Skip to main content
  • Investors
  • Partners
  • Blog
  • Contact Us
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
VIAVI Solutions
Back
  • United States
  • 中国
  • 日本
  • Brasil
  • СНГ
  • Deutschland
  • España
  • France
  • United Kingdom
  • Mexico
Search icon
    • Lab and Manufacturing
      • Lab and Manufacturing
        • Application Emulation
        • Automation and Orchestration
        • UE Emulation
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Test as a Service (TaaS)
        • Ethernet Test
        • High-Speed Networks
        • Optical Manufacturing Test
      • Compute, Storage, Transport
        • Compute, Storage, Transport
        • PCI Express
        • SAS and SATA
        • Fiber Channel, Ethernet, FCoE, NVMeoF
        • Protocol Analyzers
        • Exercisers and Generators
        • Jammers
    • Network Deployment and Maintenance
      • Network Deployment and Maintenance
        • Antenna Alignment and Monitoring
        • Asset and Data Management
        • Cell Site Installation and Maintenance
        • Cable and Antenna Analyzer
        • Interference Hunting
        • RF Analysis
      • Fiber
        • Fiber
        • Asset and Data Management
        • Attenuators
        • Bit Error Rate
        • Copper, DSL, WiFi and Broadband Test
        • DOCSIS Test
        • Essential Fiber Optic Testers
        • Ethernet Test
        • Fiber Characterization
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fault Locators
        • Fiber Optic Sensing
        • Fiber Optic Light Sources
      • Fiber (cont.)
        • Fiber (cont.)
        • HFC Test
        • MPO Testing
        • Optical Multimeter
        • Optical Power Meters
        • Optical Spectrum Analyzers (OSA)
        • OTDR Testing
        • PON Testing
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Core Network Assurance
        • Ethernet Assurance
        • RAN Assurance
        • Remote Fiber Test and Monitoring
      • Service Assurance
        • Service Assurance
        • 5G Service Assurance and Analytics
        • AIOps
        • Fiber Service Assurance
        • HFC and Cable Service Assurance
        • Transport Assurance
      • Lab and Manufacturing
        • Lab and Manufacturing
        • Automation and Orchestration
        • Cloud UE Emulation
        • Core Emulation
        • Core Test
        • O-CU Simulator
        • O-CU Test
        • O-DU Test
        • O-RU Test
        • RIC Test
        • Security Validation
        • Asset and Data Management
        • Remote Fiber Test and Monitoring
        • Virtual Test and Activation
        • AIOps
        • Ethernet Assurance
        • Remote Fiber Test and Monitoring
    • Railway and Mission-Critical
      • Railway and Mission-Critical
      • Drive Test
      • ERTMS and FRMCS Monitoring
      • Mission Critical Assurance
      • Railway Cybersecurity
      • Performance and Threat Visibility
        • Performance and Threat Visibility
        • End-User Experience
        • Enriched Flow Collection
        • Packet Analysis
        • Packet Capture Collection
        • Packet Meta-Data Collection
      • Test and Certification
        • Test and Certification
        • Bit Error Rate
        • Ethernet Test
        • Fiber Identifiers
        • Fiber Inspection and Cleaning
        • Fiber Optic Sensing
        • MPO Testing
        • Optical Power Meters
    • Land Mobile and Military Radio
      • Land Mobile and Military Radio
      • Communications Service Monitors
      • Land Mobile Radio Test
      • Military Radio Test
      • Modular Instrumentation
      • Software Defined Radio and System Solutions
    • Avionics
      • Avionics
