Skip to main content
  • Investors
  • Partners
  • Blog
  • Contact Us
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Lab and Manufacturing
      • Lab and Manufacturing
        • Application Emulation
        • Automation and Orchestration
        • UE Emulation
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Test as a Service (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Optical Manufacturing Test
      • Compute, Storage, Transport
        • Compute, Storage, Transport
        • PCI Express
        • SAS and SATA
        • Fiber Channel, Ethernet, FCoE, NVMeoF
        • Protocol Analyzers
        • Exercisers and Generators
        • Jammers
    • Network Deployment and Maintenance
      • Network Deployment and Maintenance
        • Antenna Alignment and Monitoring
        • Asset and Data Management
        • Cell Site Installation and Maintenance
        • Cable and Antenna Analyzer
        • Interference Hunting
        • RF Analysis
      • Fiber
        • Fiber
        • Asset and Data Management
        • Attenuators
        • Bit Error Rate
        • Copper, DSL, WiFi and Broadband Test
        • DOCSIS Test
        • Essential Fiber Optic Testers
        • Ethernet Test
        • Fiber Characterization
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fault Locators
        • Fiber Optic Sensing
        • Fiber Optic Light Sources
      • Fiber (cont.)
        • Fiber (cont.)
        • HFC Test
        • MPO Testing
        • Optical Multimeter
        • Optical Power Meters
        • Optical Spectrum Analyzers (OSA)
        • OTDR Testing
        • PON Testing
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Core Network Assurance
        • Ethernet Assurance
        • RAN Assurance
        • Remote Fiber Test and Monitoring
      • Service Assurance
        • Service Assurance
        • 5G Service Assurance and Analytics
        • AIOps
        • Fiber Service Assurance
        • HFC and Cable Service Assurance
        • Transport Assurance
      • Lab and Manufacturing
        • Lab and Manufacturing
        • Automation and Orchestration
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Asset and Data Management
        • Network APIs
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Ethernet Assurance
        • Remote Fiber Test and Monitoring
    • Railway and Mission-Critical
      • Railway and Mission-Critical
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Performance and Threat Visibility
        • Performance and Threat Visibility
        • End-User Experience
        • Enriched Flow Collection
        • Packet Analysis
        • Packet Capture Collection
        • Packet Meta-Data Collection
      • Test and Certification
        • Test and Certification
        • Bit Error Rate
        • Ethernet Test
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fiber Optic Sensing
        • MPO Testing
        • Optical Power Meters
    • Land Mobile and Military Radio
      • Land Mobile and Military Radio
      • Communications Service Monitors
      • Land Mobile Radio Test
      • Military Radio Test
      • Modular Instrumentation
      • Software Defined Radio and System Solutions
    • Avionics
      • Avionics
      • ADS-B Compliance
      • Aircraft Fuel Quantity Test Sets and Interfaces
      • Antenna Couplers
      • Distance Measuring Equipment (DME)
      • Fiber Optic Avionics
      • GPS Signal Simulators
      • Military Avionics
      • Modular Instrumentation
      • Navigation and Communication
      • Radio Altimeters (RADALT)
      • Radio Frequency Automatic Test Equipment (RF ATE) Systems
      • Tactical Air Navigation System (TACAN)
      • Traffic Collision Avoidance System (TCAS)
      • Transponder and Interrogator
    • Position, Navigation and Timing
      • Position, Navigation and Timing
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • Custom Optics
        • Custom Optics
        • Custom Optical Filters
        • Light Shaping Optics
        • MicroNIR Spectrometers
      • Pigments
        • Pigments
        • Brand Protection
        • ChromaFlair Pigments
        • Security Pigments
        • SpectraFlair Pigments
    • All Products
      • All Products
      • All Products
      • Products by Family
      • Discontinued Products
    • Services
      • Services
      • Instrument Care Plans
      • Refurbished Equipment
      • Repair and Calibration
      • System Maintenance and Contracts
      • Training and Certification
