Skip to main content
  • Investors
  • Partners
  • Blog
  • Contact Us
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Lab and Manufacturing
      • Lab and Manufacturing
        • Application Emulation
        • Automation and Orchestration
        • UE Emulation
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Test as a Service (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Optical Manufacturing Test
      • Compute, Storage, Transport
        • Compute, Storage, Transport
        • PCI Express
        • SAS and SATA
        • Fiber Channel, Ethernet, FCoE, NVMeoF
        • Protocol Analyzers
        • Exercisers and Generators
        • Jammers
    • Network Deployment and Maintenance
      • Network Deployment and Maintenance
        • Antenna Alignment and Monitoring
        • Asset and Data Management
        • Cell Site Installation and Maintenance
        • Cable and Antenna Analyzer
        • Interference Hunting
        • RF Analysis
      • Fiber
        • Fiber
        • Asset and Data Management
        • Attenuators
        • Bit Error Rate
        • Copper, DSL, WiFi and Broadband Test
        • DOCSIS Test
        • Essential Fiber Optic Testers
        • Ethernet Test
        • Fiber Characterization
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fault Locators
        • Fiber Optic Sensing
        • Fiber Optic Light Sources
      • Fiber (cont.)
        • Fiber (cont.)
        • HFC Test
        • MPO Testing
        • Optical Multimeter
        • Optical Power Meters
        • Optical Spectrum Analyzers (OSA)
        • OTDR Testing
        • PON Testing
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Core Network Assurance
        • Ethernet Assurance
        • RAN Assurance
        • Remote Fiber Test and Monitoring
      • Service Assurance
        • Service Assurance
        • 5G Service Assurance and Analytics
        • AIOps
        • Fiber Service Assurance
        • HFC and Cable Service Assurance
        • Transport Assurance
      • Lab and Manufacturing
        • Lab and Manufacturing
        • Automation and Orchestration
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Asset and Data Management
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Ethernet Assurance
        • Remote Fiber Test and Monitoring
    • Railway and Mission-Critical
      • Railway and Mission-Critical
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Performance and Threat Visibility
        • Performance and Threat Visibility
        • End-User Experience
        • Enriched Flow Collection
        • Packet Analysis
        • Packet Capture Collection
        • Packet Meta-Data Collection
      • Test and Certification
        • Test and Certification
        • Bit Error Rate
        • Ethernet Test
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fiber Optic Sensing
        • MPO Testing
        • Optical Power Meters
    • Land Mobile and Military Radio
      • Land Mobile and Military Radio
      • Communications Service Monitors
      • Land Mobile Radio Test
      • Military Radio Test
      • Modular Instrumentation
      • Software Defined Radio and System Solutions
    • Avionics
      • Avionics
      • ADS-B Compliance
      • Aircraft Fuel Quantity Test Sets and Interfaces
      • Antenna Couplers
      • Distance Measuring Equipment (DME)
      • Fiber Optic Avionics
      • GPS Signal Simulators
      • Military Avionics
      • Modular Instrumentation
      • Navigation and Communication
      • Radio Altimeters (RADALT)
      • Radio Frequency Automatic Test Equipment (RF ATE) Systems
      • Tactical Air Navigation System (TACAN)
      • Traffic Collision Avoidance System (TCAS)
      • Transponder and Interrogator
    • Position, Navigation and Timing
      • Position, Navigation and Timing
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • Custom Optics
        • Custom Optics
        • Custom Optical Filters
        • Light Shaping Optics
        • MicroNIR Spectrometers
      • Pigments
        • Pigments
        • Brand Protection
        • ChromaFlair Pigments
        • Security Pigments
        • SpectraFlair Pigments
    • All Products
      • All Products
      • All Products
      • Products by Family
      • Discontinued Products
    • Services
      • Services
      • Instrument Care Plans
      • Refurbished Equipment
      • Repair and Calibration
      • System Maintenance and Contracts
      • Training and Certification