      • ADS-B Compliance
      • Aircraft Fuel Quantity Test Sets and Interfaces
      • Antenna Couplers
      • Distance Measuring Equipment (DME)
      • Fiber Optic Avionics
      • GPS Signal Simulators
      • Military Avionics
      • Modular Instrumentation
      • Navigation and Communication
      • Radio Altimeters (RADALT)
      • Radio Frequency Automatic Test Equipment (RF ATE) Systems
      • Tactical Air Navigation System (TACAN)
      • Traffic Collision Avoidance System (TCAS)
      • Transponder and Interrogator
    • Position, Navigation and Timing
      • Position, Navigation and Timing
      • GNSS Disciplined Oscillators
      • GNSS/GEO/LEO Grandmaster Clocks
      • GNSS/GEO/LEO Receiver Modules
      • GPS Simulator
      • RF Transcoder
      • Resilient GEO/LEO Timing Services
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • Custom Optics
        • Custom Optics
        • Custom Optical Filters
        • Light Shaping Optics
        • MicroNIR Spectrometers
      • Pigments
        • Pigments
        • Brand Protection
        • ChromaFlair Pigments
        • Security Pigments
        • SpectraFlair Pigments
    • All Products
      • All Products
      • All Products
      • Products by Family
      • Discontinued Products
    • Services
      • Services
      • Instrument Care Plans
      • Refurbished Equipment
      • Repair and Calibration
      • System Maintenance and Contracts
      • Training and Certification
      • VIAVI Automated Lab-as-a-Service for Open RAN (VALOR)
      • Order Services
      • Wireless
        • Wireless
        • 5G Solutions
        • 5G Security
        • 5G Synchronization
        • 6G Forward
        • AIOps
        • Automated Lab-as-a-Service for Open RAN
        • Cell Site Installation
        • Cloud-Based Testing
        • Interference Hunting
        • MU-MIMO Test
        • Network Digital Twin
        • Non-Terrestrial Networks
        • Open RAN
        • Private 5G
        • RAN Intelligence Solutions
      • Wireline
        • Wireline
        • AIOps
        • DWDM
        • Ethernet Service Activation Test
        • Fiber Construction
        • Fiber Monitoring
        • Fiber Network Solutions
        • Fiber Sensing
        • FTTx
        • HFC Network Test
        • MPO Connector Testing
        • Passive Optical Network (PON)
        • Rural Broadband
        • Test Process Automation (TPA)
        • Transport Network Operations
        • Hyperscale
        • Data Center Interconnect
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
    • Network Equipment Manufacturers
      • Network Equipment Manufacturers
        • 5G Security
        • 5G Network Equipment Manufacturers
        • 6G Forward
        • Analytics Enablement
        • Cloud-Based Testing
        • Non-Terrestrial Networks
        • Open RAN Security Test
        • O-RU Commercialization
        • Private 5G
        • Coherent Optics Testing
        • Field Deployment
        • Scalable Manufacturing
        • Technology and Service Introduction
        • Test and Development
      • AIOps
      • Fiber Sensing
      • Open RAN
      • Private 5G
      • Public Safety
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
      • Threat Forensics and Remediation
        • Open RAN Security Test
        • Open RAN Security and Firewall Test
        • Threat Forensics and Remediation
        • Fiber Sensing
    • Government, Aerospace and Defense
      • Government, Aerospace and Defense
        • Electromagnetic Warfare
        • Field Test
        • Military Aviation Testing
        • Payload & Device Optical Elements
        • Radar
        • Research, Development and Manufacturing
