Skip to main content
  • Investors
  • Partners
  • Blog
  • Contact Us
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Lab and Manufacturing
      • Lab and Manufacturing
        • Application Emulation
        • Automation and Orchestration
        • UE Emulation
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Test as a Service (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Optical Manufacturing Test
      • Compute, Storage, Transport
        • Compute, Storage, Transport
        • PCI Express
        • SAS and SATA
        • Fiber Channel, Ethernet, FCoE, NVMeoF
        • Protocol Analyzers
        • Exercisers and Generators
        • Jammers
    • Network Deployment and Maintenance
      • Network Deployment and Maintenance
        • Antenna Alignment and Monitoring
        • Asset and Data Management
        • Cell Site Installation and Maintenance
        • Cable and Antenna Analyzer
        • Interference Hunting
        • RF Analysis
      • Fiber
        • Fiber
        • Asset and Data Management
        • Attenuators
        • Bit Error Rate
        • Copper, DSL, WiFi and Broadband Test
        • DOCSIS Test
        • Essential Fiber Optic Testers
        • Ethernet Test
        • Fiber Characterization
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fault Locators
        • Fiber Optic Sensing
        • Fiber Optic Light Sources
      • Fiber (cont.)
        • Fiber (cont.)
        • HFC Test
        • MPO Testing
        • Optical Multimeter
        • Optical Power Meters
        • Optical Spectrum Analyzers (OSA)
        • OTDR Testing
        • PON Testing
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Core Network Assurance
        • Ethernet Assurance
        • RAN Assurance
        • Remote Fiber Test and Monitoring
      • Service Assurance
        • Service Assurance
        • 5G Service Assurance and Analytics
        • AIOps
        • Fiber Service Assurance
        • HFC and Cable Service Assurance
        • Transport Assurance
      • Lab and Manufacturing
        • Lab and Manufacturing
        • Automation and Orchestration
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Asset and Data Management
        • Network APIs
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Ethernet Assurance
        • Remote Fiber Test and Monitoring
    • Railway and Mission-Critical
      • Railway and Mission-Critical
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Performance and Threat Visibility
        • Performance and Threat Visibility
        • End-User Experience
        • Enriched Flow Collection
        • Packet Analysis
        • Packet Capture Collection
        • Packet Meta-Data Collection
      • Test and Certification
        • Test and Certification
        • Bit Error Rate
        • Ethernet Test
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fiber Optic Sensing
        • MPO Testing
        • Optical Power Meters
    • Land Mobile and Military Radio
      • Land Mobile and Military Radio
      • Communications Service Monitors
      • Land Mobile Radio Test
      • Military Radio Test
      • Modular Instrumentation
      • Software Defined Radio and System Solutions
    • Avionics
      • Avionics
      • ADS-B Compliance
      • Aircraft Fuel Quantity Test Sets and Interfaces
      • Antenna Couplers
      • Distance Measuring Equipment (DME)
      • Fiber Optic Avionics
      • GPS Signal Simulators
      • Military Avionics
      • Modular Instrumentation
      • Navigation and Communication
      • Radio Altimeters (RADALT)
      • Radio Frequency Automatic Test Equipment (RF ATE) Systems
      • Tactical Air Navigation System (TACAN)
      • Traffic Collision Avoidance System (TCAS)
      • Transponder and Interrogator
    • Position, Navigation and Timing
      • Position, Navigation and Timing
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • Custom Optics
        • Custom Optics
        • Custom Optical Filters
        • Light Shaping Optics
        • MicroNIR Spectrometers
      • Pigments
        • Pigments
        • Brand Protection
        • ChromaFlair Pigments
        • Security Pigments
        • SpectraFlair Pigments
    • All Products
      • All Products
      • All Products
      • Products by Family
      • Discontinued Products
    • Services
      • Services
      • Instrument Care Plans
      • Refurbished Equipment
      • Repair and Calibration
      • System Maintenance and Contracts
      • Training and Certification