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Wireless
        • Wireless
        • 5G Solutions
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • Cell Site Installation
        • Cloud-Based Testing
        • Interference Hunting
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Wireline
        • Wireline
        • AIOps
        • DWDM
        • Ethernet Service Activation Test
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • MPO Connector Testing
        • Passive Optical Network (PON)
        • Rural Broadband
        • Test Process Automation (TPA)
        • Transport Network Operations
        • Hyperscale
        • Data Center Interconnect
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
    • Network Equipment Manufacturers
      • Network Equipment Manufacturers
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Analytics Enablement
        • Cloud-Based Testing
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Field Deployment
        • Scalable Manufacturing
        • Technology and Service Introduction
        • Test and Development
      • AIOps
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
      • Threat Forensics and Remediation
        • Open RAN Security Test
        • Open RAN Security and Firewall Test
        • Threat Forensics and Remediation
        • Fiber Sensing
    • Government, Aerospace and Defense
      • Government, Aerospace and Defense
        • Electromagnetic Warfare
        • Field Test
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Field Test
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • General Aviation
    • Enterprise and Data Center
      • Enterprise and Data Center
        • Cloud Monitoring
        • End-User Experience Monitoring
        • Network Performance Monitoring
        • Private 5G
        • Unified Communications
        • Threat Forensics and Remediation
        • Cloud Workflow Management
        • Data Center Interconnect
        • Ethernet Service Activation Test
        • Fiber and Copper Test and Certification
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
        • WAN Performance Testing
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Contractors and Integrators
      • Contractors and Integrators
      • Cell Site Installation and Commissioning
      • Data Center Contractor Solutions
      • Fiber and Copper Test and Certification
      • Residential Broadband Services Installation
      • Solutions for Field Technicians
      • Solutions for Installers
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 3D Sensing
      • Anti-Counterfeiting
      • Automotive
      • Biomedical Applications
      • Consumer Electronics
      • Custom Color Solutions
      • Government and Aerospace
      • Industrial
      • NIR Spectroscopy
      • Spectral Sensing
  • How to Buy
    • Request a Quote
    • Request a Demo
    • Check Order Status
    • Contact Us
    • Equipment Rental
    • Financing Options
    • How to Order Products
    • How to Order Services
    • Locate a Partner
    • Refurbished Equipment
  • Resources
    • Learning Center
      • Learning Center
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • What is 5G Testing?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • What is PCIe 6.0?
      • What is RF Interference?
      • View All Topics
    • Literature Library
    • Blog Posts
    • Subscription Center
    • Video Library
    • Webinars
    • Customer Support
      • Customer Support
      • Customer Portal
      • Customer Service
      • Technical Support
      • Return Material Authorization (RMA)
      • How-To Videos
      • Knowledge Base
      • Quick Cards and Tech Tips
      • Software Downloads
      • Warranty, Quality and Compliance
    • About Us
      • About Us
      • Awards and Recognition
      • Environment, Social, and Governance (ESG)
      • Leadership
      • Our Locations
      • Together with VIAVI
    • Careers
      • Careers
      • Career Paths
      • Search and Apply
      • Early-Career Program
      • Life at VIAVI
      • What We Value
      • Events
      • In the News
      • News Releases
      • Blog Posts
      • Subscription Center
    • Partners
      • Partners
      • Locate a Partner
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Product Environmental Compliance
      • Privacy Policy
      • Terms and Conditions
      • Terms of Use
    • Contact Us
Search icon
  1. Home
  2. Resources
  3. Learning Center