        • Secure and Reliable Communications
        • Spectrum Monitoring and Signal Analysis
        • Field Test
        • Private 5G
        • Public Safety
        • Secure and Reliable Communications
        • General Aviation
    • Enterprise and Data Center
      • Enterprise and Data Center
        • Cloud Monitoring
        • End-User Experience Monitoring
        • Network Performance Monitoring
        • Private 5G
        • Unified Communications
        • Threat Forensics and Remediation
        • Cloud Workflow Management
        • Data Center Interconnect
        • Ethernet Service Activation Test
        • Fiber and Copper Test and Certification
        • MPO Connector Testing
        • Tier 1 (Basic) Fiber Optic Certification
        • Tier 2 (Extended) Fiber Optic Certification
        • WAN Performance Testing
        • Fiber Monitoring
        • Fiber Sensing
        • Electric Power Operators
        • Fiber Monitoring
        • Fiber Sensing
        • Fiber Monitoring
        • Fiber Sensing
    • Contractors and Integrators
      • Contractors and Integrators
      • Cell Site Installation and Commissioning
      • Data Center Contractor Solutions
      • Fiber and Copper Test and Certification
      • Residential Broadband Services Installation
      • Solutions for Field Technicians
      • Solutions for Installers
      • Solutions for Operations Managers
      • Test Process Automation (TPA)
    • Custom Optics and Pigments
      • Custom Optics and Pigments
      • 3D Sensing
      • Anti-Counterfeiting
      • Automotive
      • Biomedical Applications
      • Consumer Electronics
      • Custom Color Solutions
      • Government and Aerospace
      • Industrial
      • NIR Spectroscopy
      • Spectral Sensing
  • How to Buy
    • Request a Quote
    • Request a Demo
    • Check Order Status
    • Contact Us
    • Equipment Rental
    • Financing Options
    • How to Order Products
    • How to Order Services
    • Locate a Partner
    • Refurbished Equipment
  • Resources
    • Learning Center
      • Learning Center
      • What are Cloud Solutions?
      • What is 5G Energy Consumption?
      • What is 5G Testing?
      • What is a Hyperscale Data Center?
      • What is End-User Experience Monitoring?
      • What is Fiber Construction?
      • What is Fiber Optic Sensing?
      • What is Fiber Testing?
      • What is OTDR Testing?
      • What is Packet Capture?
      • What is PCIe 6.0?
      • What is RF Interference?
      • View All Topics
    • Literature Library
    • Blog Posts
    • Subscription Center
    • Video Library
    • Webinars
    • Customer Support
      • Customer Support
      • Customer Portal
      • Customer Service
      • Technical Support
      • Return Material Authorization (RMA)
      • How-To Videos
      • Knowledge Base
      • Quick Cards and Tech Tips
      • Software Downloads
      • Warranty, Quality and Compliance
    • About Us
      • About Us
      • Awards and Recognition
      • Environment, Social, and Governance (ESG)
      • Leadership
      • Our Locations
      • Together with VIAVI
    • Careers
      • Careers
      • Career Paths
      • Search and Apply
      • Early-Career Program
      • Life at VIAVI
      • What We Value
      • Events
      • In the News
      • News Releases
      • Blog Posts
      • Subscription Center
    • Partners
      • Partners
      • Locate a Partner
      • Partner Portal Login
      • Compliance
      • Data Privacy and Data Security
      • Patents
      • Product Environmental Compliance
      • Privacy Policy
      • Terms and Conditions
      • Terms of Use
    • Contact Us
Search icon
  1. Home
  2. Resources
  3. Learning Center

