Skip to main content
  • Investors
  • Partners
  • Blog
  • Contact Us
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Lab and Manufacturing
      • Lab and Manufacturing
        • Application Emulation
        • Automation and Orchestration
        • UE Emulation
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Test as a Service (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Optical Manufacturing Test
      • Compute, Storage, Transport
        • Compute, Storage, Transport
        • PCI Express
        • SAS and SATA
        • Fiber Channel, Ethernet, FCoE, NVMeoF
        • Protocol Analyzers
        • Exercisers and Generators
        • Jammers
    • Network Deployment and Maintenance
      • Network Deployment and Maintenance
        • Antenna Alignment and Monitoring
        • Asset and Data Management
        • Cell Site Installation and Maintenance
        • Cable and Antenna Analyzer
        • Interference Hunting
        • RF Analysis
      • Fiber
        • Fiber
        • Asset and Data Management
        • Attenuators
        • Bit Error Rate
        • Copper, DSL, WiFi and Broadband Test
        • DOCSIS Test
        • Essential Fiber Optic Testers
        • Ethernet Test
        • Fiber Characterization
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fault Locators
        • Fiber Optic Sensing
        • Fiber Optic Light Sources
      • Fiber (cont.)
        • Fiber (cont.)
        • HFC Test
        • MPO Testing
        • Optical Multimeter
        • Optical Power Meters
        • Optical Spectrum Analyzers (OSA)
        • OTDR Testing
        • PON Testing
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Core Network Assurance
        • Ethernet Assurance
        • RAN Assurance
        • Remote Fiber Test and Monitoring
      • Service Assurance
        • Service Assurance
        • 5G Service Assurance and Analytics
        • AIOps
        • Fiber Service Assurance
        • HFC and Cable Service Assurance
        • Transport Assurance
      • Lab and Manufacturing
        • Lab and Manufacturing
        • Automation and Orchestration
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Asset and Data Management
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Ethernet Assurance
        • Remote Fiber Test and Monitoring
    • Railway and Mission-Critical
      • Railway and Mission-Critical
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Performance and Threat Visibility
        • Performance and Threat Visibility
        • End-User Experience
        • Enriched Flow Collection
        • Packet Analysis
        • Packet Capture Collection
        • Packet Meta-Data Collection
      • Test and Certification
        • Test and Certification
        • Bit Error Rate
        • Ethernet Test
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fiber Optic Sensing
        • MPO Testing
        • Optical Power Meters
    • Land Mobile and Military Radio
      • Land Mobile and Military Radio
      • Communications Service Monitors
      • Land Mobile Radio Test
      • Military Radio Test
      • Modular Instrumentation
      • Software Defined Radio and System Solutions
    • Avionics
      • Avionics
      • ADS-B Compliance
      • Aircraft Fuel Quantity Test Sets and Interfaces
      • Antenna Couplers
      • Distance Measuring Equipment (DME)
      • Fiber Optic Avionics
      • GPS Signal Simulators
      • Military Avionics
      • Modular Instrumentation
      • Navigation and Communication
      • Radio Altimeters (RADALT)
      • Radio Frequency Automatic Test Equipment (RF ATE) Systems
      • Tactical Air Navigation System (TACAN)
      • Traffic Collision Avoidance System (TCAS)
      • Transponder and Interrogator
    • Position, Navigation and Timing
      • Position, Navigation and Timing
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • Custom Optics
        • Custom Optics
        • Custom Optical Filters
        • Light Shaping Optics
        • MicroNIR Spectrometers
      • Pigments
        • Pigments
        • Brand Protection
        • ChromaFlair Pigments
        • Security Pigments
        • SpectraFlair Pigments
    • All Products
      • All Products
      • All Products
      • Products by Family
      • Discontinued Products
    • Services
      • Services
      • Instrument Care Plans
      • Refurbished Equipment
      • Repair and Calibration
      • System Maintenance and Contracts
      • Training and Certification
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Wireless
        • Wireless
        • 5G Solutions
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • Cell Site Installation
        • Cloud-Based Testing
        • Interference Hunting
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Wireline
        • Wireline
        • AIOps
        • DWDM
        • Ethernet Service Activation Test
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • MPO Connector Testing
        • Passive Optical Network (PON)
        • Rural Broadband
        • Test Process Automation (TPA)
        • Transport Network Operations
        • Hyperscale
        • Data Center Interconnect
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
    • Network Equipment Manufacturers
      • Network Equipment Manufacturers
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Analytics Enablement
        • Cloud-Based Testing
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Field Deployment
        • Scalable Manufacturing
        • Technology and Service Introduction
        • Test and Development
      • AIOps
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
      • Threat Forensics and Remediation
        • Open RAN Security Test
        • Open RAN Security and Firewall Test
        • Threat Forensics and Remediation
        • Fiber Sensing
    • Government, Aerospace and Defense
      • Government, Aerospace and Defense
        • Electromagnetic Warfare
        • Field Test
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Field Test
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • General Aviation
    • Enterprise and Data Center
      • Enterprise and Data Center
        • Cloud Monitoring
        • End-User Experience Monitoring
        • Network Performance Monitoring
        • Private 5G
        • Unified Communications
        • Threat Forensics and Remediation
        • Cloud Workflow Management
        • Data Center Interconnect
        • Ethernet Service Activation Test
        • Fiber and Copper Test and Certification
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
        • WAN Performance Testing
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Contractors and Integrators
      • Contractors and Integrators
      • Cell Site Installation and Commissioning
      • Data Center Contractor Solutions
      • Fiber and Copper Test and Certification
      • Residential Broadband Services Installation
      • Solutions for Field Technicians
      • Solutions for Installers
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 3D Sensing
      • Anti-Counterfeiting
      • Automotive
      • Biomedical Applications
      • Consumer Electronics
      • Custom Color Solutions
      • Government and Aerospace
      • Industrial
      • NIR Spectroscopy
      • Spectral Sensing
  • How to Buy
    • Request a Quote
    • Request a Demo
    • Check Order Status
    • Contact Us
    • Equipment Rental
    • Financing Options
    • How to Order Products
    • How to Order Services
    • Locate a Partner
    • Refurbished Equipment
  • Resources
    • Learning Center
      • Learning Center
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • What is 5G Testing?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • What is PCIe 6.0?
      • What is RF Interference?
      • View All Topics
    • Literature Library
    • Blog Posts
    • Subscription Center
    • Video Library
    • Webinars
    • Customer Support
      • Customer Support
      • Customer Portal
      • Customer Service
      • Technical Support
      • Return Material Authorization (RMA)
      • How-To Videos
      • Knowledge Base
      • Quick Cards and Tech Tips
      • Software Downloads
      • Warranty, Quality and Compliance
    • About Us
      • About Us
      • Awards and Recognition
      • Environment, Social, and Governance (ESG)
      • Leadership
      • Our Locations
      • Together with VIAVI
    • Careers
      • Careers
      • Career Paths
      • Search and Apply
      • Early-Career Program
      • Life at VIAVI
      • What We Value
      • Events
      • In the News
      • News Releases
      • Blog Posts
      • Subscription Center
    • Partners
      • Partners
      • Locate a Partner
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Product Environmental Compliance
      • Privacy Policy
      • Terms and Conditions
      • Terms of Use
    • Contact Us
Search icon
  1. Home
  2. Resources
  3. Learning Center