What is 5G Energy Consumption?

Learn how much power 5G networks consume and understand how you can reduce RAN energy use.

  • 5G Power Consumption
  • How 5G Consumes Energy
  • Does Open Ran Save Energy?
  • How to Save
  • View Solution
  • Contact an Expert

The Information and Communication Technology (ICT) industry currently accounts for approximately 4% of the world’s electricity consumption. With 5G projected to increase capacity up to approximately 1000-fold and high frequency millimeter wave (mmWave) transmission driving exponentially higher cell density, this percentage could potentially exceed 20% by 2030, or an astounding 150 quadrillion Btu each year. 

Increased consumption has raised the importance of 5G energy savings for operators and service providers who already dedicate a considerable portion their OPEX budgets to power. At the same time, consumer sentiment and government regulations are continually steering the industry toward greener electricity sources.  

  • Does 5G Consume More Power than 4G? 
    Based on data bits per kilowatt, 5G networks are 90% more efficient than their 4G predecessors. However, huge increases in density and traffic are expected to negate these savings, leading to a net 5G energy consumption potentially 4 to 5 times higher than 4G. New RAN elements like Massive MIMO and beamforming also shift and concentrate 5G power consumption, with a typical 64T64R massive MIMO configuration drawing over three times as much power as a conventional 4G LTE radio. 
  • What 5G Means for Energy
    Edge computing, mmWave transmission, and widespread IoT adoption have made the increase in energy consumption unavoidable. This has led to renewed efforts to reduce waste and improve component and system energy performance. The 3GPP has defined energy efficiency KPIs for the entire 5G network as part of Release 17. Innovation and out-of-box thinking are being applied across the telecom industry to enable: 
    • Energy-efficient data processing, chipsets, and cooling to reduce baseline energy consumption.
    • Intelligent and dynamic control of the RAN and Core to selectively power down or reconfigure underutilized resources and reduce waste.
    • Improved installation and test processes to identify and eliminate wasteful sources of signal loss, RF interference, and overlapping cell coverage.
  • 5G and Renewable Energy  
    The telecom industry accounts for approximately 2% of annual CO2 emissions worldwide. This will most certainly increase without a strong commitment to 5G renewable energy. The GSMA is dedicated to helping the telecom industry target net zero emissions by 2050. Over two dozen telecom operator groups have already committed themselves to science-based emission standards. Energy saving initiatives are pivoting to incorporate greener sources or produce more renewable energy off-grid. The improved performance and affordability of solar and wind power are expected to facilitate incorporation of renewable energy sources while also reducing OPEX. 

     

The 5G network is a dynamic system that consumes energy continually and responds to spikes in network activity. Over 70% of this energy is consumed by RAN antennas, radio units, and base station elements. Core/edge cooling and computing processes, amplifiers, and backhaul are additional areas where 5G energy efficiency can be improved. 

  • 5G Base Station Power Consumption: With each base station carrying at least 5X more traffic and operating over more frequency bands, 5G base station power consumption is at least twice that of a 4G. For perspective, each 5G base station is estimated to consume about as much power as 73 households. The addition of high energy active antenna units (AAUs) contributes to this increase.  
  • 5G Antenna Power Consumption: Massive MIMO antenna arrays, requiring an additional 1000 watts of power per sector, also influence 5G RAN energy consumption. RAN power can be reduced by limiting massive MIMO deployments to high traffic, urban areas. The integration of more C-band MIMO antennas lessens the impact, since less cells are required to cover the same physical area.  
  • 5G Data Center Power Consumption: With 5G applications tethered to the cloud for Core computing, analysis, and storage, data center efficiency is an important consideration for 5G energy savings. Hyperscalers have improved their efficiency through virtualization and economies of scale, but data center operations can still account for up to 30% of 5G energy consumption.  

The explosive growth in edge computing installations to support the IoT also calls for ongoing hardware size and power reduction, along with improved automation to eliminate in-person operators. 

The concept of Open RAN was intended to promote open interfaces and standardization for 5G RAN infrastructure. Open-source software running on white box hardware improves both interoperability and innovation. The heightened focus on RAN energy consumption has added efficiency to the list of important Open RAN characteristics.  

  • Open RAN Efficiency Gains: Open interfaces allow power saving measures to be rolled out across the supply chain quickly. A disaggregated, software-centric Open RAN also supports the shifting of computing processes to cloud data centers with greater economies of scale. Successful multi-vendor PlugFest results have shown that Open RAN can deliver the improved energy efficiency 5G providers are striving for, even under peak traffic conditions. 
  • The RAN Intelligent Controller (RIC): The software-defined RIC optimizes RAN functionality and facilitating onboarding of third-party applications. The RIC receives real-time feedback from the RAN, then uses machine learning (ML) and artificial intelligence (AI) to support 5G low energy performance by balancing resources, strategically turning off cells and/or frequencies, and recalibrating network slices to optimize QoS. 
  • TeraVM AI RSG Tester: Prior to deployment in the field, xApps and rApps for the RIC can be trained to optimize 5G energy savings in the lab. To maximize this opportunity, developers need to emulate RAN hardware, software, and traffic conditions to test RIC performance under real-world conditions. The VIAVI TeraVM AI RSG Test helps to reduce O-RAN deployment and operating costs with optimized efficiency out of the gate. This virtualized test tool allows developers to accurately assess the effectiveness of RIC applications and updates in the lab. 