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Wireless
        • Wireless
        • 5G Solutions
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • Cell Site Installation
        • Cloud-Based Testing
        • Interference Hunting
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Wireline
        • Wireline
        • AIOps
        • DWDM
        • Ethernet Service Activation Test
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • MPO Connector Testing
        • Passive Optical Network (PON)
        • Rural Broadband
        • Test Process Automation (TPA)
        • Transport Network Operations
        • Hyperscale
        • Data Center Interconnect
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
    • Network Equipment Manufacturers
      • Network Equipment Manufacturers
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Analytics Enablement
        • Cloud-Based Testing
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Field Deployment
        • Scalable Manufacturing
        • Technology and Service Introduction
        • Test and Development
      • AIOps
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
      • Threat Forensics and Remediation
        • Open RAN Security Test
        • Open RAN Security and Firewall Test
        • Threat Forensics and Remediation
        • Fiber Sensing
    • Government, Aerospace and Defense
      • Government, Aerospace and Defense
        • Electromagnetic Warfare
        • Field Test
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Field Test
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • General Aviation
    • Enterprise and Data Center
      • Enterprise and Data Center
        • Cloud Monitoring
        • End-User Experience Monitoring
        • Network Performance Monitoring
        • Private 5G
        • Unified Communications
        • Threat Forensics and Remediation
        • Cloud Workflow Management
        • Data Center Interconnect
        • Ethernet Service Activation Test
        • Fiber and Copper Test and Certification
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
        • WAN Performance Testing
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Contractors and Integrators
      • Contractors and Integrators
      • Cell Site Installation and Commissioning
      • Data Center Contractor Solutions
      • Fiber and Copper Test and Certification
      • Residential Broadband Services Installation
      • Solutions for Field Technicians
      • Solutions for Installers
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 3D Sensing
      • Anti-Counterfeiting
      • Automotive
      • Biomedical Applications
      • Consumer Electronics
      • Custom Color Solutions
      • Government and Aerospace
      • Industrial
      • NIR Spectroscopy
      • Spectral Sensing
  • How to Buy
    • Request a Quote
    • Request a Demo
    • Check Order Status
    • Contact Us
    • Equipment Rental
    • Financing Options
    • How to Order Products
    • How to Order Services
    • Locate a Partner
    • Refurbished Equipment
  • Resources
    • Learning Center
      • Learning Center
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • What is 5G Testing?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • What is PCIe 6.0?
      • What is RF Interference?
      • View All Topics
    • Literature Library
    • Blog Posts
    • Subscription Center
    • Video Library
    • Webinars
    • Customer Support
      • Customer Support
      • Customer Portal
      • Customer Service
      • Technical Support
      • Return Material Authorization (RMA)
      • How-To Videos
      • Knowledge Base
      • Quick Cards and Tech Tips
      • Software Downloads
      • Warranty, Quality and Compliance
    • About Us
      • About Us
      • Awards and Recognition
      • Environment, Social, and Governance (ESG)
      • Leadership
      • Our Locations
      • Together with VIAVI
    • Careers
      • Careers
      • Career Paths
      • Search and Apply
      • Early-Career Program
      • Life at VIAVI
      • What We Value
      • Events
      • In the News
      • News Releases
      • Blog Posts
      • Subscription Center
    • Partners
      • Partners
      • Locate a Partner
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Product Environmental Compliance
      • Privacy Policy
      • Terms and Conditions
      • Terms of Use
    • Contact Us
Search icon
  1. Home
  2. Resources
  3. Learning Center