What are Coherent Optics?

Learn about coherent optics, the associated applications, and how they help deliver more data over the same fiber format.

  • Coherent Optics
  • Applications
  • Coherent Optics vs. DWDM
  • PAM4 vs. Coherent Optics
  • View Solutions
  • View White Paper
  • Contact an Expert

Coherent optics are typically used for ultra-high bandwidth applications ranging anywhere from 100 Gigabit to 1 Terabit per second. Powerful digital signal processing chips (DSPs) are embedded within these systems to mitigate non-linear effects caused by fiber impairments, including chromatic dispersion and polarization mode dispersion. 

Coherent fiber optics utilize the natural properties of light to optimize digital modulation practices and fiber optic carrying capacity in long-range applications. VIAVI has developed versatile, industry-leading solutions to support the unique design validation, compliance testing, and manufacturing requirements of coherent optical modules.

The World of Optical Signal Conditioning for 400G Coherent Interfaces Poster

Download Poster: The World of Optical Signal Conditioning for 400G Coherent Interfaces

With the release of the IEEE 802.3ct standard, coherent optics can now be used to carry 400G over extremely long distances. Light intensity modes of modulation have given way to a comprehensive approach requiring advanced digital signal processing technology, forward error correction (FEC), and tunable lasers.  

  • Coherent Optics increase fiber transmission capacity by 80X as compared to conventional on-off keying (OOK) methods, keeping pace with 400G and 800G Ethernet commonly used for cloud and hyperscale data center interconnects.   
  • Homodyne receiver technology is among the enabling fundamentals of coherent optical fiber communications. The sensitivity and selective tuning afforded by this technology allows for the requisite tight spacing of optical channels. 
  • Forward Error Correction (FEC) is an additional fundamental attribute which enables higher bit-rate signals to traverse longer distances, with less in-line regenerators. Reduced link complexity and equipment outlay minimize cost while improving bandwidth. 
  • Coherent Optical Modules used in high-bandwidth applications include an optical interface connected to outgoing fiber links and an electrical interface for system connection. Advanced form factors including CFP2 and QSFP-DD continue to improve as the standards evolve. 

What is a Coherent Optical Fiber Communication System? 

A coherent optical fiber communication system leverages variable properties of light waves, including amplitude, phase, and polarization, to optimize the capacity of a fiber optic link. Far exceeding the limitations of traditional OOK, coherent optical transmission deploys tunable lasers and sophisticated digital signal processing at both ends the line to effectively modulate and demodulate each of these properties.  

As a fully digital transmission method, coherent fiber optics are customizable to suit a variety of applications and line rates. The high spectral efficiency (e.g., number of bits that can be transferred in the optical spectrum) and reduced amplification requirements are ideal for high-bandwidth dense wave division multiplexing (DWDM) applications. Important coherent optics fundamentals and applications include: 

  • Coherent Modulation: Transmitters used for coherent optics applications expand upon OOK methods used to designate a “1” or “0” based on light intensity alone. By selectively modulating the amplitude, phase, and polarization of the light wave, an exponentially higher volume of data can be encoded within the same physical space and time. 
  • Coherent Demodulation: At the receiver end of the link, coherent demodulation is performed to decode the transmitted data into an electrical format. This is typically completed using optical heterodyne architecture which includes a photodetector, local oscillator, and sequential (bandpass and low-pass) optical filters.
  • Data Center Interconnects: DCIs continue to deploy the latest transmission technology to meet the ever-increasing bandwidth and distance requirements of hyperscale data centers. Standards bodies including the Optical Internetworking Forum (OIF) are striving to improve the interoperability of DCI and metro Ethernet coherent optics. 
  • Submarine Cables: With 99% of global data traffic flowing through undersea links, the high-capacity, long range, and reliability gained through coherent optical technology is a logical fit. Coherent optics reduce the initial cost and power consumption of submarine networks while improving their security and signal integrity.   

Wavelength Division Multiplexing (WDM) enables multiple colors (wavelengths) of light to travel over the same fiber simultaneously, with each color carrying a discrete signal. This concept has been taken to the next level through dense wavelength division multiplexing (DWDM), with tighter wavelength spacing accommodating up to 96 channels on a single fiber. When combined with coherent modulation, individual channel bandwidth can expand to 400 or 800 Gigabits 

  • DWDM is the only transmission technology that can support both coherent optics and OOK. 
  • When coherent optics are deployed in DWDM systems, channel width may need to be adapted based on the spectral width. Flexible grid architecture and dynamic channel spacing allow each channel to have a different passband. 
  • Coherent optical fiber communication eliminates the need for dispersion compensation modules (DCMs) in DWDM systems, since this function is completed by the DSP. 
CWDM Channels

How Coherent Optics Deliver More Data  

Delivering more data over the same fiber format has been the goal of scientists and engineers for decades. With bandwidth requirements continuing to challenge hardware capacity, innovation in this space has gone from nicety to necessity. Since on-off modulation is limited to 10 Gigabit/sec. transmission rates, coherent optical technology is essential for maximizing data capacity. 