What is RF Interference?

Learn about radio frequency interference, how to detect it, potential causes, and how to stop it.

  • Radio Frequency (RF) Interference
  • Types of Interference
  • How to Detect
  • Causes
  • How to Test
  • View Solutions
  • View Brochure

Radio frequency interference (RFI) is the presence of unwanted signals or electrical energy that detrimentally impact a radio communication system. The causes of RFI interference include external, naturally occurring sources like thunderstorms and static electricity, as well as man-made sources created through out-of-band transmissions, radiation from network antennas and cabling, and the proximity of adjacent networks operating on overlapping frequencies. RF interference dates to the earliest telegraph and radio communication, when unwanted humming, static, or service interruptions were caused by external radio waves or electrical activity.  

The wide variety of interference sources and the need for specialized interference test and measurement equipment make it important to distinguish between interference types. RF signal interference sources fall within the broad sub-categories of intentional and unintentional radiators of RF energy. Both types of RF interference can contribute to the noise floor, which makes interference analysis more challenging. 

What causes radio frequency interference? 

  • Intentional interference is produced by everyday objects like portable radios, baby monitors, and cell phones as well as inadequate RF designs or cell tower co-siting practices that impact a receiver’s sensitivity. Radio frequency interference examples in this category also include malicious interference signal types and practices such as jamming, or powering down cell phones during airplane takeoff and landing to protect communication systems. 
  • Unintentional interference is generated by devices that produce RF energy as a byproduct of their operation, which allows radiated energy to be “leaked” out to nearby areas. Potential sources of unintentional interference include computer monitors, ovens, and electrical motors. Products which contain a digital timing component (oscillator), including laptop computers and tablets, can also create unintentional interference. 