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Wireless
        • Wireless
        • 5G Solutions
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • Cell Site Installation
        • Cloud-Based Testing
        • Interference Hunting
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Wireline
        • Wireline
        • AIOps
        • DWDM
        • Ethernet Service Activation Test
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • MPO Connector Testing
        • Passive Optical Network (PON)
        • Rural Broadband
        • Test Process Automation (TPA)
        • Transport Network Operations
        • Hyperscale
        • Data Center Interconnect
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
    • Network Equipment Manufacturers
      • Network Equipment Manufacturers
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Analytics Enablement
        • Cloud-Based Testing
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Field Deployment
        • Scalable Manufacturing
        • Technology and Service Introduction
        • Test and Development
      • AIOps
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
      • Threat Forensics and Remediation
        • Open RAN Security Test
        • Open RAN Security and Firewall Test
        • Threat Forensics and Remediation
        • Fiber Sensing
    • Government, Aerospace and Defense
      • Government, Aerospace and Defense
        • Electromagnetic Warfare
        • Field Test
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Field Test
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • General Aviation
    • Enterprise and Data Center
      • Enterprise and Data Center
        • Cloud Monitoring
        • End-User Experience Monitoring
        • Network Performance Monitoring
        • Private 5G
        • Unified Communications
        • Threat Forensics and Remediation
        • Cloud Workflow Management
        • Data Center Interconnect
        • Ethernet Service Activation Test
        • Fiber and Copper Test and Certification
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
        • WAN Performance Testing
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Contractors and Integrators
      • Contractors and Integrators
      • Cell Site Installation and Commissioning
      • Data Center Contractor Solutions
      • Fiber and Copper Test and Certification
      • Residential Broadband Services Installation
      • Solutions for Field Technicians
      • Solutions for Installers
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 3D Sensing
      • Anti-Counterfeiting
      • Automotive
      • Biomedical Applications
      • Consumer Electronics
      • Custom Color Solutions
      • Government and Aerospace
      • Industrial
      • NIR Spectroscopy
      • Spectral Sensing
  • How to Buy
    • Request a Quote
    • Request a Demo
    • Check Order Status
    • Contact Us
    • Equipment Rental
    • Financing Options
    • How to Order Products
    • How to Order Services
    • Locate a Partner
    • Refurbished Equipment
  • Resources
    • Learning Center
      • Learning Center
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • What is 5G Testing?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • What is PCIe 6.0?
      • What is RF Interference?
      • View All Topics
    • Literature Library
    • Blog Posts
    • Subscription Center
    • Video Library
    • Webinars
    • Customer Support
      • Customer Support
      • Customer Portal
      • Customer Service
      • Technical Support
      • Return Material Authorization (RMA)
      • How-To Videos
      • Knowledge Base
      • Quick Cards and Tech Tips
      • Software Downloads
      • Warranty, Quality and Compliance
    • About Us
      • About Us
      • Awards and Recognition
      • Environment, Social, and Governance (ESG)
      • Leadership
      • Our Locations
      • Together with VIAVI
    • Careers
      • Careers
      • Career Paths
      • Search and Apply
      • Early-Career Program
      • Life at VIAVI
      • What We Value
      • Events
      • In the News
      • News Releases
      • Blog Posts
      • Subscription Center
    • Partners
      • Partners
      • Locate a Partner
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Product Environmental Compliance
      • Privacy Policy
      • Terms and Conditions
      • Terms of Use
    • Contact Us
Search icon
  1. Home
  2. Resources
  3. Learning Center