Improved 5G energy efficiency with a shrinking carbon footprint can be achieved through a combination of innovation, conservation, and intelligence. Precision in antenna alignment along with fiber certification and monitoring to reduce signal loss and retransmission are other conspicuous opportunities for savings. While the O-RAN Alliance, 3GPP, and Next G Alliance are committed to 5G renewable energy and reduced consumption, they acknowledge that more can be done. 

  • What General Practice can be applied? 
    The intelligence of the cloud and RIC can be used to optimize 5G power consumption by responding to demand in real time and applying resources where they are needed most. New 5G hardware and real-time network feedback support common sense 5G low energy practices including: 
    • Switching off inactive cell sites or placing radio units into sleep mode. 
    • Reducing power to lesser used antennas. 
    • Adjusting the digital tilt of massive MIMO arrays to optimize beamforming accuracy and efficiency. 
    • Deploying “lights out” data centers and edge computing locations to reduce baseline energy consumption. 
    • Establishing renewable energy sources close to cell sites to minimize power supply distances. 
    • Sunsetting inefficient legacy 2G and 3G networks. 
  • Energy Efficient Architecture   

    Beamforming practices improve spectral efficiency, wider bandwidth supports higher cell capacity, and network function virtualization (NFV) reduces hardware operation and cooling power. Liquid-cooled base stations to replace wasteful air conditioning units, redesigned chipsets to improve computing efficiency, and gallium nitride amplifiers to increase power density are among the innovations contributing to 5G energy savings at the component level.

    Small cells extend the reach of 5G networks within dense urban areas and indoor venues. Improved battery technology, cooling, and backhaul connectivity present huge opportunities for RAN energy savings with millions of 5G small cells expected to be deployed over the next decade.

  • Data Center Efficiency   

    The migration of cloud native 5G applications to hyperscale data centers introduces additional opportunities for network energy savings and reduced CO2 emissions. The IoT and artificial intelligence, backed by the combined power of 5G and hyperscale computing, enable unmanned data center operation and real-time monitoring to optimize cooling profiles and reduce power consumption.  

    Lights-out operation allows these data centers to be deployed in colder, remote locations (such as Iceland) with built-in cooling benefits. The sheer size and physical attributes of hyperscale data centers should lend themselves well to colocated solar, wind, or geothermal renewable power sources. Hyperscalers including Google, Amazon, and Microsoft have pledged carbon neutrality by 2030. 

  • Location Intelligence 

    Effective 5G energy reduction practices can be established with the end user and QoS in mind. Location Intelligence translates real time data on subscriber and IoT device location, performance, and traffic patterns into targeted RAN energy saving opportunities. A digital twin is used to process the data and model adjustments offline so that user experience KPIs are not compromised, and may even be improved. This intelligence can also be used to plan new radio deployments and gather valuable market insight for operators.  

Reduce RAN energy consumption with end-to-end network test and optimization solutions. 

  • Contact an expert
  • Visit RAN Energy Savings Solution 

Related Links

  • 5G Solutions
  • Open RAN
  • RAN Energy Savings
  • What is 5G RAN?
Corporate
  • About Us
  • Careers
  • Investor Relations
  • News Releases
  • Partners
  • Social Responsibility
Areas of Expertise
  • 3D Sensing
  • 5G Testing
  • Avionics
  • Fiber
  • Service Assurance
Support
  • Customer Service
  • Technical Assistance
  • Technical Support Portal
  • Repair and Calibration
  • Software Downloads
How to Buy
  • Request a Quote
  • Contact Sales
  • Locate a Partner
  • Order Status
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Cookie Preferences
  • Contact Us
  • Sitemap
  • Terms of Use
  • Privacy Policy
  • Technical Assistance
  • Request RMA
  • Request a Quote
  • Locate a Partner
  • Customer Portal
  • Contact Us