Detecting RF interference begins with recognizing the symptoms and analyzing the data. A review of system alarms, KPIs, and logs can often reveal whether a weak signal, elevated receive noise floor, or high bit error rate could be due to a hardware failure or configuration issue, rather than interference. 

What is RF Interference?

Locating and diagnosing the wide range of RFI radio frequency interference sources quickly and accurately requires a versatile test and measurement tool kit. RF interference hunting practices include the use of spectrum analyzers at the cell site to determine whether the interference is being generated internally or externally and to:  

  • Analyze any interference signals within the receiver’s bandwidth that are not filtered out.  
  • Characterize the noise floor to determine whether intermittent noise is compromising signal quality.  
  • Use a real time spectrum analyzer with continuously overlapping data capture to prevent intermittent or transient signals from being missed.  
  • Use a persistent spectrum display to allow the rapid data collection of real time spectrum analysis to be presented graphically, using color or brightness to signify the probability of signals appearing at a given frequency. 

Once the nature and intensity of the interference has been characterized through a network test and on-site analysis, the physical position of the source must be identified. The VIAVI InterferenceAdvisor is an intuitive mobile solution that allows an RF engineer or technician to locate an interference source with minimal effort.  

A VIAVI OneAdvisor 800 Wireless portable test device connected to a broadband Omni-antenna collects and analyzes signal interference data in transit. Fully automated EagleEye™ software running on a cable-free Android tablet then provides visual and voice prompts to guide investigators to the most probable area of interference origin, saving valuable troubleshooting time. The InterferenceAdvisor system also features gated sweep control and display for time division duplex (TDD) interference frequency hunting. 

After the geographic area associated with the interference source has been narrowed down, the VIAVI AntennaAdvisor can be used to perform radial signal analysis and generate intersection vectors to triangulate the precise location of unwanted interference. Working in conjunction with the powerful real time spectrum analysis capabilities of the OneAdvisor 800 Wireless, rogue RF emission sources can be diagnosed, located, and eliminated quickly.  

Celladvisor 5G Charts

How to Measure Interference 

Measuring interference accurately is the key to correctly diagnosing the type, source, and probable cause. Each wireless communication technology operates within an expected bandwidth and noise power level, measured in dBm. Any type of interference can affect the noise level, making it harder for the RF network to transmit efficiently or maintain adequate coverage at the edge of the network. 

  • Low-level signal measurement is essential for interference hunting and is directly impacted by the spectrum analyzer settings. Utilizing a low noise/high gain preamplifier, narrowing the resolution bandwidth (RBW) of the RBW filter, and minimizing the input attenuation can improve sensitivity considerably. The dynamic range of the RF signal analyzer, specified in dB, is also important for interference hunting applications because the expected and unwanted RF signals are best evaluated side by side. 
  • Wireless networks that continually exhibit spikes greater than -60 dBm above the noise floor or constant amplitudes greater than -80 dBm within the operating band of the spectrum are probably experiencing some form of RF interference. Each source of interference produces a unique signature that experienced RF engineers and technicians use to determine the most probable root cause(s). Spectrum analysis overlayed with network test data such as throughput or BER can be used to quantify the impact of interference on performance. 

The broad categories of intentional and unintentional interference frame a growing list of potential interference causes. Advanced signal duplexing methods and increasingly crowded airwaves have created new RF interference sources requiring innovative test and prevention methods. 

Passive Intermodulation (PIM) 
Increased traffic within the finite RF spectrum has inevitably led to higher signal density. Multiband operation has helped to alleviate this bottleneck. However, a condition known as signal interference can occur when multi-frequency RF signals contact corroded hardware or joints between dissimilar metals on or around the cell tower.  

The resulting passive intermodulation (PIM) causes signals from separate wireless communication sources to be mixed. This can impact mobile networks by lowering the signal-to-noise ratio (SNR), increasing the bit error rate (BER), and decreasing throughput. The addition of frequency bands and carriers to support the 5G rollout has increased the opportunities for crossband PIM.  

Co-Channel Interference 
Another interference category that is symptomatic of congestion as operators share and compete for bandwidth is known as co-channel interference (CCI). As the name implies, this problem occurs when multiple signals are present over the same channel. Overlap in cellular coverage patterns can lead to co-channel or on-channel interference, although most cell phones can process at least five simultaneous signal paths without any issues.  