What is 5G Architecture?

5G leads the way towards disaggregated, flexible, and virtual RAN with new interfaces creating additional data access points.

  • 5G Network Architecture
  • 3GPP
  • 5G Core
  • Geographical Architecture Adoption
  • Security
  • View Solutions
  • View Poster
  • Contact an Expert

The primary goal of previous mobile network generations was to offer fast, reliable mobile data services to network users. 5G has broadened this scope to offer a wide range of wireless services delivered to the end user across multiple access platforms and multi-layer networks.  

5G creates a dynamic, coherent, and flexible framework of advanced technologies to support a variety of applications. 5G utilizes a more intelligent architecture, with Radio Access Networks (RANs) no longer constrained by base station proximity or complex infrastructure. 5G leads the way towards disaggregated, flexible, and virtual RAN with new interfaces creating additional data access points.

5G Architecture Poster


Request a Copy of the 5G Architecture Poster

The 3rd Generation Partnership Project (3GPP) covers telecommunication technologies including RAN, core transport networks and service capabilities. The 3GPP has provided complete system specifications for 5G network architecture which is much more service oriented than previous generations.
Image
3GPP

Services are provided via a common framework to network functions that are permitted to make use of them. Modularity, reusability, and self-containment of these network functions are additional design considerations for the 5G network architecture described by the 3GPP specifications.  

5G Spectrum and Frequency
Multiple frequency ranges are now being dedicated to 5G new radio (NR). The portion of the radio spectrum with frequencies between 30 GHz and 300 GHz is known as the millimeter wave, since wavelengths range from 1-10 mm. Frequencies between 24 GHz and 100 GHz have been allocated to 5G in multiple regions worldwide.  

  • In addition to the millimeter wave, underutilized UHF frequencies between 300 MHz and 3 GHz and C-band frequencies between 3.7 and 3.98 GHz have also been repurposed for 5G.  
  • The diversity of frequencies employed can be tailored to the unique application. Higher frequencies are characterized by higher bandwidth and shorter range.   

    Millimeter wave frequencies are ideal for densely populated areas, but ineffective for long distance communication. 

  • Within the various frequency bands dedicated to 5G, each carrier has begun to carve out their own individual portions of the 5G spectrum.  

MEC
Multi-Access Edge Computing (MEC) is an important element of 5G architecture. MEC is an offshoot of cloud computing that brings applications from centralized data centers to the network edge, closer to end users and their devices. This essentially creates a shortcut in content delivery between the user and host, bypassing the long-distance network path that once separated them. This technology is not exclusive to 5G but is certainly integral to its efficiency.

  • Characteristics of MEC include the low latency, high bandwidth, and real time access to RAN information that distinguish 5G architecture from its predecessors.
  • 5G networks based on the 3GPP 5G specifications are an ideal environment for MEC deployment. These specifications define the enablers for edge computing, allowing MEC and 5G to collaboratively route traffic.
  • Distribution of computing power enables the high volume of connected devices inherent to 5G deployment and the Internet of Things (IoT), in addition to the latency and bandwidth benefits.  
  • Convergence of RAN and core networks will require operators to leverage new approaches to network testing and validation.  

NFV and 5G
Network function virtualization (NFV) decouples software from hardware by replacing various network functions such as firewalls, load balancers, and routers with virtualized instances running as software. This eliminates the need to invest in many expensive hardware elements and can also accelerate installation times, thereby providing revenue generating services to the customer faster.   

NFV enables the 5G ecosystem by virtualizing appliances within the 5G network. This includes the network slicing technology that enables multiple virtual networks to run simultaneously. NFV addresses other 5G challenges through virtualized computing, storage, and network resources that are customized based on the applications and customer segments.   

5G RAN Architecture
The concept of NFV extends to the RAN through the network dis-aggregation promoted by alliances such as O-RAN. Open RAN architecture eases the deployment of new RAN features and technology to scale by encouraging open interfaces and open-source development practices. This evolution increases flexibility and creates new opportunities for competition.  