What are Working Principles and Characteristics of OTDRs?

The accuracy and utility of OTDR testing would not be possible without the science that preceded it.

  • What is an OTDR?
  • Principles
  • Basics & Functions
  • Parameters
  • View Products
  • Use Selector Tool
  • Contact an Expert

It is a fiber optic instrument used to characterize, troubleshoot and maintain optical telecommunication networks. OTDR testing is performed by transmitting and analyzing pulsed laser light traveling through an optical fiber. The measurement is said to be unidirectional as the light is insert at extremity of a fiber optic cable link.

Using information obtained from the resultant light signature reflected or scattered back to the point of origin, the OTDR acts as an optical radar system, providing the user with detailed information on the location and overall condition of splices, connections, defects and other features of interest.

Find the right OTDR for you by using our OTDR Selector Tool.

The accuracy and utility of OTDR testing would not be possible without the science that preceded it. Understanding the physics behind the instrument provides invaluable insight into the working principles of OTDR.

When Albert Einstein theorized that electrons could be stimulated to emit a particular waveform, the seed of possibility that would eventually lead to the first operational laser in 1960 was born. While the applications envisioned at that time probably did not include worldwide telecommunications using fiber optics, this technology has now become synonymous with twenty-first century connectivity.

Over the years, many breakthrough discoveries have been leveraged in the development of OTDR testers.

OTDR Symbol Meanings

An OTDR contains a laser diode source, a photodiode detector and a highly accurate timing circuit (or time base). The laser emits a pulse of light at a specific wavelength, this pulse of light travels along the fiber being tested, as the pulse moves down the fiber portions of the transmitted light are reflected/refracted or scattered back down the fiber to the photo detector in the OTDR. The intensity of this returning light and the time taken for it to arrive back at the detector tells us the loss value (insertion and reflection), type and location of an event in the fiber link.

OTDR working principle illustration

Light is returned to the photo detector through a number of mechanisms:

Rayleigh Scattering and Backscattering

Physicists of the previous century were still consumed with such fundamental questions as, “Why is the sky blue?” The answer to this question, as discovered by Lord Rayleigh in 1904, is what is now known as Rayleigh scattering. When light photons scatter off molecules in the air, the resulting light waves visible on the Earth are predominantly at the blue end of the spectrum because blue light is scattered more efficiently than red.

When light is injected into a fiber some of the photons of light are scattered in random directions due to microscopic particles in the fiber, this effect is Rayleigh scattering. In addition, some of the light is scattered back in the opposite direction of the transmitted light, this is referred to as backscattering.
Rayleigh scattering and backscattering effects in fiber

The predictable nature of Rayleigh scattering has been leveraged as a fundamental working principle in OTDR technology. The volume of source light energy backscattered to the detector provides a reliable indication of attenuation and signal (or optical) loss in the optical fiber link.

Fresnel Reflection

The properties of light reflection, characterized by optical physicist Augustin-Jean Fresnel, predated the discoveries of Rayleigh, but were equally important to the development of OTDR working principles.

Fresnel discovered the reflection coefficient which is a ratio of the reflected light wave amplitude relative to the original source wave. He found that the reflection coefficient could be predicted for the interface of two materials based on the respective refractive indices of these components.

Fresnel reflection occurs when light reflects off a boundary of two optically transmissive materials, each having a different refractive index. This boundary can occur at a joint (connector or mechanical splice), at a non-terminated fiber end, or at a break.

Fresnel reflection illustration

Since many events of interest in an optical fiber link, such as splices, breaks, connections and terminations, all represent specific material intersections such as glass and air, the Fresnel reflection equations can be used to determine the type, location and intensity of these events.

Absorption

Another physical property that is integral to fiber optic performance is the absorption of the fiber. As the name implies, a small percentage of the original light intensity is absorbed by internal impurities over the length of the fiber core. The greater the purity of the fiber, the less absorption will occur, meaning a higher quality material will result in less signal (or optical) loss.

Since the elements that induce absorption are inherently non-reflective, they would not be detected through Fresnel reflection measurements. Instead, the effects of absorption are captured through the backscatter effect, as the light returning to the source is absorbed proportionally to the incident light.

The inherent value of OTDR testing comes from diagnosing the condition of a fiber optic cable that would otherwise be impossible to see. This is essential when the link contains multiple splices and connections that can be subject to failure.

The optical return loss (ORL) and reflectance can be used to diagnose conditions where more loss than expected is occurring at a specific location in the fiber run. The total fiber attenuation can also be assessed, since the amount of backscatter provides an indication of this value.

These same principles are used to calculate distance measurements that are invaluable when repair, troubleshooting or maintenance needs arise. The end of the fiber link or a fiber break will be detectable through Fresnel reflection, since a break or unterminated fiber end is also a change in material media (glass to air). In addition to the overall length of the fiber, the distance to faults, splices and connections can be determined with a graphical presentation of the findings accompanying the analysis.

OTDR Types

As the functional utility of OTDR testing increases along with the demand for enhanced testing speed, accuracy, report generation and storage capabilities, the variation in product offerings continues to diversify. The two predominant categories are bench-top and hand-held. A bench-top OTDR is essentially a feature-rich instrument with a direct AC power source, whereas a hand-held or compact OTDR is typically a lightweight, battery-powered device intended for use in the field.