  • Coherent Optics enable more symbols per bit to be encoded. While traditional amplitude modulation is limited to 1 bit per symbol, 4, 8, 16, or 32-bits per symbol are possible using coherent methods. 
  • Small Form Factor Coherent Pluggables such as QSFP-DD modules provide 8 data paths, each with 56 Gb/sec. of throughput. This produces a combined 400G capacity per transceiver. 
  • Advanced Modulation Formats leverage the adaptable properties of light (amplitude, phase, and polarization) to optimize carrying capacity. Three degrees of freedom combined with precise digital tuning create exponentially more encoding combinations.  

Coherent Optics Definitions 

  • What is Amplitude Modulation? 
    As the name suggests, amplitude modulation is a method used to encode data based on the amplitude (intensity) of light. While OOK modulation employs amplitude modulation in a binary (on-off) fashion, coherent optics utilize amplitude shift keying (ASK) to increase the available symbols. 
  • What is Phase Modulation? 
    The frequency of light at a given wavelength is highly predictable in an unmodified state. Modulating the phase creates a change in this pattern that is decoded by the demodulator at the receive end. For coherent optics, this process is known as phase shift keying (PSK). 
  • What is Polarization? 
    As a form of electromagnetic energy, polarized light waves produce an electric field which oscillates perpendicular to the direction of travel. The horizontal and/or vertical orientation of this electric field can be induced to provide an additional vehicle for data encoding.  
  • What is QPSK? 
    Quadrature Phase Shift Keying (QPSK) is a phase modulation technique which allows multiple symbols per bit to be encoded based on four phase shift orientations (e.g., 0°, 90°, 180°, and 270°). Dual Polarization Quadrature Phase Shift Keying (DP QPSK) uses horizontal and vertical polarization along with QPSK to represent twice as many bits. 
High-Order Modulation - Constellation Diagrams

Pulse amplitude modulation (PAM4) is a multi-level modulation scheme designed for short-haul fiber links. PAM4 utilizes four amplitude pulses, each containing two bits, to double the bandwidth of conventional binary methods. The simplicity and low power requirements of PAM4 make it a popular option for 100G and 400G Ethernet applications.  

Unlike coherent optics, PAM4 is highly susceptible to fiber impairments. This limits range to ≤30 kilometers for unamplified links. PAM4 is often used for client interfaces as defined by the IEEE, whereas coherent optical fiber communication systems, as specified by the OIF or ITU, can potentially span thousands of kilometers on unamplified links. 

PAM4 Signaling Technology
  • PAM4 is more susceptible to noise as compared to coherent optics. To compensate, a higher signal-to-noise (SNR) ratio must be established. 
  • PAM4 technology can be deployed with existing DWDM systems, although additional inline multiplexing and dispersion compensation are required for links of over six kilometers. 
  • QSFP28 transceiver modules utilizing PAM4 modulation support 100 Gigabit transmission speeds and are suitable for many short-range applications. 
  • While built-in DSP chips improve sensitivity and amplification performance for coherent optics, they also result in higher power consumption and ongoing operating costs.  

Start testing coherent optics with VIAVI today!

  • Contact an expert
  • See Solutions
Corporate
  • About Us
  • Careers
  • Investor Relations
  • News Releases
  • Partners
  • Social Responsibility
Areas of Expertise
  • 3D Sensing
  • 5G Testing
  • Avionics
  • Fiber
  • Service Assurance
Support
  • Customer Service
  • Technical Assistance
  • Technical Support Portal
  • Repair and Calibration
  • Software Downloads
How to Buy
  • Request a Quote
  • Contact Sales
  • Locate a Partner
  • Order Status
viavi logo
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube
Subscription Center

© 2025 VIAVI Solutions Inc.

  • Cookie Preferences
  • Contact Us
  • Sitemap
  • Terms of Use
  • Privacy Policy
  • Technical Assistance
  • Request RMA
  • Request a Quote
  • Locate a Partner
  • Customer Portal
  • Contact Us