The O-RAN ALLIANCE objective is to allow multi-vendor deployment with off-the shelf hardware for improved inter-operability. Network dis-aggregation also allows more components of the network to be virtualized, providing a means to scale and improve user experience quickly as capacity grows. Virtualized RAN is essential for controlling hardware and software costs in the rapidly expanding ecosystem of IoT applications.  

eCPRI
Network dis-aggregation with the functional split also brings other cost benefits, particularly with the introduction of new interfaces such as eCPRI. RF interfaces are not cost effective when testing large numbers of 5G carriers as the RF costs rapidly multiply. The original CPRI interface developed for 4G was vendor specific in many instances, which made it problematic for operators. eCPRI interfaces provide a more efficient solution as fewer interfaces can be used to test multiple 5G carriers. eCPRI has been designated as a standard interface for 5G O-RAN fronthaul elements such as the DU. 

Network Slicing
A key ingredient for enabling the full potential of 5G architecture is network slicing.

This technology adds an extra dimension to the NFV domain by allowing multiple logical networks to run simultaneously on top of a shared physical network infrastructure. This capability supports 5G architecture by creating end-to-end virtual networks that include both networking and storage functions.   

  • Operators can effectively manage diverse 5G use cases with differing throughput, latency and availability demands by partitioning network resources to multiple users or “tenants”.
  • Network slicing becomes extremely useful for applications like the IoT where the number of users may be extremely high, but the overall bandwidth demand is low.  
  • 5G verticals each have their own requirements, so network slicing is an important design consideration for 5G network architecture.  
  • Operating costs, resource management, and flexibility of network configurations can be optimized with the level of customization afforded by network slicing.  
  • Expedited trials for potential new 5G services and quicker time-to-market are also enabled by network slicing.  

Beamforming
Another breakthrough technology integral to the success of 5G is beamforming. Conventional base stations transmit signals in multiple directions without regard to the position of targeted users or devices. Using multiple-input, multiple-output (MIMO) arrays featuring dozens of small antennas combined in a single formation, signal processing algorithms are used to determine the most efficient transmission path to each user. Individual packets can be sent in multiple directions then choreographed to reach the end user in a predetermined sequence.    

With 5G data transmission occupying the millimeter wave, free space propagation loss, proportional to the smaller antenna size, and diffraction loss, inherent to higher frequencies and lack of wall penetration, are much greater. On the other hand, the smaller antenna size also enables much larger arrays to occupy the same physical space. With each of these smaller antennas potentially adjusting or reassigning beam direction several times per millisecond, massive beamforming to support the challenges of 5G bandwidth becomes more feasible. With a larger antenna density in the same physical space, narrower beams can be achieved with massive MIMO, providing high throughput and more effective user tracking.  

The 5G core network architecture is at the heart of the new 5G specification and enables the increased throughput demand that 5G must support. The new 5G core, as defined by 3GPP, utilizes cloud-aligned, service-based architecture (SBA) that spans across all 5G functions and interactions including authentication, security, session management and aggregation of traffic from end devices. The 5G core emphasizes NFV with virtualized software functions deployed using the MEC infrastructure that is central to 5G architectural principles.  

5G NR Deploy Architecture
5G NR Deploy Architecture


Differences from 4G Architecture
Changes at the core level are among the myriad of architectural changes that accompany the shift from 4G to 5G, including the migration to millimeter wave, massive MIMO, network slicing, and essentially every other element of the diverse 5G ecosystem. The 4G Evolved Packet Core (EPC) is significantly different from the 5G core, with the 5G core leveraging virtualization and cloud native software design at unprecedented levels.  

Among the other changes that differentiate the 5G core from its 4G predecessor are user plane function (UPF) to decouple packet gateway control and user plane functions, and access and mobility management function (AMF) to segregate session management functions from connection and mobility management tasks.  

5G Architecture Options
Bridging the gap between 4G and 5G requires incremental steps and a well-orchestrated game plan. Emblematic of this shift is the gradual transition from non- standalone mode to standalone mode 5G architecture options. The 5G non-standalone standard was finalized in late 2017 and utilizes existing LTE RAN and core networks as an anchor, with the addition of a 5G component carrier. Despite the reliance on 4G architecture, non-standalone mode increases bandwidth by tapping into millimeter wave frequencies.  