Beyond this basic division, the features and options available for an OTDR should be carefully considered based on the intended use. One important consideration is the type of fiber you will be testing - multimode, single-mode, or both. Another variable is the length of fiber you will be testing. Products designed for long haul applications typically have higher dynamic range capabilities that would not be required for testing shorter fiber optic links, such as FTTA.

Usability features also vary by product, which is yet another reason the intended application for the OTDR should be the most important factor in product selection (Import factors for choosing an OTDR). For example, a light weight product might not be necessary for a stationary test, but if the testing is going to be performed by technicians climbing cell towers or working in an otherwise active setting, weight, as well as features like battery life and ruggedization of the product enclosure become more important.

With the wide variety of applications for OTDR testing, setting parameters accurately for the task at hand will ensure accurate measurements. Using an auto-test function may be sufficient for some tests, but manual setting of parameters is still advisable given the variation in length, type, and complexity of optical fiber runs. Once the correct parameters for testing a given fiber run have been established, these OTDR testing configurations can be recalled from an instruments memory the next time the same or similar run is evaluated.

Pulse Width

Setting the adjustable pulse width determines the duration of the pulse being emitted into the fiber link. A shorter pulse width is usually selected for shorter cable lengths, since this will maximize resolution, while minimizing energy output. Short pulse widths are especially useful for evaluating segments of cable that are closer to the OTDR. Since these shorter pulse widths will also produce shorter dead zones, you will have a greater ability to detect events close to a connection or splice. Longer pulse width settings may be called for when testing a longer cable run, since more optical energy is required to produce sufficient backscatter at great distances from the OTDR.

Dead Zones

When the OTDR detector becomes saturated by a highly reflective interface in the fiber link, the recovery period for the OTDR translates to a distance from the event, known as a dead zone, which is essentially a portion of the cable for which no data will be available. Air gaps, bad splices, flat fiber end faces (connectors or the fiber end) and other incidences producing high Fresnel reflection are the usual causes of dead zones.

Distance Range

The distance range setting on an OTDR controls the display range for the amount of cable to be presented on the screen. It also defines the rate of pulse emission, since each pulse must be returned to the detector before the next pulse is sent out.

Setting this parameter appropriately requires accurate documentation of the optical fiber link. If the OTDR has preset distance range settings, you should choose the shortest setting that is still longer than the maximum fiber length. For example, if the instrument has settings of 10, 100, 200 and 500 kilometers, and your actual fiber link is 150 kilometers, you would select the 200 kilometer setting.

Averaging Time

In general, more accurate measurements are usually produced by averaging multiple repetitions of the same test. This same principle holds true with OTDR measurements. Longer averaging times, translating to more repetitions of the same test, will produce a measurement with an improved signal-to-noise ratio, but take longer to capture. For conditions where accuracy and noise are less critical, a “real-time measurement”, with no averaging function, could be sufficient. However, for circumstances where distance and loss data must be as precise as possible, longer averaging times might be justified.

Looking for more details about OTDRs?

Complete one of the following forms to get going:

  • Contact a product expert in your region
  • Request a demo
  • Request a quote

Related Resources

  • Posters

    Understanding Optical Time Domain Reflectometry (OTDR)
  • White Papers & Books

    Reference Guide to Fiber Optic Testing: Volume 1

Related Links

  • OTDR Testing
  • What is Bidirectional OTDR Testing?
  • What is Fiber Testing?
  • What is OTDR Testing?
Corporate
  • About Us
  • Careers
  • Investor Relations
  • News Releases
  • Partners
  • Social Responsibility
Areas of Expertise
  • 3D Sensing
  • 5G Testing
  • Avionics
  • Fiber
  • Service Assurance
Support
  • Customer Service
  • Technical Assistance
  • Technical Support Portal
  • Repair and Calibration
  • Software Downloads
How to Buy
  • Request a Quote
  • Contact Sales
  • Locate a Partner
  • Order Status
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Cookie Preferences
  • Contact Us
  • Sitemap
  • Terms of Use
  • Privacy Policy
  • Technical Assistance
  • Request RMA
  • Request a Quote
  • Locate a Partner
  • Customer Portal
  • Contact Us