select the 200 kilometer setting.

Averaging Time

In general, more accurate measurements are usually produced by averaging multiple repetitions of the same test. This same principle holds true with OTDR measurements. Longer averaging times, translating to more repetitions of the same test, will produce a measurement with an improved signal-to-noise ratio, but take longer to capture. For conditions where accuracy and noise are less critical, a “real-time measurement”, with no averaging function, could be sufficient. However, for circumstances where distance and loss data must be as precise as possible, longer averaging times might be justified.

Looking for more details about OTDRs?

Complete one of the following forms to get going:

  • Contact a product expert in your region
  • Request a demo
  • Request a quote

Ресурсы

  • Постеры

    Understanding Optical Time Domain Reflectometry (OTDR)
  • White Papers и книги

    Reference Guide to Fiber Optic Testing: Volume 1

Related Links

  • What is Bidirectional OTDR Testing?
  • What is Fiber Testing?
  • What is OTDR Testing?
  • Оптическая рефлектометрия‭
О Компании
  • О Компании
  • Карьера в компании
  • Для инвесторов
  • Пресс-релизы
  • Партнеры
  • Социальная ответственность
Специализация
  • 3D-сканирование
  • 5G
  • Авионика
  • Мониторинг качества сервисов
  • Оптоволокно
Поддержка
  • Поддержка заказчиков
  • Техническая помощь
  • Портал поддержки
  • Ремонт и калибровка
  • Загрузка программного обеспечения
Как купить
  • Связаться с отделом продаж
  • Связаться со специалистом по продажам
  • Найти партнера
  • Статус заказа
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Настройки куки
  • Контакты
  • Карта сайта
  • Юридический отдел
  • Политика конфиденциальности
  • Техническая поддержка
  • Request RMA
  • Запросить цитату
  • Найти партнера
  • Портал клиентов
  • Контакты