  • Time division duplex (TDD) enables uplink and downlink transmissions to operate over the same frequency on 5G networks. Interference can occur when stringent timing and synchronization requirements are not met. With more channels being shared, detailed frequency planning in network operations is necessary to prevent co-channel interference from disrupting the user experience. 
  • Adjacent channel interference (ACI) occurs when neighboring frequencies “bleed” into one another due to improper filtering or tuning. Appropriate guard banding between adjacent channels can mitigate this issue and prevent the loss of bandwidth or noise caused by adjacent interfering signals. The potential interference between aircraft radio altimeters and 5G networks operating on nearby C-band (3.7 – 3.98 GHz) frequencies is an example of an ACI risk. 

How Can You Stop Interference? 

To paraphrase a familiar catchphrase from the world of sports: You cannot stop RF interference, you can only hope to contain it. Learning how to stop radio interference begins with a realization that there will always be naturally occurring, unintentional, and unexpected forms of interference. The most successful RFI interference reduction strategies use a multi-faceted approach that includes: 

  • Cell tower deployment planning to establish maintenance practices that minimize PIM and optimize the TDD frame structure between collocated networks to prevent inter-cell interference. 
  • Continuous monitoring of network transmissions for instances of ongoing or intermittent interference, increased BER, and other forms of signal degradation that should be addressed in real time.  
  • Shielding, re-routing, or filtering potential sources of unintentional interference like cabling, powered equipment, and lighting.  

Effective testing for RF interference should account for all intentional and unintentional interference sources, utilize the expertise of experienced RF engineers and technicians, and deploy a combination of interference test processes including: 

  • Site surveys to characterize signal strength and quality at various locations and identify previously undetected interference sources. 
  • Spectrum analysis to identify sources of interference in the frequency band of interest and baseline system noise.  
  • Over-the-air frame format testing for 5G networks using the OneAdvisor 800 Wireless to validate the TDD frame formats of multiple operators. 
  • Interference hunting to proactively seek out, characterize, and eliminate interference sources before they impact QoE. 

What is Interference Hunting? 

Interference hunting is the process of locating, identifying, and eliminating unwanted sources of interference that degrade the quality of wireless reception on the receiving end. As more devices and users are introduced within the limited RF spectrum, minimizing the impact of interference becomes more challenging. Interference hunting tools and practices put advanced technology to work to reduce the impact on network capacity and subscriber QoE. 

Interference issues in wireless networks can result in a higher noise floor on the received channel and a lower signal-to-noise ratio (SNR) that degrades signal quality. Mobile users near a source of interference will experience lower data throughput, limited range, more dropped calls, or poor voice quality. 

5G Interference 

5G introduces new interference hunting challenges through cell densification and the range limitations of the millimeter wave (mmWave). 5G network operations also leverage frequency division duplex (FDD), dynamic TDD, and other frequency sharing options that can increase the potential for co-channel interference.  

  • Interference hunting for 5G requires real time spectrum analysis to capture complex interference signals overlapping the 5G NR signal. Exceptional bandwidth and dynamic range are needed for 5G beam and interference analysis in the FR1 (sub-6GHz) and FR2 (mmWave) frequency ranges. Persistent display is a useful feature for distinguishing 5G uplink interference signals that traditional swept tuned methods can miss. 
  • RF over CPRI (RFoCPRI) technology uses the CPRI interface to verify control signals and extract user plane traffic or RF (IQ) data. Interference signals on mobile devices (uplink) and radio performance data (downlink) can be monitored and analyzed from the ground. This simplifies 5G interference troubleshooting and minimizes cell tower climbs. 

 

Learn about VIAVI Interference Hunting solutions today!

  • Interference Hunting Solution
  • Connect with a 5G solution expert

Related Links

  • 5G Solutions
  • 5G Synchronization
  • Interference Hunting
Corporate
  • About Us
  • Careers
  • Investor Relations
  • News Releases
  • Partners
  • Social Responsibility
Areas of Expertise
  • 3D Sensing
  • 5G Testing
  • Avionics
  • Fiber
  • Service Assurance
Support
  • Customer Service
  • Technical Assistance
  • Technical Support Portal
  • Repair and Calibration
  • Software Downloads
How to Buy
  • Request a Quote
  • Contact Sales
  • Locate a Partner
  • Order Status
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Cookie Preferences
  • Contact Us
  • Sitemap
  • Terms of Use
  • Privacy Policy
  • Technical Assistance
  • Request RMA
  • Request a Quote
  • Locate a Partner
  • Customer Portal
  • Contact Us