5G standalone mode is essentially  5G deployment from the ground up with the new core architecture and full deployment of all 5G hardware, features, and functionality. As non-standalone mode gradually gives way to all new 5G mobile network architecture deployments, careful planning and implementation will make this transition seamless for the user base.  

The infrastructure inherent to standalone 5G deployment requires a worldwide step function in 5G integration for various geographical regions. Technology leading regions such as North America, Asia, and Europe are ramping deployment quickly while other nations around the globe follow closely behind. Nearly 200 live 5G networks are already in service around the globe with the number of mobile 5G connections projected to exceed 2 billion by 2025. 

The proximity of neighboring countries and a proliferation of carriers have made the rollout more challenging in Europe. Although adoption has lagged other regions, the European Commission has initiated a policy known as the Digital Compass which calls for 5G access in all populated areas by 2030.  

The State of 5G Deployments
The State of 5G Deployments

Industrial nations such as China, Japan, and India are heavily invested in the practical as well as the financial implications of the 5G conversion. New antenna, infrastructure hardware, and software technologies create a bonanza for electronics and software design and manufacturing industries around the world, with speedy deployment being emphasized. The four largest telecom providers in India are rolling out 5G services following an August 2022 spectrum auction, and China is expected to have 3.64 million 5G base stations installed by 2025. 

5G Security
5G Security

5G implementation brings tremendous performance benefits and diversity of applications through extensive use of cloud-based resources, virtualization, network slicing, and other emerging technologies. With these changes come new security risks and additional “attack surfaces” exposed within the 5G security architecture. 

  • 5G security practices build upon past mobile technology generations, yet the “trust model” has expanded with more players involved in the service delivery process.   
  • The IoT and user propagation create an exponentially higher number of endpoints with many of these traffic inputs no longer supervised by human hands.  
  • Improved 5G security features detailed by the 3GPP standards include unified authentication to decouple authentication from access points, and public key based encryption schemes to reduce the risk of metadata exploits.
  • Continual monitoring and assessment of security effectiveness are essential as 5G critical performance nodes become increasingly virtualized.  
  • Best practices include end-to-end 5G network security monitoring encompassing the system architecture, devices, and apps.

Undoubtedly, 5G is delivering the exponential speed enhancement users have come to expect with each new generation of mobile networks, but speed is just the beginning. The changes to industries ranging from personal transportation to manufacturing and farming are so significant that many have dubbed 5G the next Industrial Revolution. At the heart of this paradigm shift is the multi-faceted 5G architecture, with MEC, NFV massive MIMO and a cloud-aligned, service-based core architecture working in concert to deliver the new wave of services. 5G test solutions designed to accommodate this architectural seed change will be the true enablers of the forthcoming 5G transition. 

Learn about 5G VIAVI today!

Are you ready to take the next step with one of our 5G test products or solutions?
Complete one of the following forms to get going:

  • Contact a product expert in your region
  • Request a demo
  • Request a quote

Related Links

  • 5G Field
  • 5G Lab and Performance Test
  • 5G Solutions
  • Open RAN
Corporate
  • About Us
  • Careers
  • Investor Relations
  • News Releases
  • Partners
  • Social Responsibility
Areas of Expertise
  • 3D Sensing
  • 5G Testing
  • Avionics
  • Fiber
  • Service Assurance
Support
  • Customer Service
  • Technical Assistance
  • Technical Support Portal
  • Repair and Calibration
  • Software Downloads
How to Buy
  • Request a Quote
  • Contact Sales
  • Locate a Partner
  • Order Status
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Cookie Preferences
  • Contact Us
  • Sitemap
  • Terms of Use
  • Privacy Policy
  • Technical Assistance
  • Request RMA
  • Request a Quote
  • Locate a Partner
  • Customer Portal
  • Contact Us